Journal of Dental Sciences 17 (2022) 482—489

Available online at www.sciencedirect.com Journal of
Dental
ScienceDirect Sciences

journal homepage: www.e-jds.com

Original Article

Three-dimensional analysis of coronal root ®
canal morphology of 136 permanent
mandibular first molars by micro-computed
tomography

Yujie Fu ™, Yuan Gao *¢, Yuxuan Gao ¢, Xuelian Tan ¢,
Lan Zhang *“, Dingming Huang *“*

3 State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu, China

® Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai
Engineering Research Centre of Tooth Restoration and Regeneration, Shanghai, China

¢ Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan
University, Chengdu, China

Received 11 July 2021; Final revision received 25 July 2021
Available online 13 August 2021

KEYWORDS Background/purpose: Minimally invasive endodontic approach become a research hotspot and
Canal curvature; may prevent the fracture of endodontically-treated teeth. This research aims to measure the
Micro-computed coronal root canal morphology of permanent mandibular first molars in 3D and propose a new
tomography; minimally invasive endodontic approach based on this measurement.
Mandibular first Materials and methods: Data of 136 permanent mandibular first molars were involved and re-
molar; constructed in 3D models with canals. Then, the morphology characteristics of the coronal root
Modern endodontic canal were measured.
access; Results: Overall, the distribution of root canal orifices was more centralized than other land-
Root and canal marks. The landmarks were located more mesiobuccally to the center of the occlusal plane of
anatomy; molars. Specifically, the measurements of the maximum curvature of coronal root canals in the
Three-dimensional axial direction were: in 3-canals 2-rooted teeth, the average angles of curvatures were
reconstruction 23°,25°,11° for mesiobuccal (MB), mesiolingual (ML) and distobuccal (DB) canals, respectively;

in 4-canals 2-rooted teeth were 23°,25°,12°,16°for MB, ML, DB, and distolingual (DL) canals,
respectively; in 4-canals 3-rooted teeth were 25°,27°,17°,39° for MB, ML, DB, and DL canals,
respectively. The degrees of coronal root canal curvatures in the horizontal direction were:
in 3-canals teeth, the average angles of curvatures were —1°,47°,-2° for MB, ML and DB canals,
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respectively; in 4-canals 2-rooted teeth were —4°,41°,-25°,48° for MB, ML, DB, and DL canals,
respectively; in 4-canals 3-rooted teeth were —3°,33°,-43°,79° for MB, ML, DB, and DL canals,

respectively.

Conclusion: The results of this study are similar to those previously obtained using CBCT and
can help us design endodontic approaches.

© 2021 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Introduction

Recently, the concept of minimally invasive endodontics
theory has emerged to promote treatments that prevent
the fracture of endodontically-treated teeth.” One of the
most interesting topics in minimally invasive endodontic
therapy is the minimally invasive endodontic approaches.
One such approach is conservative endodontic cavities
(CEC), first proposed by Clark and Khademi in 2010. CEC
minimizes the removal of tooth structure especially so that
the pericervical dentine (PCD) can be preserved.? The
pericervical dentine is the dentine located in the 4 mm
coronal and apical to the crestal bone. Some studies have
shown that pericervical dentine plays an important
biomechanical function,®> > and its retention can increase
the resistance of teeth to fracture.>® Therefore, a variety
of minimally invasive endodontic approaches have been
developed with the purpose of preserving more dental tis-
sue, especially pericervical dentin, to prevent the fracture
of teeth. However, whether the minimally invasive end-
odontic approaches can improve the fracture resistance of
endodontically-treated teeth is still controversial.® "' In
addition, the reduction in the size of the endodontic cav-
ities in CEC reduces the efficiency of root canal shaping and
cleaning while such reduction increases the difficulty of
treatment.'>"°

At present, the lack of knowledge of coronal root canal
morphology may be one of the important reasons for the
unsatisfactory design of minimally invasive endodontic ap-
proaches. Successful root canal therapy depends on a thor-
ough understanding of the anatomy of the root canal system.
The mandibular first permanent molar is a frequently treated
tooth, ' and there are numerous studies on its root canal
anatomy.'” 23 These studies provide a solid foundation for
more efficient approaches of conventional root canal ther-
apy. Similarly, a successful minimally invasive endodontic
approach depends on a thorough understanding of coronal
root canal morphology. Unfortunately, past research has not
paid much attention to the coronal root canal morphology.
This is because a large amount of coronal tooth tissue is
removed, thereby eliminating the natural morphology of the
coronal root canal, in the process of establishing a straight
path in traditional endodontic cavities.

To bridge this gap in knowledge, our research group has
previously used cone beam computed tomography (CBCT)
data in vivo to study coronal root canal morphology of
permanent two-rooted mandibular first molars with novel
3D measurement methods.?* The study provided significant
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preliminary in vivo results, and these results enabled us to
make further in vitro examinations using micro—computed
tomographic (micro-CT) imaging.

Micro-CT imaging is one of the most used methods to
study the morphology of the root canal system. Because it
provides high resolution 3d imaging and causes no damage
to the sample, micro-CT has become the gold standard in
root canal morphology research,” %’ as mentioned above.
With micro-CT, more accurate morphology data can be
collected. Importantly, micro-CT does not require manually
segmenting the mandibular molars from the tomography
images, so we can increase the sample size and include the
teeth with radix entomolaris that are relatively common in
the Chinese population.'”-?8

Therefore, the current study aims to determine the
landmark location and coronal curvatures of the canal of
mandibular first permanent molars by reconstructing them
in 3D models using in vitro micro-CT images to provide more
accurate 3D data. In addition, the combination of in vivo
results and the current higher-accuracy in vitro results
enables us to present our novel protocol for minimally
invasive endodontic approach.*

Materials and methods
Subjects

This study was approved by the ethics committee of the
West China College of Stomatology (WCHSIRB-D-2018-132).
Mandibular first molars from a Chinese population that
extracted for orthodontic treatment, periodontal treat-
ment or other treatment needs were collected. These teeth
were ultrasonically cleaned and maintained in 0.1% thymol
solution at 4 °C until use.

The teeth were scanned in a micro-CT system (uCT-50;
Scanco Medical, Bassersdorf, Switzerland) in 90kV/88 pA
with an isotropic voxel size of 30 um. Scanning was per-
formed by 500 projections per 180°, camera exposure time
of 500 ms. Scanning data were converted to the Digital
Imaging and Communication in Medicine (DICOM) format for
subsequent analysis.

A total 136 mandibular first permanent molars were
included, meeting the following inclusion criteria: (1) the
mandibular first permanent molars had fully formed apices;
(2) the mandibular first permanent molars had sound cor-
onal structures without root canal fillings, posts, prosthetic
crowns, bridges, restorations, caries, trauma, attrition or
any other defects.
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Measurement in 3D

Micro-CT data were imported into in Mimics 18.0 software
(Materialise, Leuven, Belgium). The 3-dimensional models
of the teeth with root canal system were constructed and
made transparent by adjusting the transparency. The tooth
axes based on the shape of the tooth was calculated
automatically based on principal component analysis
(PCA).?

The landmarks were marked directly on the constructed
3D models, and the middle axis of the coronal part of the
root canals is obtained: (1) canal orifice point (O): the
center point of each root canal at the level of cemento
enamel-junction (CEJ); (2) primary curve point (PC): the
center of the canal primary curve in the maximum curva-
ture view; (3) the middle axis of the coronal part of the root
canals: the straight line connecting O and PC; (4) The
intersection point of occlusal surface (10): the intersection
point between the middle axis of the coronal part of the
root canals and the occlusal surface (Fig. 1A).

The occlusal view screenshots of models aligned by their
teeth axes were taken and transferred into image pro-
cessing software (Adobe Photoshop CC 2017.0.0; Adobe
Inc., San Jose, CA, USA). Then a 32 x 32-grid analytical
plane was fitted on each screenshot. The direction of x-
axes of the planes were along mesiodistal axes of the tooth
crowns and y-axes were along buccolingual axes of the
tooth crowns. On the x-axis, “1” and “32” represent the
mesial end and the distal end, respectively. On the y-axis,
"1” and "32” represent the buccal end and the lingual end,
respectively. The coordinates of the landmarks were
recorded (Fig. 1B).

The occlusal view screenshots of models with analytical
plane were imported into ImageJ 1.51K software (National
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Institutes of Health, Bethesda, MD, USA) for measurements
of curvature direction in the horizontal direction, which is
the angle formed by x-axes of analytical planes and the
middle axes of the coronal part of the root canal (Fig. 1C).
The angle was recorded as negative when the middle axis
tended to the side of the lingual side.

The angle formed by the middle axes of the coronal part
of the root canal and teeth axes is coronal root canal cur-
vature in the axial direction. In the Mimics Research 18.0
software, a straight line parallel to the tooth axis was made
through the PC point in the maximum curvature view, and
the angle measurement tool in the software was used to
measure the angle.

Statistical analysis

The coronal root canal curvature of the occlusal and axial
aspect between different root canals were analyzed. Sta-
tistically significant differences about the coronal root
canal curvature in the axial direction among canals were
evaluated using the Friedman test and Dunn’s multiple
comparisons test with Prism GraphPad 7.0 (GraphPad Soft-
ware, La Jolla, CA, USA), with significance level (alpha
level) set at 0.05. The coordinates of landmarks were
analyzed by spatial statistics methods.*°

Results

Distribution of landmarks in occlusal aspect

The distribution characteristics of landmarks in the
mandibular first molars are presented in Table 1. The dis-
tribution maps of landmarks are presented in Fig. 2.

Buccal side

Distal side

Lingual side

Schematic diagram of 3D measurement method. (A) A three-dimensional model constructed from micro-CT data

showing selected landmarks: the centre of each canal orifice (O) at the level of cemento enamel-junction (CEJ), the centre of the
canal primary curve (PC) in the maximum curvature view and the intersection point of the middle axis of the coronal part of the
root canal and the occlusal surface (10). (B) View from the occlusal aspect of a mandibular first molar with a 32 x 32-grid (C) Three-
dimensional model of CBCT data showing the determination of the maximum angle of curvature in the maximum coronal root canal

curvature in the axial direction.
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Table 1  The distribution characteristics of landmarks according to number of canals.
Mean Centre Standard Distance
o PC 10 (0] PC 10
3 Canals MB (10.95,14.80) (6.08,14.81) (17.25,14.59) 1.10 1.63 1.65
(2 roots) ML (11.69,19.53) (7.67,23.14) (16.98,14.86) 1.25 1.96 2.21
D (18.92,16.64) (20.95,16.77) (15.84,16.38) 0.88 1.22 1.59
4 Canals MB (10.56,14.40) (6.04,14.04) (17.08,14.96) 0.90 2.35 1.46
(2 roots) ML (11.68,19.84) (7.40,23.84) (17.28,14.40) 1.18 1.83 2.38
DB (18.16,15.16) (20.24,14.04) (14.96,16.96) 0.92 1.47 1.84
DL (18.92,18.00) (20.92,20.64) (15.28,13.96) 1.23 1.72 2.78
4 Canals MB (10.59,14.04) (5.30,13.76) (17.48,14.33) 0.89 1.51 1.49
(3 roots) ML (11.65,19.24) (6.63,22.65) (17.87,14.80) 1.24 1.69 1.98
DB (17.89,15.07) (20.43,12.41) (14.00,18.93) 0.87 1.39 2.12
DL (18.70,19.85) (20.46,30.35) (16.30,6.48) 1.17 1.89 2.37

D, single distal canal in the distal root; DB, distobuccal; DL, distolingual; MB, mesiobuccal; ML, mesiolingual; O, the centre of each canal
orifice; PC, the centre of the canal primary curve; |0, the intersection point of the middle axis of the coronal part of the root canal and
the occlusal surface. Mean Centre identifies the geographic centre for a set of coordinates and is a point constructed from the average x
and y values for set of coordinates (where x; and y; are the coordinates for point “i”, represents the Mean Centre for the points, and n is

n n
equal to the total number of points). The specific formula is (x = xi-%,y = > yi-%)
i i=1

Standard Distance (SD) measures the degree to which points are concentrated or dispersed around the geometric mean centre. The

i=1

n ) n
specific calculation formula is SD = \/Z (xi — 7)2-% 4 Z vi—V)
i=1 =

Among the standard distance values of O, PC and 10, the
standard distance values of O point are relatively small,
indicating that the distribution of O point is relatively
concentrated, while 10 and PC are relatively discrete.

By comparing the distribution of landmarks between the
two-rooted first mandibular molars with three canals, the
two-rooted mandibular first molars with four canals and the
three-rooted mandibular first molars with four canals, the
distribution of O, PC and 10 of mesiobuccal (MB) and mesio-
lingual (ML) root canals was relatively consistent. The distri-
bution of O and PC of the distolingual (DL) root canal was more
inclined to the lingual side when there were radix entomolaris
among the mandibular first molars with four canals.

The standard distance values for the O, PC and |0 points
were all small. The standard distance value of O points was
relatively smallest among the three, suggesting that the
distribution of O points were relatively concentrated, while
10 and PC points were relatively discrete.

The coronal root canal curvature in the axial
direction

The degrees of coronal root canal curvature in the axial
direction are: in two-rooted the first mandibular molars
with three canals, the average angles of curvatures were
23° for the MB, 25° for ML and 11° for the distal canal; in the
two-rooted mandibular first molars with four canals, the
average angles of curvatures were 23° for the MB, 25° for
the ML and 12° for the distobuccal (DB), and 16° for the DL
canal; in the three-rooted mandibular first molars with four
canals, the average angles of curvatures were 25° for the
MB, 27° for the ML and 17° for the DB, and 39° for the DL
canal. The degrees of coronal root canal curvature in the
axial direction are summarized in Table 2.
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In two-rooted the first mandibular molars with three
canals, the degree of curvature in the distal root canals
were significantly smaller than that in the MB and ML root
canals in the axial direction (p < 0.05). There was no sta-
tistically significant difference in the degree of curvature
between ML and MB root canals (p>0.05). In the two-
rooted mandibular first molars with four canals, the de-
gree of curvature in the axial direction was significantly
smaller in the DB root canals than in the MB root canals
(p < 0.05), was significantly smaller in the DL root canals
than in the ML root canals (p < 0.05) and was smaller in the
DB root canals than in the DL root canals (p < 0.05). There
was no statistically significant difference in the degree of
curvature between ML and MB root canals (p > 0.05). In the
three-rooted mandibular first molars with four canals, the
degree of curvature in the axial direction was largest in the
DL root canals and the smallest in the DB root canals among
all root canals (p < 0.05), and there was no significant
difference between the ML and MB root canals (p > 0.05).

Curvature direction of coronal root canal in the
horizontal direction

All mesial root canals pointed in the distal direction and
vice versa for distal root canals. The degrees of curvature
direction of coronal root canal in the horizontal direction
are: in two-rooted the first mandibular molars with three
canals, the average angles of curvatures were —1° for the
MB, 47° for the ML and —2° for the distal canal; in the two-
rooted mandibular first molars with four canals, the
average angles of curvatures were —4° for the MB, 41° for
the ML and —25° for the DB, and 48° for the DL canal; in the
three-rooted mandibular first molars with four canals, the
average angles of curvatures were —3° for the MB, 33° for



Y. Fu, Y. Gao, Y. Gao et al.

>
[e3)

omuons W

Canons W

omNo s W

10 10

TTT1T

TTTTT

T

T

28 g I

1T

B

10

28]
29

ERERNNE]

NN

M i §
INEEN

T

T23 456 78J10T112131415161/18192021 Es

Figure 2

T23 45678 910T112131415161/18192021

T23456789107112131415161/18192021

The distribution maps of landmarks. Red dots represent MB landmarks, Purple dots ML landmarks, Blue dots the DB or

D landmarks and Green dots the DL landmarks. (A) Root canal orifices in 2-rooted 3-canals, (B) centre of the canal primary curve in
2-rooted 3-canals, (C) intersection point of occlusal surface in 2-rooted 3-canals, (D) root canal orifices in 2-rooted 4-canals, (E)
centre of the canal primary curve in 2-rooted 4-canals, (F) intersection point of occlusal surface in 2-rooted 4-canals. (G) Root
canal orifices in 3-rooted 4-canals, (H) centre of the canal primary curve in 3-rooted 4-canals, (l) intersection point of occlusal

surface in 3-rooted 4-canals.

the ML and —43° for the DB, and 79° for the DL canal. The
angles of coronal root canal curvature in the axial direction
summarized in Table 3.

Discussion

The in vitro 3D measurements collected in this experiment
was largely consistent with the in vivo measurements re-
ported in our previous study,’* with the only major differ-
ence being that the equipment for image scanning switched
from CBCT to micro-CT. In root canal morphology studies,
micro-CT has the advantage of higher imaging resolution
compared with CBCT.*' 3 In addition, compared with the
previous CBCT study, the micro-CT methods in the current
study directly scanned the extracted teeth, eliminating the
need for complex image steps of segmentation, improving
the efficiency of the study and helping to increase the
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sample size. Compared to the previous study, in terms of
the distribution of landmarks in occlusal aspect, there is
little difference in the location of the average centers of
landmarks, but the standard distance of landmarks was
reduced. The reason for this discrepancy may be due to the
higher accuracy of the micro-CT data and the relatively
larger sample size in this study. In terms of the coronal root
canal curvature in the axial direction and curvature direc-
tion of coronal root canal in the horizontal direction, the
results of the present study are also in general agreement
with the trend of previous results in two-rooted mandibular
first molars.

The distolingual root (radix entomolaris) is an anatom-
ical variant commonly found in mandibular first molars in
Chinese population.’>?® The occurrence of radix entomo-
laris often makes the treatment of mandibular first molars
more difficult because the distal lingual root canal is more
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Table 2  Angle of coronal root canal curvature in the axial
direction (degrees).

n Mean SD MIN MAX M
3 Canals
(2 roots)
MB 65 22.62 4.49 12.84 30.92 22.69
ML 65 24.92 4.30 9.69 37.09 24.93
D 65 10.53 3.81 2.16 18.07 11.14
4 Canals
(2 roots)
MB 25 22.50 4.27 15.22 33.54 22.74
ML 25 24.69 4.14 15.67 33.20 23.51
DB 25 12.16 4.19 2.89 17.58 13.35
DL 25 16.20 6.15 4.83 29.82 18.08
4 Canals
(3 roots)
MB 46 24.53 4.27 16.31 34.19 24.59
ML 46 26.54 3.97 16.98 37.94 26.21
DB 46 16.57 3.63 10.57 25.62 16.24
DL 46 38.72 7.23 25.34 54.92 37.90

D, single distal canal in the distal root; DB, distobuccal; DL,
distolingual; MB, mesiobuccal; ML, mesiolingual; SD, standard
deviation; MIN, minimum value; MAX, maximum value; M,
median.

Table 3  Angle of curvature direction of coronal root canal
in the horizontal direction (degrees).

n Mean SD MIN MAX M TB (n) TL (n)
3 Canals
(2 roots)
MB 65 —0.8 14.51 —60.91 32.14 0.01 33 32
ML 65 46.59 12.10 15.53 69.87 48.92 65 0
D 65 —1.55 12.29 —23.78 28.93 —-2.48 36 29
4 Canals
(2 roots)
MB 25 —3.91 12.00 —30.92 14.48 —-0.71 10 15
ML 25 41.28 12.03 18.84 59.78 41.98 25 0
DB 25 —24.47 27.30 —73.99 18.87 —19.84 5 20
DL 25 47.72 20.99 19.06 85.03 48.37 25 0
4 Canals
(3 roots)
MB 46 —2.77 10.54 —25.89 20.05 —-3.58 28 18
ML 46 32.60 11.42 5.21 70.63 33.54 46 0
DB 46 —43.33 18.23 —-78.82 —6.12 —41.11 0 46
DL 46 79.38 5.92 59.14 90.00 80.42 46 0

D, single distal canal in the distal root; DB, distobuccal; DL,
distolingual; MB, mesiobuccal; ML, mesiolingual; SD, standard
deviation; MIN, minimum value; MAX, maximum value; M, me-
dian; TB, to buccal direction; TL, to lingual direction.

The angle is recorded as negative when the middle axis tends to
the side of the lingual side.

easily missed and has a greater curvature and smaller canal
diameter.>**” Familiarity with the relevant morphology
features is an important key to successful treatment. Thus,
in this study, we also performed measurements on
mandibular first molars with radix entomolaris which were
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not included in our previous study. Compared with the two-
rooted mandibular first molars with four canals, DL root
canal orifices of three-rooted mandibular first molars were
more lingually oriented. This suggests that we should look
more lingually towards the distolingual root canal orifice in
the presence of the radix entomolaris, consistent with
existing reports.>® Furthermore, there were greater coronal
root canal curvatures in the axial direction in the DL canal
of mandibular first molars with radix entomolaris. As we
mentioned by Fu et al.,?* the curvature of the coronal part
of the root canal may be used to evaluate the additional
difficulty in root canal preparation in conservative end-
odontic cavities compared with that in traditional end-
odontic access cavities. Greater curvature suggests that
there may be additional difficulty. In the presence of a
radix entomolaris, we recommend careful scrutiny when
considering a minimally invasive access preparation of the
affected tooth, because such a preparation may increase
the difficulty of the treatment and compromise the
outcome. Due to the coronal root canal curvature in the
axial direction, it is recommended that a more sufficient
straight line access be established during the preparation of
the DL root canal of the mandibular first molar with the
radix entomolaris to help reduce the deformation of the
instruments in the root canal and to reduce the pressure of
the instruments on the lateral wall of the root canal as well
as the stress on the instruments themselves to avoid com-
plications of root canal treatment such as perforation, step
and instrument separation.?* 343’

The results of this study are consistent with the results
of previous studies, suggesting that in vivo CBCT for
morphology studies of coronal root canal can indeed meet
the corresponding accuracy requirements and that the use
of CBCT as an evaluation tool in subsequent minimally
invasive access clinical studies may be a reliable option.

Although Micro-CT cannot be used directly in clinical
practice due to high radiation doses, its higher accuracy
can help us better understand the coronal root canal
morphology. With the recent rapid development of deep
learning technology,®**° the accurate data from micro-CT
is expected to be used to assist in improving the accuracy
of CBCT based measurement, and thus the accuracy of
minimally invasive approach planning.

In addition, since micro-CT is more accurate compared
to CBCT,>' >3 based on the results of this study, we also
present our proposal for a minimally invasive endodontic
approach design: straight-line minimally invasive end-
odontics access cavities (SMEC) (Fig. 3). The preparation of
SMEC begins in the central fossa, with a small portion of the
roof of the chamber removed, the extent of cavity is
controlled so that the canal orifice is not visible from the
occlusal view. Afterwards, the cavity shape was expanded
according to the direction of the mean central coordinates
of the root canal orifice in the present study, with limited
straight-line access localized at the coronal side of the root
canal of the mesial root canals in two-rooted teeth and the
mesial root canals and distolingual root canal in three-
rooted teeth. According to our 3-dimensional analysis of
coronal root canal morphology of mandibular first molars,
the SMEC was designed with the root canal orifice as the key
marker point since the distribution of root canal orifices is
the most constant. In contrast to CEC, we have innovatively
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Figure 3
the red zone represents the access.

introduced a limited straight-line pathway in SMEC. The
SMEC requires the establishment of a locally limited
straight-line pathway to remove only a portion of the PCD
from the coronal side of the root canal with a greater
coronal root canal curvature in the axial direction which,
according to the results of this study, is the MB and ML root
canal of all types of mandibular first molars and the DL root
canal of mandibular first molars with radix entomolaris. As
a result, limited straight-line access provides better visu-
alization and reduces instrument curvature in the root
canal during preparation, with only a small increase in PCD
loss. The SMEC was designed based on both root canal
morphology studies and biomechanical considerations, and
it is hoped that its effectiveness can be demonstrated in
subsequent studies.
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