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Many combinatorial optimization problems can be phrased in the language of constraint
satisfaction problems. We introduce a graph neural network architecture for solving such
optimization problems. The architecture is generic; it works for all binary constraint
satisfaction problems. Training is unsupervised, and it is sufficient to train on relatively
small instances; the resulting networks perform well on much larger instances (at least
10-times larger). We experimentally evaluate our approach for a variety of problems,
including Maximum Cut and Maximum Independent Set. Despite being generic, we show
that our approach matches or surpasses most greedy and semi-definite programming
based algorithms and sometimes even outperforms state-of-the-art heuristics for the
specific problems.
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1 INTRODUCTION

Constraint satisfaction is a general framework for casting combinatorial search and optimization
problems; many well-known NP-complete problems, for example, k-colorability, Boolean
satisfiability and maximum cut can be modeled as constraint satisfaction problems (CSPs). Our
focus is on the optimization version of constraint satisfaction, usually referred to as maximum
constraint satisfaction (MAX-CSP), where the objective is to satisfy as many constraints of a given
instance as possible. There is a long tradition of designing exact and heuristic algorithms for all kinds
of CSPs. Our work should be seen in the context of a recently renewed interest in heuristics for NP-
hard combinatorial problems based on neural networks, mostly GNNs (for example, Khalil et al.,
2017; Selsam et al., 2019; Lemos et al., 2019; Prates et al., 2019).

We present a generic graph neural network (GNN) based architecture called RUN-CSP
(Recurrent Unsupervised Neural Network for Constraint Satisfaction Problems) with the
following key features:

Unsupervised: Training is unsupervised and just requires a set of instances of the problem.
Scalable: Networks trained on small instances achieve good results on much larger inputs.
Generic: The architecture is generic and can learn to find approximate solutions for any binary

MAX-CSP.
We remark that in principle, every CSP can be transformed into an equivalent binary CSP (see

Section 2 for a discussion).
To solve MAX-CSPs, we train a GNN, which we view as a message passing protocol. The protocol

is executed on a graph with nodes for all variables and edges for all constraints of the instance. After
running the protocol for a fixed number of rounds, we extract probabilities for the possible values of
each variable from its current state. All parameters determining the messages, the update of the
internal states, and the readout function are learned. Since these parameters are shared over all
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variables, we can apply the model to instances of arbitrary size1.
Our loss function rewards solutions with many satisfied
constraints. Thus, our networks learn to satisfy the maximum
number of constraints which naturally puts the focus on the
optimization version MAX-CSP of the constraint satisfaction
problem.

This focus on the optimization problem allows us to train
unsupervised, which is a major point of distinction between our
work and recent neural approaches to Boolean satisfiability
(Selsam et al., 2019) and the coloring problem (Lemos et al.,
2019). Both approaches require supervised training and output a
prediction for satisfiability or coloring number. Furthermore, our
approach not only returns a prediction whether the input
instance is satisfiable, but it returns an (approximately
optimal) variable assignment. The variable assignment is
directly produced by a neural network, which distinguishes
our end-to-end approach from methods that combine neural
networks with conventional heuristics, such as Khalil et al., (2017)
and Li et al., (2018).

We experimentally evaluate our approach on the following
NP-hard problems: the maximum 2-satisfiability problem (MAX-
2-SAT), which asks for an assignment maximizing the number of
satisfied clauses for a given Boolean formula in 2-conjunctive
normal form; the maximum cut problem (MAX-CUT), which asks
for a partition of a graph in two parts such that the number of
edges between the parts is maximal (see Figure 1); the 3-
colorability problem (3-COL), which asks for a 3-coloring of
the vertices of a given graph such that the two endvertices of each
edge have distinct colors. We also consider the maximum
independent set problem (MAX-IS), which asks for an
independent set of maximum cardinality in a given graph.
Strictly speaking, MAX-IS is not a maximum constraint
satisfaction problem, because its objective is not to maximize
the number of satisfied constraints, but to satisfy all constraints
while maximizing the number of variables with a certain value.
We include this problem to demonstrate that our approach can
easily be adapted to such related problems.

Our experiments show that our approach works well for all
four problems and matches competitive baselines. Since our
approach is generic for all MAX-CSPs, those baselines include
other general approaches such as greedy algorithms and semi-
definite programming (SDP). The latter is particularly relevant,
because it is known (under certain complexity theoretic

FIGURE 1 | A 2-coloring for a grid graph found by RUN-CSP in 40 iterations. Conflicting edges are shown in red.

1Our Tensorflow implementation of RUN-CSP is available at https://github.com/
toenshoff/RUN-CSP.
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assumptions) that SDP achieves optimal approximation ratios
for all MAX-CSPs (Raghavendra, 2008). For MAX-2-SAT,
our approach even manages to surpass a state-of-the-art
heuristic. In general, our method is not competitive with the
highly specialized state-of-the-art heuristics. However, we
demonstrate that our approach clearly improves on the state-
of-the-art for neural methods on small and medium-sized binary
CSP instances, while still being completely generic. We remark
that our approach does not give any guarantees, as opposed to
some traditional solvers which guarantee that no better solution
exists.

Almost all models are trained on quite small training sets
consisting of small random instances. We evaluate those models
on unstructured random instances as well as more structured
benchmark instances. Instance sizes vary from small instances
with 100 variables and 200 constraints to medium sized instances
with more than 1,000 variables and over 10,000 constraints. We
observe that RUN-CSP is able to generalize well from small
instances to instances both smaller and much larger. The
largest (benchmark) instance we evaluate on has approximately
120,000 constraints, but that instance required the use of large
training graphs. Computations with RUN-CSP are very fast in
comparison to many heuristics and profit from modern hardware
like GPUs. For medium-sized instances with 10,000 constraints
inference takes less than 5 s.

1.1 Related Work
Traditional methods for solving CSPs include combinatorial
constraint propagation algorithms, logic programming
techniques and domain specific approaches, for an overview
see Apt (2003), Dechter (2003). Our experimental baselines
include a wide range of classical algorithms, mostly designed
for specific problems. For MAX-2-SAT, we compare the
performance to that of WalkSAT (Selman et al., 1993; Kautz,
2019), which is a popular stochastic local search heuristic for
MAX-SAT. Furthermore, we use the state-of-the-art MAX-SAT
solver Loandra (Berg et al., 2019), which combines linear search
and core-guided algorithms. On the MAX-CUT problem, we
compare our method to multiple implementations of a
heuristic approach by Goemans and Williamson (1995). This
method is based on semi-definite programming (SDP) and is
particularly popular since it has a proven approximation ratio of
αx0.878. Other MAX-CUT baselines utilize extremal optimization
(Boettcher and Percus, 2001) and local search (Benlic and Hao,
2013). For MAX-3-COL, we measure the results against HybridEA
(Galinier and Hao, 1999; Lewis et al., 2012; Lewis, 2015), which is
an evolutionary algorithm with state-of-the-art performance.
Furthermore, a simple greedy coloring heuristic (Brélaz, 1979)
is also used as a comparison. ReduMIS is a state-of-the-art
MAX-IS solver that combines kernelization techniques and
evolutionary algorithms. We use it as a MAX-IS baseline,
together with a simple greedy algorithm.

Beyond these traditional approaches there have been several
attempts to apply neural networks to NP-hard problems and
more specifically CSPs. An early group of papers dates back to the
1980s and uses Hopfield Networks (Hopfield and Tank, 1985) to
approximate TSP and other discrete problems using neural

networks. Hopfield and Tank use a single-layer neural network
with sigmoid activation and apply gradient descent to come up
with an approximative solution. The loss function adopts soft
assignments and uses the length of the TSP tour and a term
penalizing incorrect tours as loss, hence being unsupervised. This
approach has been extended to k-colorability (Dahl, 1987;
Takefuji and Lee, 1991; Gassen and Carothers, 1993;
Harmanani et al., 2010) and other CSPs (Adorf and Johnston,
1990). The loss functions used in some of these approaches are
similar to ours.

Newer approaches involve modern machine learning
techniques and are usually based on GNNs. NeuroSAT
(Selsam et al., 2019), a learned message passing network for
predicting satisfiability, reignited the interest in solving NP-
complete problems with neural networks. Prates et al., (2019)
use GNNs to learn TSP and trained on instances of the form
(G, ℓ ± ε) where ℓ is the length of an optimal tour on G. They
achieved good results on graphs with up to 40 nodes. Using the
same idea, Lemos et al., (2019) learned to predict k-colorability of
graphs scaling to larger graphs and chromatic numbers than
seen during training. Yao et al., (2019) evaluated the
performance of unsupervised GNNs for the MAX-CUT

problem. They adapted a GNN architecture by Chen et al.,
(2019) to MAX-CUT and trained two versions of their network,
one through policy gradient descent and the other via a
differentiable relaxation of the loss function which both
achieved similar results. Amizadeh et al., (2019) proposed
an unsupervised architecture for CIRCUIT-SAT, which
predicts satisfying variable assignments for a given formula.
Khalil et al., (2017) proposed an approach for combinatorial
graph problems that combines reinforcement learning and
greedy search. They iteratively construct solutions by greedily
adding nodes according to estimated scores. The scores are
computed by a neural network, which is trained through
Q-Learning. They test their method on the MVC, MAX-CUT,
and TSP problems, where they outperform traditional heuristics
across several benchmark instances. For the #P-hard weighted
model counting problem for DNF formulas, Abboud et al., (2019)
applied a GNN-based message passing approach. Finally, Li et al.,
(2018) use a GNN to guide a tree search for MAX-IS.

2 CONSTRAINT SATISFACTION
PROBLEMS

Formally, a CSP-instance is a triple I � (X,D,C), where X is a set
of variables, D is a domain, and C is a set of constraints of the
form (x1, . . . , xℓ ,R) for some R4Dℓ . A constraint language is a
finite set Γ of relations over some fixed domain D, and I is a
Γ-instance if R ∈ Γ for all constraints (x1, . . . , xℓ ,R) ∈ C. An
assignment α : X→D satisfies a constraint (x1, . . . , xℓ ,R) if
(α(x1), . . . , α(xℓ)) ∈ R, and it satisfies the instance I if it
satisfies all constraints in C. CSP(Γ) is the problem of
deciding whether a given Γ-instance has a satisfying
assignment and finding such an assignment if there is one.
MAX−CSP(Γ) is the problem of finding an assignment that
satisfies the maximum number of constraints.
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For example, an instance of 3-COL has a variable xv for each
vertex v of the input graph, domain D � {1, 2, 3}, and a constraint
(v,w,R3

≠ ) for each edge vw of the graph. Here, R3
≠ �

{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)} is the inequality
relation on {1, 2, 3}. Thus 3-COL is CSP({R3

≠ }).
In this paper, we only consider binary CSPs, that is, CSPs

whose constraint language only contains unary and binary
relations. From a theoretical perspective, this is no real
restriction, because it is well known that every CSP can be
transformed into an “equivalent” binary CSP (see Dechter,
2003). Let us review the construction. Suppose we have a
constraint language Γ of maximum arity k≥ 3 over some
domain D. We construct a binary constraint language Γ̂ as
follows. The domain D̂ of Γ̂ consists of all elements of D as
well as all pairs (a,R) where R ∈ Γ and a is a tuple occurring in R.
For every R ∈ Γ, we add a unary relation QR consisting of all pairs
(a,R) ∈ D̂ where a ∈ R. Moreover, for 1≤ i≤ k we add a binary
“projection” relation Pi consisting of all pairs ((a,R), ai) for
R ∈ Γ, say of arity ℓ ≤ k, and a � (a1, . . . , aℓ) ∈ R. Finally, for
every instance I � (X,D,C) of CSP(Γ) we construct an instance
Î � (X̂, D̂, Ĉ) of CSP(Γ̂), where X̂ consists of all variables in X and
a new variable yc for every constraint c � (x1, . . . , xℓ ,R) ∈ C and
Ĉ consists of a tuple constraint (yc,QR) and projection constraints
(yc, xi, Pi) for all 1≤ i≤ ℓ ≤ k. Here, the tuple constraints select for
every constraint c � (x,R) ∈ C a tuple a ∈ R and the projection
constraints ensure a consistent assignment to the original
variables X4X̂. Then the instances I and Î are equivalent in
the sense that I is satisfiable if and only if Î is and there is a one-to-
one correspondence between the satisfying assignments.

However, the construction is not approximation preserving.
For example, it is not the case that an assignment satisfying 90%
of the constraints of Î yields an assignment satisfying 90% of the
constraints of I. It is possible to fix this by adding weights to the
constraints, making it more expensive to violate projection
constraints. Moreover, and arguably more importantly in this
context, it is not clear how well our method works on CSPs of
higher arity when translated to binary CSPs using this
construction. We leave a thorough experimental evaluation of
CSPs with higher arities for future work.

3 METHOD

3.1 Architecture
We use a randomized recurrent GNN architecture to evaluate a
given problem instance using message passing. For any binary
constraint language Γ a RUN-CSP network can be trained to
approximate MAX-CSP(Γ). Intuitively, our network can be
viewed as a trainable communication protocol through which
the variables of a given instance can negotiate a value assignment.
With every variable x ∈ X we associate a short-term state
s(t)x ∈ Rk and a hidden (long-term) state h(t)x ∈ Rk which change
throughout the message passing iterations t ∈ {0, . . . , tmax}. The
short-term state vector s(0)x for every variable x is initialized by
sampling each value independently from a normal distribution
with zero mean and unit variance. All hidden states h(0)x are
initialized as zero vectors.

Every message passing step uses the same weights and thus we
are free to choose the number tmax ∈ N of iterations for which
RUN-CSP runs on a given problem instance. This number may
or may not be identical to the number of iterations used for
training. The state size k and the number of iterations used for
training ttrmax and evaluation t

ev
max are the main hyperparameters of

our network.
Variables x and y that co-occur in a constraint c � (x, y,R) can

exchange messages. Each message depends on the states s(t)x , s(t)y , the
relation R, and the order of x and y in the constraint but not on the
internal long-term states h(t)x , h(t)y . The dependence onR implies that
we have independent message generation functions for every
relation R in the constraint language Γ. The process of message
passing and updating the internal states is repeated tmax times. We
use linear functions to compute the messages as preliminary
experiments showed that more complicated functions did not
improve performance while being less stable and less efficient
during training. Thus, the messaging function for every relation
R is defined by a trainable weight matrix MR ∈ R2k×2k as

SR(s(t)x , s(t)y ) � MR( s(t)x

s(t)y
). (1)

The output of SR consists of two stacked k-dimensional vectors,
which represent the messages to x and y, respectively. Note that the
generated messages depend on the order of the variables in the
constraint. This behavior is desirable for asymmetric relations. For
symmetric relations we modify SR to produce messages
independently from the order of variables in c. In this case we
use a smaller weight matrix MR ∈ Rk×2k to generate both
messages. Note that the two messages can still be different,
but the content of each message depends only on the states of
the endpoints.

The internal states hx and sx are updated by an LSTM cell
based on the mean of the received messages. For a variable x
which received the messages m1, . . . ,mℓ the new states are thus
computed by

h(t+1)x , s(t+1)x � LSTM⎛⎝h(t)x , s(t)x ,
1
ℓ
∑ℓ
i�1

mi
⎞⎠. (2)

For every variable x and iteration t ∈ {1, . . . , tmax}, the network
produces a soft assignment φ(t)(x) from the state s(t)x . In our
architecture we use φ(t)(x) � softmax(Ws(t)x ) with W ∈ Rd×k
trainable and d � |D| (domain size of the CSP). In φ, the
linear function reduces the dimensionality while the softmax
function enforces stochasticity. The soft assignments φ(t)(x)
can be interpreted as probabilities of a variable x receiving a
certain value v ∈ D. If the domain D contains only two values,
we compute a “probability” p(t)(x) � σ(Ws(t)x ) for each
node with W ∈ R1×k. The soft assignment is then given by
φ(t)(x) � (p(t)(x), 1 − p(t)(x)). To obtain a hard variable
assignment α(t) : X→D, we assign the value with the highest
estimated probability in φ(t)(x) for each variable x ∈ X. From the
hard assignments α(1), . . . , α(tevmax), we select the one with the most
satisfied constraints as the final prediction of the network. This is
not necessarily the last assignment α(tevmax).
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Input: Instance (X,C), tmax ∈ N.
Output: (φ(1), . . . , φ(tmax)), φ(t) : X→ [0, 1]d .
for x ∈ X do.

//random initialization

s(0)x ∼ N (0, 1)k
h(0)x :� 0 ∈ Rk

for t ∈ {1, . . . , tmax} do.
for c :� (x, y,R) ∈ C do.

//generate messages

(m(t)
c,x , m

(t)
c,y ) :� SR(s(t−1)x , s(t−1)y )

for x ∈ X do.
//combine messages and update

r(t)x :� 1
deg(x) ∑

c ∈ C,x ∈ c

m(t)
c,x

(h(t)x , s(t)x ) :� LSTM(h(t−1)x , s(t−1)x , r(t)x )
φ(t)(x) :� softmax(W · s(t)x )

Algorithm 1: Network Architecture.
Algorithm 1 specifies the architecture in pseudocode.

Figure 2 illustrates the message passing graph for a MAX-2-
SAT instance and the internal update procedure of RUN-CSP.
Note that the network’s output depends on the random
initialization of the short-term states s(0)x . Those states are the
basis for all messages sent during inference and thus for the
solution found by RUN-CSP. By applying the network multiple

times to the same input and choosing the best solution, we can
therefore boost the performance.

We did evaluate more complex variants of this architecture
with multi-layered messaging functions and multiple stacked
recurrent cells. No increase in performance was observed with
these modifications, while the running time increased. Replacing
the LSTM cells with GRU cells slightly decreased the
performance. Therefore, we use the simple LSTM-based
architecture presented here.

3.2 Loss Function
In the following we derive our loss function used for unsupervised
training. Let I � (X,D,C) be a CSP-instance. Assume without loss
of generality that D � {1, . . . , d} for a positive integer d. Given I, in
every iteration our network will produce a soft variable assignment
φ : X→ [0, 1]d , where φ(x) is stochastic for every x ∈ X. Instead of
choosing the value with the maximum probability in φ(x), we
could obtain a hard assignment α : X→D by independently
sampling a value for each x ∈ X from the distribution specified
by φ(x). In this case, the probability that any given constraint
(x, y,R) ∈ C is satisfied by α can be expressed by

Pr
α ∼ φ

[(α(x), α(y)) ∈ R] � φ(x)TAR φ(y) (3)

where AR ∈ {0, 1}d×d is the characteristic matrix of the relation R
with (AR)i,j � 15(i, j) ∈ R. We then aim to minimize the
combined negative log-likelihood over all constraints:

LCSP(φ, I) :� 1

|C| · ∑
(x,y,R) ∈ C

− log(φ(x)TAR φ(y)) (4)

FIGURE 2 | (A) The graph corresponding to the MAX-2-SAT-instance f � (¬X1∨x2)∧(x1∨x3)∧(x2∨x3). The nodes for the variables are shown in green. The functions
through which the variables iteratively exchange messages are shown in blue (B) An illustration of the update mechanism of RUN-CSP. The trainable weights of this
function are shared across all nodes, which allows RUN-CSP to process instances with arbitrary structure.
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We combine the loss function LCSP throughout all iterations with
a discount factor λ ∈ [0, 1] to get our training objective:

L({φt}t ≤ ttrmax
, I) :� ∑ttrmax

t�1
λt

tr
max−t · LCSP(φ(t), I) (5)

This loss function allows us to train unsupervised since it does not
depend on any ground truth assignments. Furthermore, it avoids
reinforcement learning, which is computationally expensive. In
general, computing optimal solutions for supervised training can
easily turn out to be prohibitive; our approach completely avoids
such computations.

We remark that it is also possible to extend the framework to
weighted MAX-CSPs where a real weight is associated with each
constraint. To achieve this, we can replace the averages in the loss
function and message collection steps by weighted averages.
Negative constraint weights can be incorporated by swapping
the relation with its complement. We demonstrate this in
Section 4.2 where we evaluate RUN-CSP on the weighted
MAX-CUT problem.

4 EXPERIMENTS

To validate our method empirically, we performed experiments
for MAX-2-SAT, MAX-CUT, 3-COL and MAX-IS. For all
experiments, we used internal states of size k � 128; state sizes
up to k � 1024 did not increase performance for the tested
instances. We empirically chose to use ttrmax � 30 iterations
during training and, unless stated otherwise, tevmax � 100 for
evaluation. Especially for larger instances it proved beneficial
to use a relatively high tevmax. In contrast, choosing ttrmax too large
during training (ttrmax > 50) resulted in unstable training. During
evaluation, we use 64 parallel runs for each instance and use the
best result. Further increasing this number mainly increases the
runtime but has no real effect on the quality of solutions. We
trained most models with 4,000 instances split into in 400 batches.
Training is performed for 25 epochs using the Adam optimizer
with default parameters and gradient clipping at a norm of 1.0. The
decay over time in our loss functionwas set to λ � 0.95.We provide
a more detailed overview of our implementation and training
configuration in the Supplementary Material.

We ran our experiments on machines with two Intel Xeon
8160 CPUs and one NVIDIA Tesla V100 GPU but got very
similar runtime on consumer hardware. Evaluating 64 runs on an
instance with 1,000 variables and 1,000 constraints takes about
1.5 s, 10,000 constraints about 5 s, and 20,000 constraints about
8 s. Training a model takes less than 30 min. Thus, the
computational cost of RUN-CSP is relatively low.

4.1 Maximum 2-Satisfiability
We viewMAX-2-SAT as a binary CSP with domainD � {0, 1} and
a constraint language consisting of three relations R00 (for clauses
with two negated literals), R01 (one negated literal) and R11

(no negated literals). For example, R01 � {(0, 0), (0, 1), (1, 1)} is
the set of satisfying assignments for a clause (¬x∨y). For training a

RUN-CSP model we used 4,000 random 2-CNF formulas with
100 variables each. The number of clauses was sampled uniformly
between 100 and 600 for every formula and each clause was
generated by sampling two distinct variables and then
independently negating the literals with probability 0.5.

4.1.1 Random Instances
For the evaluation of RUN-CSP in MAX-2-SAT we start with
random instances and compare it to a number of problem-
specific heuristics. All baselines can solve MAX-SAT for
arbitrary arities, not only MAX-2-SAT, while RUN-CSP can
solve a variety of binary MAX-CSPs. The state-of-the-art MAX-
SAT Solver Loandra (Berg et al., 2019) won the unweighted track
for incomplete solvers in the Max-SAT Evaluation 2019 (Bacchus
et al., 2019). We ran Loandra in its default configuration with a
timeout of 20 min on each formula. To put this into context, on
the largest evaluation instance used here (9,600 constraints)
RUN-CSP takes less than 7 min on a single CPU core and
about 5 s using the GPU. WalkSAT (Selman et al., 1993; Kautz,
2019) is a stochastic local search algorithm for approximatingMAX-

SAT. We allowed WalkSAT to perform 10 million flips on each
formula using its “noise” strategy with parameters n � 2 and
m � 2000. Its performance was boosted similarly to RUN-CSP
by performing 64 runs and selecting the best result.

For evaluation we generated random formulas with 100, 400,
800, and 1,600 variables. The ratio between clauses and variables
was varied in steps of 0.1 from 1 to 6. Figure 3 shows the average
percentage of satisfied clauses in the solutions found by each
method over 100 formulas for each size and density. The methods
yield virtually identical results for formulas with less than 2
clauses per variable. For denser instances, RUN-CSP yields
slightly worse results than both baselines when only 100
variables are present. However, RUN-CSP matches the results
of Loandra for formulas with 400 variables and outperforms it for
instances with 800 and 1,600 variables. The performance of
WalkSAT degrades on these formulas and is significantly
worse than RUN-CSP.

4.1.2 Benchmark Instances
For more structured formulas, we use MAX-2-SAT benchmark
instances from the unweighted track of the MAX-SAT Evaluation
2016 (Argelich, 2016) based on the Ising spin glass problem (De
Simone et al., 1995;Heras et al., 2008).We used the same general setup
as in the previous experiment but increased the timeout for Loandra to
60min. In particular we use the same RUN-CSP model trained
entirely on random formulas. Table 1 contains the achieved
numbers of unsatisfied constraints across the benchmark instances.
All methods produced optimal results on the first and the third
instance. RUN-CSP slightly deviates from the optimumon the second
instance. For the fourth instance RUN-CSP found an optimal solution
while bothWalkSAT and Loandra did not. On the largest benchmark
formula, RUN-CSP again produced the best result.

Thus, RUN-CSP is competitive for random as well as spin-
glass-based structured MAX-2-SAT instances. Especially on larger
instances it also outperforms conventional methods.
Furthermore, training on random instances generalized well to
the structured spin-glass instances.
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4.2 Max Cut
MAX-CUT is a classical Max-CSP with domain D � {0, 1} and only
one relation R≠ � {(0, 1), (1, 0)} used in the constraints.

4.2.1 Regular Graphs
In this section we evaluate RUN-CSP’s performance on this
problem. Yao et al., (2019) proposed two unsupervised GNN
architectures for MAX-CUT. One was trained through policy
gradient descent on a non-differentiable loss function while
the other used a differentiable relaxation of this loss. They
evaluated their architectures on random regular graphs, where
the asymptotic MAX-CUT optimum is known. We use their results
as well as their baseline results for Extremal Optimization (EO)
(Boettcher and Percus, 2001) and a classical approach based on
semi-definite programming (SDP) (Goemans and Williamson,
1995) as baselines for RUN-CSP. To evaluate the sizes of graph
cuts, Yao et al., (2019) introduced a relative performance measure
called P-value given by P(z) � z/n−d/4��

d/4
√ where z is the predicted cut

size for a d-regular graph with n nodes. Based on results of
Dembo et al., (2017), they showed that the expected P-value of
d-regular graphs approaches P* ≈ 0.7632 as n→∞. P-values
close to P* indicate a cut where the size is close to the
expected optimum and larger values are better. While Yao
et al. trained one instance of their GNN for each tested
degree, we trained one network model on 4,000 Erdős–Rényi
graphs and applied it to all graphs. For training, each graph had a
node count of n � 100 and a uniformly sampled number of edges
m ∼ U(100, 2000). Thus, the model was not trained specifically
for regular graphs.Table 2 reports themean P-values across 1,000

random regular graphs with 500 nodes for different degrees. For
every method other than RUN-CSP, we provide the values as
reported by Yao et al. While RUN-CSP does not match the cut
sizes produced by extremal optimization, it clearly outperforms
both versions of the GNN as well as the classical SDP-based
approach.

4.2.2 Benchmark Instances
We performed additional experiments on standard MAX-CUT

benchmark instances. The Gset dataset (Ye, 2003) is a set of
71 weighted and unweighted graphs that are commonly used for
testing MAX-CUT algorithms. The dataset contains three different
types of random graphs. Those graphs are Erdős–Rényi graphs
with uniform edge probability, graphs where the connectivity
gradually decays from node 1 to n, and 4-regular toroidal graphs.
Here, we use two unweighted graphs for each type from this
dataset. We reused the RUN-CSP model from the previous
experiment but increased the number of iterations for
evaluation to tevmax � 500. Our first baseline by Choi and Ye
(2000) uses an SDP solver based on dual scaling (DSDP) and
a reduction based on the approach of Goemans and Williamson
(1995). Our second baseline Breakout Local Search (BLS) is based
on the combination of local search and adaptive perturbation
(Benlic and Hao, 2013). Its results are among the best known
solutions for the Gset dataset. For DSDP and BLS we report the
values as provided in the literature. Table 3 reports the achieved
cut sizes for RUN-CSP, DSDP, and BLS. On G14 and G15, which
are random graphs with decaying node degree, the graph cuts
produced by RUN-CSP are similar in size to those reported for

FIGURE 3 | Percentage of satisfied clauses of random 2-CNF formulas for RUN-CSP, Loandra and WalkSAT. Each data point is the average of 100 formulas; the
ratio of clauses per variable increases in steps of 0.1.

TABLE 1 | MAX-2-SAT: Number of unsatisfied constraints for MAX-2-SAT
benchmark instances derived from the Ising spin glass problem.

Instance |V| |C| Opt RUN-CSP WalkSAT Loandra

t3pm3 27 162 17 17 17 17
t4pm3 64 384 38 40 38 38
t5pm3 125 750 78 78 78 78
t6pm3 216 1,269 136 136 142 142
t7pm3 343 2,058 209 216 227 225

TABLE 2 | MAX-CUT: P-values of graph cuts produced by RUN-CSP, Yao, SDP,
and EO for regular graphs with 500 nodes and varying degrees. We report the
mean across 1,000 random graphs for each degree.

d RUN-CSP Yao Rel Yao Pol SDP EO

3 0.714 0.707 0.693 0.702 0.727
5 0.726 0.701 0.668 0.690 0.737
10 0.710 0.670 0.599 0.682 0.735
15 0.697 0.607 0.629 0.678 0.736
20 0.685 0.614 0.626 0.674 0.732
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DSDP. For the Erdős–Rényi graphs G22 and G55 RUN-CSP
performs better than DSDP but worse than BLS. Lastly, on the
toroidal graphs G49 and G50 all three methods achieved the best
known cut size. This reaffirms the observation that our
architecture works particularly well for regular graphs.
Although RUN-CSP did not outperform the state-of-the-art
heuristic in this experiment it performed at least as well as the
SDP based approach DSDP.

4.2.3 Weighted Maximum Cut Problem
Additionally, we evaluate RUN-CSP on the weighted MAX-CUT

problem, where every edge e ∈ E has an associated weight
we ∈ {1,−1}. The aim is to maximize the objective:

Θ(S,T) � ∑
e ∈ E∩​ (S×T)

we,

where the partition S,T of V defines a cut. We can apply RUN-
CSP to this problem by training a model for the constraint
language Γ � {R�,R≠ } over the domain D � {0, 1}. Here, R�
and R≠ are the equality and inequality relations, respectively.
We model every positive edge as a constraint with R≠ and every
negative edge with R�. We trained a RUN-CSP network on 4,000
random Erdős–Rényi graphs with n � 100 nodes and
m ∼ U(100, 300) edges. The weights we ∼ {1,−1} were drawn
uniformly for each edge.

We evaluate this model on 10 benchmark instances obtained
from the Optsicom Project2, namely the 10 smallest graphs of
set 2. These instances are based on the lsing spin glass problem
and are commonly used to evaluate heuristics empirically. All 10
graphs have n � 125 nodes and m � 375 edges. Khalil et al.,
(2017) utilize reinforcement learning to guide greedy search
heuristics for combinatorial problems including weighted MAX-
CUT. They evaluated their method on the same benchmark
instances for weighted MAX-CUT and compared the
performance to a classical greedy heuristic (Kleinberg and
Tardos, 2006) and an SDP-based method (Goemans and
Williamson, 1995). Furthermore, they approximated the
optimal values by running CPLEX for 1 h on every instance.
We use their reported results and baselines for a comparison
with RUN-CSP. Crucially, Khalil et al., (2017) trained their
network on random variations of the benchmark instances,
while RUN-CSP was trained on purely random data. Table 4
provides the achieved cut sizes. On all but one benchmark

instance RUN-CSP yields the largest cuts and on five out of
10 instances it even found the optimal cut value. The classical
approaches based on Greedy Search and SDP performed
substantially worse than both neural methods.

4.3 Coloring
Within coloring we focus on the case of three colors, i.e., we
consider CSPs over the domain {1, 2, 3} with the inequality
relation R≠ . In general, RUN-CSP aims to satisfy as many
constraints as possible and therefore approximates MAX-3-COL.
Instead of evaluating onMAX-3-COL, we evaluate on its practically
more relevant decision variant 3-COL which asks whether a given
graph is 3-colorable without conflicts. We turn RUN-CSP into a
classifier by predicting that a given input graph is 3-colorable if
and only if it is able to find a conflict-free vertex coloring.

4.3.1 Hard Instances
We evaluate RUN-CSP on so-called “hard” random instances,
similar to those defined by Lemos et al., (2019). These instances
are a special subclass of Erdős–Rényi graphs where an additional
edge can make the graph no longer 3-colorable. We describe our
exact generation procedure in the Supplementary Material. We
trained five RUN-CSP models on 4,000 hard 3-colorable
instances with 100 nodes each. In Table 5 we present results
for RUN-CSP, a greedy heuristic with DSatur strategy (Brélaz,
1979), and the state-of-the-art heuristic HybridEA (Galinier and
Hao, 1999; Lewis et al., 2012; Lewis, 2015). HybridEAwas allowed
to make 500 million constraint checks on each graph. We observe
that larger instances are harder for all tested methods and
between the three algorithms there is a clear hierarchy. The
state-of-the-art heuristic HybridEA clearly performs best and
finds solutions even for some of the largest graphs. RUN-CSP
finds optimal colorings for a large fraction of graphs with up to
100 nodes and even a few correct colorings for graphs of size 200.
The weakest algorithm is DSatur which even fails on most of the
small 50 node graphs and gets rapidly worse for larger instances.

Choosing larger or more training graphs for RUN-CSP did not
significantly improve its performance on larger hard graphs. We
assume that a combination of increasing the state size, complexity

TABLE 3 | MAX-CUT: Achieved cut sizes on Gset instances for RUN-CSP, DSDP,
and BLS.

Graph |V| |E| RUN-CSP DSDP BLS

G14 800 4,694 2,943 2,922 3,064
G15 800 4,661 2,928 2,938 3,050
G22 2,000 19,990 13,028 12,960 13,359
G49 3,000 6,000 6,000 6,000 6,000
G50 3,000 6,000 5,880 5,880 5,880
G55 5,000 12,468 10,116 9,960 10,294

TABLE 4 | MAX-CUT: Achieved cut sizes on Optsicom Benchmarks. The optimal
values were estimated by Khalil et al., (2017) by running CPLEX for 1 h on each
instance.

Graphs Opt RUN-CSP Khalil et al Greedy SDP

G54100 110 110 108 80 54
G54200 112 112 108 90 58
G54300 106 106 104 86 60
G54400 114 112 108 96 56
G54500 112 112 112 94 56
G54600 110 110 110 88 66
G54700 112 110 108 88 60
G54800 108 106 108 76 54
G54900 110 108 108 88 68
G541000 112 110 108 80 54

Approx.
Ratio

1.0 1.01 1.02 1.28 1.90

2http://grafo.etsii.urjc.es/optsicom/maxcut/.
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of the message generation functions, and number and size of
training instances is able to achieve better results, but on the cost
of efficiency.

In Table 5 we do not report results for GNN-GCP by Lemos
et al., (2019) as the structure of the output is fundamentally
different. While the three algorithms inTable 5 output a coloring,
GNN-GCP outputs a guess on the chromatic number without
providing a proof that this is achievable. We trained instances of
GNN-GCP on 32,000 pairs of hard graphs of size 40 to 60 (small)
and 50 to 100 (medium). For testing, we restricted the model to
only choose between the chromatic numbers 3 and 4, when
allowing a wider range of possible values, the accuracy of
GNN-GCP drops considerably. The network was able to
achieve test accuracies of 75% (respectively 65% when
trained and evaluated on medium instances). The model
generalizes fairly well, with the small model achieving 64% on
the medium test set and the large model achieving 74% on the
small test set, almost matching the performance of the network
trained on graphs of the respective size. On a set of test instances of
hard graphs with 150 nodes, GNN-GCP achieved an accuracy of
52% (54% for the model trained on medium instances). Thus, the
model performs significantly worse than RUN-CSP which achieves
81% (GNN-GCP 59%) accuracy on a test set of graphs of size 100,
and 68% on graphs of size 150 where GNN-GCP achieves up to
54%. The numbers for RUN-CSP are larger than those reported in
Table 5 since in the table only 3-colorable instances were considered.
Here, the accuracy is computed over 3-colorable instances as well as
their non-3-colorable counter parts. By design, RUN-CSP achieves
perfect classification on negative instances.

Overall, we see that despite being designed for maximization
tasks, RUN-CSP outperforms greedy heuristics and neural baselines
on the decision variant of 3-COL for hard random instances.

4.3.2 Structure Specific Performance
On the example of the coloring problem, we evaluate
generalization to other graph classes. We expect a network
trained on instances of a particular structure to adapt toward
this class and outperform models trained on different graph
classes. We briefly evaluate this hypothesis for four different
classes of graphs.

Erdős–Rényi Graphs: Graphs are generated by uniformly
sampling m distinct edges between n nodes.

Geometric Graphs: A graph is generated by first assigning
random positions within a 1 × 1 square to n distinct nodes. Then
an edge is added for every pair of points with a distance less
than r.

Powerlaw-Cluster Graphs: This graph model was introduced
by Holme and Kim (2002). Each graph is generated by iteratively
adding n nodes and connected to m existing nodes. After each
edge is added, a triangle is closed with probability p, i.e., an
additional edge is added between the new node and a random
neighbor of the other endpoint of the edge.

Regular Graphs:We consider random 5-regular graphs as an
example for graphs with a very specific structure.

We trained five RUN-CSP models on 4,000 random instances of
each type where each graph had between 50 and 100 nodes. We refer
to these groups of models as MER, MGeo, MPow and MReg. Five
additional models MMix were trained on a mixed dataset with 1,000
random instances of each graph class. The exact parameters for
generating the graphs can be found in the Supplementary
Material. Note that the parameters for each class were
purposefully chosen such that most graphs are not 3-
colorable. This allows us to evaluate the relative performance
on the maximization task. Table 6 contains the percentage of
unsatisfied constraints over the models on 1,000 fresh graphs of
each class. We observe that all models perform well on the class
of structures they were trained on and MReg yields the worst
performance on all other classes. Both MGeo and MPow

outperform MER on Erdős–Rényi graphs while MER

outperforms MGeo on Powerlaw-Cluster and MPow on
geometric graphs. When averaging over all four classes, MMix

produces the best results, despite not achieving the best results
for any particular class. Additionally, we observe a very low
variance in performance between the different models trained
on the same dataset. Only the models trained on relatively
narrow graph classes, namely regular graphs and to some extent
also Powerlaw-Cluster graphs, exhibit a higher variance.

Overall, this demonstrates that training on locally diverse
graphs (e.g., geometric graphs or a mixture of graph classes)
leads to good generalization toward other graph classes. While
all tested networks achieved competitive results on the
structure that they were trained on, they were not always
the best for that particular structure. Therefore, our original
hypothesis appears to be overly simplistic and restricting the
training data to the structure of the evaluation instances is not
necessarily optimal.

TABLE 6 |MAX-3-COL: Percentages of unsatisfied constraints for each graph class
under the different RUN-CSPmodels. Values are averaged over 1,000 graphs
and the standard deviation is computed with respect to the five RUN-CSPmodels.

Graphs MER (%) MGeo (%) MPow (%) MReg (%) MMix (%)

Erdos-Renyi 4.75 ± 0.01 4.73 ± 0.02 4.72 ± 0.02 6.69 ± 1.60 4.73 ± 0.01
Geometric 10.33 ± 0.07 10.16 ± 0.04 11.39 ± 0.66 18.99 ± 3.32 10.18 ± 0.03
Pow. Cluster 1.89 ± 0.00 1.96 ± 0.01 1.87 ± 0.00 2.44 ± 0.67 1.89 ± 0.00
Regular 2.33 ± 0.01 2.41 ± 0.03 2.33 ± 0.02 2.32 ± 0.00 2.33 ± 0.00
Mean 4.83 ± 0.02 4.82 ± 0.03 5.08 ± 0.18 7.61 ± 1.40 4.78 ± 0.01

TABLE 5 | 3-COL: Percentages of hard 3-colorable instances for which optimal 3-
colorings were found by RUN-CSP, Greedy, and HybridEA. We evaluate on
1,000 instances for each size. We provide mean and standard deviation across
five different RUN-CSP models.

Nodes RUN-CSP Greedy HybridEA

50 98.4 ± 0.3 34.0 100.0
100 62.5 ± 2.7 6.7 100.0
150 15.5 ± 2.3 1.5 98.7
200 2.6 ± 0.4 0.5 88.9
300 0.1 ± 0.0 0.0 39.9
400 0.0 ± 0.0 0.0 15.3
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4.4 Independent Set
Finally, we experimented with the maximum independent set
problem MAX-IS. The independence condition can be modeled
through a constraint language ΓIS with one binary relation
RIS � {(0, 0), (0, 1), (1, 0)}. Here, assigning the value 1 to a
variable is interpreted as including the corresponding node in
the independent set. MAX-IS is not simply MAX-CSP(ΓIS), since
the empty set will trivially satisfy all constraints. Instead, MAX-IS
is the problem of finding an assignment which satisfies RIS at all
edges while maximizing an additional objective function that
measures the size of the independent set. To model this in our
framework, we extend the loss function to reward assignments
with many variables set to 1. For a graph G � (V , E) and a soft
assignment φ : V → [0, 1], we define

LMIS(φ,G) � (κ + LCSP(φ,G)) · (1 + Lsize(φ,G)),
Lsize(φ,G) � 1

|V | ∑v ∈ V

(1 − φ(v)). (6)

Here, LCSP is the standard RUN-CSP loss for ΓIS and κ adjusts the
relative importance of LCSP and Lsize. Intuitively, smaller values
for κ decrease the importance of Lsize which favors larger
independent sets. A naive weighted sum of both terms turned
out to be unstable during training and yielded poor results,
whereas the product in Eq. 6 worked well. For training, LMIS

is combined across iterations with a discount factor λ as in the
standard RUN-CSP architecture.

4.4.1 Random Instances
We start by evaluating the performance on random graphs. We
trained a network on 4,000 random Erdős–Rényi graphs with 100
nodes and m ∼ U(100, 600) edges each and with κ � 1. For
evaluation we use random graphs with 100, 400, 800 and
1,600 nodes and a varying number of edges. For roughly 6%
of all predictions, the predicted set contained induced edges (just
a single edge in most cases), meaning the predicted sets where not
independent. We corrected these predictions by removing one of
the endpoints of each induced edge from the set and only report
results after this correction. We compare RUN-CSP against two
baselines: ReduMIS, a state-of-the-art MAX-IS solver (Akiba and

Iwata, 2016; Lamm et al., 2017) and a greedy heuristic, which we
implemented ourselves. The greedy procedure iteratively adds the
node with lowest degree to the set and removes the node and its
neighbors from the graph until the graph is empty. Figure 4
shows the achieved independent set sizes, each data point is the
mean IS size across 100 random graphs. For graphs with 100
nodes, RUN-CSP achieves similar sizes as ReduMIS and clearly
outperforms the greedy heuristic. On larger graphs our network
produces smaller sets than ReduMIS. However, RUN-CSP’s
performance remains similar to the greedy baseline and,
especially on denser graphs, outperforms it.

4.4.2 Benchmark Instances
For more structured instances, we use a set of benchmark graphs
from a collection of hard instances for combinatorial problems
(Xu, 2005). The instances are divided into five sets with five
graphs each. These graphs were generated through the RB Model
(Xu and Li, 2003; Xu et al., 2005), a model for generating hard CSP
instances. A graph of the class frbc-k consists of c interconnected
k-cliques and the MAX-IS has a forced size of c. The previous model
trained on Erdős–Rényi graphs did not perform well on these
instances and produced sets with many induced edges. Thus, we
trained a new network on 2,000 instances we generated ourselves
through the RB model. The exact generation procedure of this
dataset is provided in the Supplementary Material. We set κ � 0.1
to increase the importance of the independence condition. The
predictions of the new model contained no induced edges for all
benchmark instances. Table 7 contains the achieved IS sizes. We
observe that RUN-CSP yields similar results to the greedy
heuristic. While our network does not match the state-of-
the-art heuristic, it beats the greedy approach on large
instances with over 100,000 edges.

FIGURE 4 | Independent set sizes on random graphs produced by RUN-CSP, ReduMIS and a greedy heuristic. The sizes are given as the percentage of nodes
contained in the independent set. Every data point is the average for 100 graphs; the degree increases in steps of 0.2.

TABLE 7 | MAX-IS: Achieved IS sizes for the benchmark graphs. We report the
mean and std. deviation for the five graphs in each group.

Graphs |V| |E| RUN-CSP Greedy ReduMIS

frb30–15 450 18 k 25.8 ± 0.8 24.6 ± 0.5 30 ± 0.0
frb40–19 790 41 k 33.6 ± 0.5 33.0 ± 1.2 39.4 ± 0.5
frb50–23 1,150 80 k 42.2 ± 0.4 42.2 ± 0.8 48.8 ± 0.4
frb59–26 1,478 126 k 49.4 ± 0.5 48.0 ± 0.7 57.4 ± 0.9
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5 CONCLUSIONS

We have presented a universal approach for approximating
MAX-CSPs with recurrent neural networks. Its key feature
is the ability to train without supervision on any available
data. Our experiments on the optimization problems MAX-2-
SAT, MAX-CUT, 3-COL and MAX-IS show that RUN-CSP
produces high quality approximations for all four
problems. Our network can compete with traditional
approaches like greedy heuristics or semi-definite
programming on random data as well as benchmark
instances. For MAX-2-SAT, RUN-CSP was able to
outperform a state-of-the-art MAX-SAT Solver. Our
approach also achieved better results than neural baselines,
where those were available. RUN-CSP networks trained on
small random instances generalize well to other instances
with larger size and different structure. Our approach is very
efficient and inference takes only a few seconds, even for
larger instances with over 10,000 constraints. The runtime
scales linearly in the number of constraints and our approach
can fully utilize modern hardware, like GPUs.

Overall, RUN-CSP seems like a promising approach for
approximating Max-CSPs with neural networks. The strong
results are somewhat surprising, considering that our
networks consist of just one LSTM cell and a few linear
functions. We believe that our observations point toward a
great potential of machine learning in combinatorial
optimization.

Future Work
We plan to extend RUN-CSP to CSPs of arbitrary arity and to
weighted CSPs. It will be interesting to see, for example, how it
performs on 3-SAT and its maximization variant. Another
possible future extension could combine RUN-CSP with
traditional local search methods, similar to the approach by Li
et al., (2018) for MAX-IS. The soft assignments can be used to
guide a tree search and the randomness can be exploited to
generate a large pool of initial solutions for traditional refinement
methods.
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ACRONYMS

RUN-CSP Recurrent Unsupervised Neural Network for
Constraint Satisfaction Problems.
3-COL 3-Coloring Problem.
CSP Constrain Satisfaction Problem.
GNN Graph Neural Network.

MVC Maximum Vertex Cover Problem.
MAX-CUT Maximum Cut Problem.
MAX-2-SAT Maximum Satisfiability Problem for Boolean
formulas with two literals per clause.
MAX-3-COL Maximum 3-Coloring Problem.
MAX-IS Maximum Independent Set.
TSP Traveling Sales Person Problem.
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