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1  |  INTRODUCTION

Breathing exercises have been shown to foster psycho-
physiological well- being and health via modulating the re-
spiratory pattern including length, depth, and rhythmicity 
(Gerritsen & Band, 2018). Thus, respiratory training has 
been suggested as a promising tool that could improve 

public health due to its good safety profile as well as cost- 
efficacy (Lavretsky & Feldman, 2021). Within these tech-
niques, slow- paced breathing at 0.1 Hz plays a pivotal role 
as it amplifies heart rate variability (HRV), which describes 
the variation in inter- beat intervals (Berntson et al., 1997; 
Vaschillo et al.,  2006). Precisely, this type of breathing 
increases the respiratory sinus arrhythmia (RSA), which 
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Abstract
Resonance breathing (RB) has been shown to benefit health and performance 
within clinical and non- clinical populations. This is attributed to its baroreflex 
stimulating effect and the concomitant increase in cardiac vagal activity (CVA). 
Hence, developing methods that strengthen the CVA boosting effect of RB could 
improve its clinical effectiveness. Therefore, we assessed whether supplementing 
RB with coherent pelvic floor activation (PRB), which has been shown to entrain 
the baroreflex, yields stronger CVA than standard RB. N = 32 participants per-
formed 5- min of RB and PRB, which requires to recruit the pelvic floor during 
the complete inspiratory phase and release it at the initiation of the expiration. 
CVA was indexed via heart rate variability using RMSSD and LF- HRV. PRB in-
duced significantly larger RMSSD (d = 1.04) and LF- HRV (d = 0.75, ps < .001) as 
compared to RB. Results indicate that PRB induced an additional boost in CVA 
relative to RB in healthy individuals. However, subsequent studies are warranted 
to evaluate whether these first findings can be replicated in individuals with 
compromised health, including a more comprehensive psychophysiological as-
sessment to potentially elucidate the origin of the observed effects. Importantly, 
longitudinal studies need to address whether PRB translates to better treatment 
outcomes.
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describes the phenomenon of increasing heart rate (HR) 
during inhalation and deceleration during exhalation 
(Schwerdtfeger et al., 2020; Shaffer & Meehan, 2020). The 
main mechanism driving the RSA amplification during 
0.1 Hz breathing is the baroreflex, which has an eigenfre-
quency of approximately 0.1 Hz and innervates the heart 
via an afferent- efferent feedback loop (Schwerdtfeger 
et al., 2020; Vaschillo et al., 2006). In brief, blood pressure 
oscillations activate baroreceptors (i.e., stretch receptors) 
in the aortic system, which send these signals to the brain 
stem and in turn, modulate cardiac vagal activity (CVA) 
to adapt the HR accordingly (Shaffer & Meehan,  2020). 
Consequently, adapting the respiratory rate to the in-
trinsic frequency of the baroreflex loop ultimately stim-
ulates the latter, increasing the afferent input to the brain, 
eventually manifesting in increased CVA (e.g., Shaffer & 
Meehan, 2020). Therefore, this type of breathing has been 
labeled resonance breathing (RB) (Lehrer et al.,  2003; 
Vaschillo et al., 2006). Additionally, abdominal breathing 
(an integral part of RB) has been suggested to contribute 
to this phenomenon via activating pulmonary stretch re-
ceptors, which in turn could aid in augmented cardiac 
vagal control as well (Noble & Hochman,  2019; Russo 
et al., 2017). Accordingly, when breathing at 0.1 Hz, HR os-
cillations occur predominantly within the low- frequency 
domain (LF- HRV  =  0.04– 0.15 Hz), which is mediated 
predominantly by vagal efferent control (Kromenacker 
et al., 2018; Shaffer & Ginsberg, 2017). In addition to am-
plified LF- HRV, RB increases the root mean square of 
successive differences (RMSSD), which reliably indexes 
CVA across different respiratory frequencies (Penttilä 
et al., 2001; Shaffer & Meehan, 2020). Noteworthy, under 
resting conditions the magnitude of acute RMSSD aug-
mentation occurring during a RB session seems inde-
pendent of its duration and returns to pre- session resting 
levels post- practice (You, Laborde, Salvotti, et al.,  2021; 
You, Laborde, Zammit, et al., 2021). On the contrary, res-
piration seems to be sensitive to session length with longer 
RB intervals yielding lower post- session resting breathing 
rates, which in response could transfer to improved psy-
chophysiological functioning (e.g., You, Laborde, Zammit, 
et al., 2021). Importantly, practicing RB regularly has been 
shown to improve psychological and physical health as 
well as performance, which at least partly is attributed to 
the CVA- enhancing effect of this distinct breathing pat-
tern (Lehrer et al., 2020). Therefore, we set out to advance 
the current RB paradigm, targeting novel ways to amplify 
its described cardiac resonance effects, emphasizing CVA.

On a general note, the individual resonance frequency 
to maximize HRV ranges between 4.5 to 6.5 breaths 
per minute (BPM) averaging roughly 6 BPM (Vaschillo 
et al., 2002, 2006). Hence, HRV biofeedback can be used 
to optimize one's breathing pattern to facilitate RB (Lehrer 

et al.,  2003, 2013). While preliminary research suggests 
stronger treatment effects for HRV biofeedback as com-
pared to paced RB regarding blood pressure regulation, 
more research is needed to validate potential differences 
in effectiveness between the two RB modalities (Lin 
et al., 2012; Shaffer & Meehan, 2020). Noteworthy, a re-
cent study by Laborde et al. (2022) showed no additional 
benefit on CVA when paced 0.1 Hz breathing (i.e., partic-
ipants were instructed to strictly adhere to a respiratory 
rate of 6 BPM) was supplemented with visual feedback of 
the heart rate. While these findings support the value of 
simple paced breathing at a fixed frequency (i.e., 0.1 Hz) 
for CVA augmentation, they also suggest that adapting 
the respiratory pattern during HRV biofeedback seems 
crucial to optimally utilize the latter to maximize HRV. 
Of note, both biofeedback- guided RB as well as paced RB 
seems effective in improving psychological well- being and 
physical health as well as athletic performance (Lehrer 
et al., 2020). Noteworthy, RB seems to be especially effec-
tive in improving emotional well- being, providing a fea-
sible behavioral intervention to treat depression and/or 
anxiety (Goessl et al., 2017; Tatschl et al., 2020).

It has been suggested that the RB- induced cardiac res-
onance transfers to strengthened functional connectivity 
within brain regions relevant to emotion regulation, via 
synchronizing and amplifying blood flow to the respec-
tive areas (Mather & Thayer, 2018). Of note, recent find-
ings support this hypothesis as two independent studies 
showed increased functional connectivity between the 
prefrontal cortex and the amygdala after several weeks of 
biofeedback- guided RB (Nashiro et al.,  2021; Schumann 
et al., 2021). Importantly, these effects seem to be driven by 
the repetitive amplification of HRV during RB rather than 
the contemplative effort, as a sham- control group showed 
no such effects (Nashiro et al.,  2021). These findings 
point out that the health- promoting effects of RB should 
be driven by the magnitude of cardiac oscillations and 
CVA, respectively (Lehrer & Gevirtz, 2014; Schwerdtfeger 
et al., 2020; Shaffer & Meehan, 2020).

However, to date, only a few studies have aimed to ad-
vance the current RB paradigm targeting CVA. For example, 
modulating the inspiratory to expiratory ratio with longer ex-
halation as compared to inspiration seems to increase CVA 
during RB as well as during normal resting breathing rates 
(Bae et al., 2021; Laborde et al., 2021; Van Diest et al., 2014). 
Noteworthy, applying inspiratory threshold loading has been 
found to result in stronger cardiac resonance as compared to 
unloaded RB, which seems to be strengthened with increas-
ing loads (Gholamrezaei et al., 2019, 2021a). On the contrary, 
inducing natural inspiratory resistance via unilateral nostril 
breathing or contracting the glottis muscles during inspira-
tion seems to offer no incremental value regarding cardiac- 
hemodynamic stimulation (Gholamrezaei et al.,  2021a; 
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Mason et al., 2013). Noteworthy, the current standard practice 
during RB, pursed lips breathing (i.e., nasal inhalation and 
exhalation via pursed lips) inducing a higher expiratory load 
than nasal exhalation, yielded significantly less CVA than a 
device- induced inspiratory load of 10 cm H2O (Gholamrezaei 
et al., 2021a). [Correction added on October 10, 2022, after 
first online publication: mmHg has been updated to cm H2O 
in the previous sentence]. Importantly, these add- on effects 
seem to be mediated by stronger baroreflex stimulation in re-
sponse to augmented systolic blood pressure oscillations due 
to inspiratory loads likely amplifying intrathoracic pressure 
(Gholamrezaei et al., 2019, 2021a). Hence, these findings sug-
gest that the CVA boosting effects of traditional RB could be 
amplified by utilizing additional techniques.

It is worth mentioning in this regard that non- respiratory 
stimuli like rhythmical muscle tension seem to exert car-
diovascular resonance at 0.1 Hz as well (Lehrer et al., 2009; 
Shaffer et al., 2022; Vaschillo et al., 2011). Noteworthy, the 
moola bandha, a yoga technique describing the recruitment 
of the pelvic floor muscles has been suggested to stimu-
late the autonomic nervous system (Brotto et al., 2009). Of 
note, recent research has shown that voluntary pelvic floor 
recruitment could represent a feasible approach to induce 
cardiac resonance (Bastos et al.,  2020). Precisely, during a 
pelvic floor muscle endurance test consisting of repetitive 
5- second bouts of pelvic muscle activation, separated by 
5- second pauses (i.e., 0.1 Hz), heart rate seemed to behave in 
coherence with the de−/activation cycle (Bastos et al., 2020). 
Although HRV was not assessed by Bastos et al. (2020), heart 
rate peaked during pelvic muscle contractions and decreased 
during the releasing phase (Bastos et al., 2020). As breathing 
was explicitly not in coherence with pelvic floor recruit-
ment, the latter seems to have generated cardiac resonance 
similar to preceding studies using larger muscle groups 
(Bastos et al., 2020; Lehrer et al., 2009; Vaschillo et al., 2011). 
Of note, compared to breathing- generated resonance, 
rhythmical muscle tension seems to be accompanied by an 
increase in the sympathetic drive (e.g., Bastos et al., 2020; 
Lehrer et al., 2009; Vaschillo et al., 2011). However, pelvic 
floor recruitment might provide a unique stimulus to en-
train the cardiovascular system beyond the general effects 
of muscle activation, especially when combined with RB. 
Precisely, the pelvic muscles and their intentional control, 
respectively, have recently been explored as a tool to opti-
mize respiration, which we suggest could even enhance the 
resonance effects observed during 0.1 Hz breathing (Gordon 
& Reed, 2020). For example, by modulating intra- abdominal 
pressure in a functional manner, voluntary pelvic floor ac-
tivation during the inspiratory phase could affect venous 
return, ultimately boosting baroreflex stimulation (Kitano 
et al., 1999; Russo et al., 2017; Takata et al., 1990; Takata & 
Robotham, 1992). Intriguingly, several weeks of pelvic floor 
training seem to improve systolic blood pressure in addition 

to increasing baroreflex sensitivity, emphasizing its poten-
tial to modulate the cardiovascular system (da Silva Corrêa 
et al., 2020). Taken together, these findings suggest that the 
prototypic increase in HR oscillations observed during RB 
might be augmented by utilizing pelvic floor recruitment as 
a coherent complementary stimulus.

Therefore, building on the above- mentioned evidence, this 
study aimed at evaluating whether RB yields stronger cardiac 
resonance, emphasizing CVA when supplemented with coher-
ent de−/activation of the pelvic floor. Precisely, we hypothe-
sized that recruiting the pelvic floor muscles during inspiration 
and releasing it during the expiratory phase, yields larger CVA 
than standard RB without pelvic floor de−/activation. Thus, 
we expected higher RMSSD and LF- HRV during pelvic floor 
assisted RB (PRB) as compared to standard RB (RB).

2  |  METHOD

In absence of previous studies using PRB, the sample size 
was built on the smallest effect of interest, which was set 
at a medium- sized effect of Cohen's f of 0.25. This is in 
line with prior research citing the medium- sized effects of 
complementary stimuli on CVA during 0.1 Hz breathing 
(Gholamrezaei et al., 2019, 2021a). At an alpha level of .05 
and a power (1 − beta) of .80, a target sample size of N = 28 
was retrieved (G*Power; Faul et al., 2007). Exclusion cri-
teria were self- reported habitual and/or acute intake of 
medication that may modulate respiration and/or heart 
dynamics and/or any acute or chronic diseases that could 
influence HRV, like cardiovascular diseases or neurologi-
cal diseases, including dysfunction of the pelvic floor as 
well as pregnancy or child delivery within 12 months prior 
to study participation (Elenskaia et al., 2011). Additionally, 
participants who reported regularly to engage in pelvic 
floor training and/or breathing exercises were excluded. 
The final sample consisted of 32 participants (47% female; 
Ageyears: M  =  28.63, SD  =  8.84, Range  =  19– 62; BMI: 
M = 23.40, SD = 3.55, Range = 18.93– 33.08). The study 
was approved by the Ethics Committee of the University 
of Graz (GZ. 39/13/63 ex 2020/21).

2.1 | Materials and measures

R- R intervals (RRI) were assessed by means of the POLAR 
H10 chest strap (Polar Electro, Finland) with a RRI resolu-
tion rate of 1 ms, recorded with the HRV Logger App (HRV 
Logger, Marco Altini). The Polar H10 derives RRIs from an 
inbuilt ECG processor and has been validated against a 3- 
lead ECG Holter, exhibiting equal precision during rest and 
more accurate RRI detection during exercise, thus suggest-
ing valid RRI assessment (Gilgen- Ammann et al.,  2019). 
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RRIs were imported to KUBIOS Premium (V. 3.5.0) to 
analyze HRV (Tarvainen et al., 2014). The RRI time series 
was visually inspected and the inbuilt KUBIOS filter (auto-
matic correction) was applied when necessary (Lipponen 
& Tarvainen,  2019). RMSSD and LF- HRV (Fast Fourier 
transform) as reliable indicators of CVA during slow- paced 
breathing were assessed (Kromenacker et al., 2018; Laborde 
et al., 2017; Shaffer & Meehan, 2020). While RMSSD pro-
vides a global measure of CVA, LF- HRV emphasizes the 
baroreflex- related HR oscillations, expressing the unique 
respiration- driven stimulation of the cardiovascular system 
during RB (Shaffer & Meehan, 2020).

2.2 | Manipulation checks

2.2.1 | Respiration

Participants were monitored by the investigator during the 
experiment via two cameras, providing a frontal (i.e., ≈0°) as 
well as a side view (i.e., ≈90°), respectively, allowing to visually 
control whether participants executed the instructed breathing 
pace via observing bodily movements. Successful 0.1 Hz breath-
ing also results in HR oscillations predominantly within the LF- 
band, peaking at the respective respiratory rate (i.e., ≈0.1 Hz; 
Shaffer & Meehan, 2020). Additionally, the respiratory rate was 
obtained from the KUBIOS RRI- derived respiration algorithm, 
which however seems to overestimate breathing rates when 
respiration approaches 0.1 Hz by approximately 0.0493 Hz (i.e., 
three breaths per minute; Lipponen & Tarvainen, 2021).

2.3 | Pelvic floor recruitment

After both RB and PRB, participants were asked whether 
they recruited the pelvic floor during the trial. This in-
cluded whether specific bodily sensations distinct to pel-
vic floor activation occurred, which were experienced 
during the introductory training.

2.4 | Procedure

Participants were recruited via social media and gave writ-
ten informed consent prior to participation, including the 
information that they could withdraw from the study at any 
time. Participants were seated in a comfortable chair with 
their feet parallel to the floor. During the 5- min baseline as-
sessment, a muted video with natural scenes was presented 
on a screen at eye level. Subsequently, participants were in-
troduced to RB and PRB and executed a brief practice trial 
for each technique. After the introductory period, partici-
pants executed RB and PRB for 5 min each in randomized 
order, separated by washout periods of 5 min, during which 
participants were instructed to breath naturally. Also, post 
breathing trials, participants had to report whether they ex-
perienced any symptoms of hyperventilation and/or other 
non- specific adverse events (Figure 1). Hyperventilation was 
assessed dichotomously (i.e., Yes/No) via the following items 
retrieved from the Nijmegen Questionnaire (van Dixhoorn 
& Duivenvoorden, 1985): Feeling tensed, feeling stiffness in 
the arms and/or fingers, cold hands and/or feet and dizziness 
(van Dixhoorn & Duivenvoorden, 1985). The breathing was 
paced via a moving bar that was visualized on a screen. The 
breathing pace was set at 0.1 Hz, with an inspiratory phase 
of 4.0 s and an expiration period of 5.6 s. After both inspira-
tion and expiration, the pacer paused for 200 ms to facilitate 
a smooth transition from inhalation to exhalation and vice- 
versa, thus yielding a length of 10 s per breathing cycle. On 
a general note, participants were instructed to adhere to the 
following instructions prior to their appointment: No alcohol 
or strenuous exercise in the 24 hr prior and no exercise, no 
caffeine, no nicotine intake as well as no fluid and/or food 
consumption in the 4 hr prior testing (Laborde et al., 2017).

2.5 | Standard resonance breathing (RB)

RB was instructed according to Lehrer et al. (2013), empha-
sizing rhythmic and abdominal breathing as well as avoiding 

F I G U R E  1  Experimental protocol. Breathing trials were executed in randomized order. AAE, assessment of adverse events; baseline, 
unguided resting respiration; CVA, cardiac vagal activity; PRB, pelvic floor resonance breathing; RB, standard resonance breathing.
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hyperventilation based on the findings of Szulczewski (2019). 
Also, participants were instructed to inhale and exhale na-
sally instead of the pursed lips breathing technique, to keep 
the actual breathing exercise as simple as possible.

2.6 | Pelvic floor resonance breathing 
(PRB)

Following the RB introduction, participants were taught 
the PRB technique. The first step addressed rehearsing the 
location of the pelvic floor in the body and its utility. For 
example, it was explained that during voluntary interrup-
tion of the urinary stream, one would activate the pelvic 
floor. Next, they were taught to intentionally de−/activate 
the pelvic floor muscles via sex- specific cues (Aljuraifani 
et al., 2019; Henderson et al., 2013; Stafford et al., 2016). 
It has been shown that individuals naïve to pelvic floor 
training can reliably recruit the pelvic floor muscles after a 
brief verbal introduction (Henderson et al., 2013; Stafford 
et al.,  2015, 2016). Importantly, participants were in-
structed to keep the rest of the body relaxed during pelvic 
muscle recruitment. Subsequently, participants were in-
structed to recruit and release the pelvic floor in coherence 
with inspiration and expiration. Precisely, the pelvic floor 
activation should be initiated simultaneously with the be-
ginning of the inhalation, lasting for the entire inspiratory 
phase, and released abruptly at the initiation of the expi-
ration and ought to stay relaxed till the start of the sub-
sequent inhalation. Additionally, it was emphasized that 
the pelvic floor de−/activation, analogous to a conductor, 
should drive the initiation of inspiratory and expiratory 
cycles to optimize synchronization. The coherence be-
tween inspiration and pelvic floor recruitment needs to be 
stressed as the findings of Bastos et al. (2020) showed HR 
increases during the activation of the pelvic muscles and 
decreases after the release, which was independent of res-
piration. Hence, it can be hypothesized that pelvic muscle 
recruitment during the expiratory phase might impede 
rather than strengthen the magnitude of HRV. During the 
introductory phase, participants were instructed to alter-
nate between low, medium, and maximum intentional 
pelvic floor activation from 0 (i.e., rest = no recruitment 
effort) to 10 (i.e., maximum recruitment effort) based on 
the CR10 Borg scale, which has been shown to index the 
degree of pelvic floor activation (Stafford et al., 2015, 2016; 
Williams,  2017). Finally, participants were instructed to 
recruit the pelvic floor with a mean intensity of approxi-
mately 5– 6 (i.e., somewhat strong— strong recruitment 
effort) on the CR10 Borg scale, which ought to be the ef-
fort for the actual experimental trial, as subjective inten-
sities of three or higher have been validated to reliably 
elicit pelvic floor activation (Stafford et al.,  2015, 2016; 

Williams,  2017). Of note, participants were encouraged 
to avoid excessive (pelvic muscle) effort during the PRB 
trial as this could yield increased sympathetic arousal, po-
tentially opposing CVA (e.g., Lehrer et al., 2009). At the 
end of the practice phase, all participants stated that they 
could successfully execute PRB with the demanded effort, 
successfully distinguishing between RB and PRB, based 
on distinct bodily sensations. On a general note, partici-
pants were instructed to keep the recruitment effort as 
constant as possible throughout the PRB trial.

2.7 | Statistical analyses

SPSS (Vers. 27) was used to analyze the data. Separate 
repeated- measures ANOVAs were conducted for each out-
come variable, with condition (i.e., Baseline, RB and PRB) 
as within- subjects factor and eta- squared as effect size for 
main effects. Greenhouse– Geisser correction was applied 
when sphericity was not given. Post hoc pairwise contrasts 
were assessed via paired t tests, using Cohen's d for effect 
size estimation, with ds of 0.2, 0.5, and 0.8 defining small, 
medium, and large effects, respectively (Cohen, 1988). A 
Bonferroni correction was applied to adjust the alpha level 
for the planned post hoc t tests (HR, lnRMSSD, lnLF- HR, 
rel. LF- HRV, breathing rate x three conditions) to p = .0033 
(i.e., .05/15). Shapiro– Wilk tests were performed to assess 
the distribution of the variables of interest. Natural loga-
rithmic transformation was conducted for all HRV param-
eters when normality was violated (Laborde et al., 2017).

3  |  RESULTS

3.1 | Data quality

Across the complete sample, three participants showed 
artifacts during the baseline HRV assessment. In all three 
cases, the percentage of corrected beats was below one 
percent (i.e., 0.46%, 0.89%, 0.20%), thus justifying the in-
clusion of the data. No artifact correction was required 
during RB and PRB, respectively.

3.2 | Manipulation check

A significant main effect was found for the KUBIOS RRI 
derived respiratory frequency (F[2, 62] = 49.513, p < .001, 
η2  =  .615). Pairwise contrasts revealed significantly lower 
breathing rates during both, RB (t[31]  =  −8.68, p < .001, 
d = 1.54) as well as PRB (t[31] = −7.20, p < .001, d = 1.27) 
compared to baseline (13.75 BPM). RB (8.75 BPM) and 
PRB (9.17 BPM) did not differ significantly from each other 
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(p = .351; Table 1). Of note, the main effect for the condition 
for rel. LF- HRV was observed (F[1.123, 34.819]  =  68.216, 
p < .001, η2  =  .688), documenting increasing values from 
baseline to RB (t[31] = 8.72, p < .001, d = 1.54) as well as to 
PRB (t[31] = 8.07, p < .001, d = 1.43; Table 1). Importantly, 
the mean peak spectral power was at 0.1 Hz (SD = 0.000) 
for both RB and PRB. Hence, during both 0.1 Hz breathing 
trials participants achieved a HRV frequency profile spe-
cific and indicative of successful execution of RB (Shaffer 
& Meehan, 2020; Figure 2). All participants reported suc-
cessful pelvic floor activation during PRB and no inten-
tional pelvic muscle recruitment during RB. Also, RB and 
PRB were well tolerated, as only one participant reported 
an adverse event. Specifically, a female participant reported 
a feeling of exertion as well as tension of the pelvic floor 
toward the end of the PRB interval, which however sub-
sided immediately after the trial. Thus, the participant was 
included in the final analysis, as she reported the successful 
execution of the PRB technique during the complete trial.

3.3 | Cardiac vagal activity

RMSSD was significantly modified by condition (F[1.638, 
50.777]  =  47.415, p < .001, η2  =  .605). A significantly 

higher RMSSD during RB (t[31] = 5.01, p < .001, d = 0.89) 
and PRB (t[31]  =  8.53, p < .001, d  =  1.51) as compared 
to baseline was observed. Importantly, PRB induced a 
significantly incremental increase of RMSSD relative to 
RB, which was of large effect size (t[31] = 5.88, p < .001, 
d = 1.04). (Figure 3; Table 1).

Additionally, a main effect for LF- HRV was found 
(F[1.336, 41.419] = 113.056, p < .001, η2 = .785). Both 
0.1  Hz breathing conditions yielded significantly 
larger LF- HRV than the baseline condition (RB: 
(t(31) = 10.10, p < .001, d = 1.79; PRB: (t(31) = 12.04, 
p < .001, d  =  2.13). Moreover, PRB induced signifi-
cantly higher LF- HRV than RB (t(31) = 4.23, p < .001, 
d = 0.75; Figure 3; Table 1). Finally, no effect of  con-
dition on HR was found (F[1.690, 52.377]  =  0.638, 
p  =  .507, η2  =  .020; Table  1). The analysis syntax 
for the presented results is available at https://osf.
io/mhq9j/ ?view_only=edfa7 d3870 a54ba 79d64 2d6c2 
8df2905.

4  |  DISCUSSION

This study assessed whether coherent pelvic floor activa-
tion during 0.1  Hz breathing could boost CVA beyond 

T A B L E  1  Paired t tests for comparisons between conditions

Baseline RB PRB

Contrasts t(31) |d| p*M (SD) M (SD) M (SD)

rHR 70.38 (12.63) 71.32 (10.09) 70.59 (10.07) ns.

rRMSSD 42.68 (22.46) 58.95 (27.57) 79.00 (36.99)

lnRMSSD 3.62 (0.54) 3.97 (0.49) 4.25 (0.52) RB > Base
PRB > Base

5.01
8.53

0.89
1.51

<.001
<.001

PRB > RB 5.88 1.04 <.001

rLF 2344.28 (4016.41) 8553.08 (6532.52) 12,049.08 (8090.48)

lnLF 6.93 (1.17) 8.77 (0.85) 9.13 (0.83) RB > Base
PRB > Base

10.10
12.04

1.79
2.13

<.001
<.001

PRB > RB 4.23 0.75 <.001

rel. LF 59.32 (20.08) 90.94 (4.69) 88.01 (5.77)

RB > Base
PRB > Base

8.72
8.07

1.54
1.43

<.001
<.001

PRB = RB −2.86 .51 .008

rBPM 13.75 (2.81) 8.75 (2.25) 9.17 (2.07)

RB < Base −8.68 1.54 <.001

PRB < Base −7.20 1.27 <.001

PRB = RB .95 .17 .351

*Bonferroni corrected alpha adjusted to p = .0033.
Abbreviations: Baseline, unguided resting respiration; BPM, breaths per minute; HR, heart rate; LF, low- frequency HRV; ln, natural logarithmic normalization 
of the data; ns., non- significant; PRB, pelvic floor resonance breathing; r, raw values; RB, standard resonance breathing; rel. LF, LF %; RMSSD, root mean 
square of the successive differences.

https://osf.io/mhq9j/?view_only=edfa7d3870a54ba79d642d6c28df2905
https://osf.io/mhq9j/?view_only=edfa7d3870a54ba79d642d6c28df2905
https://osf.io/mhq9j/?view_only=edfa7d3870a54ba79d642d6c28df2905
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traditional RB. Recent findings emphasize the potential 
of rhythmical muscle tension to induce cardiac resonance 
and that pelvic floor recruitment could stimulate the ba-
roreflex (Bastos et al., 2020; da Silva Corrêa et al., 2020; 
Lehrer et al., 2009; Vaschillo et al., 2011). Accordingly, a 
cumulative and therefore stronger effect for PRB on CVA 
compared to RB was expected. Confirming our hypoth-
esis, PRB induced significantly higher RMSSD as well 
as LF- HRV, thus indicating a significant CVA boosting 
effect.

Our findings extend prior research aiming at improv-
ing the efficacy of RB to augment cardiac vagal control. 
Noteworthy, the PRB technique could complement meth-
ods that specifically alter the breathing pattern during RB. 
For example, during both RB as well as normal resting 
respiration, an inspiratory to expiratory ratio (I/E) below 
1.0 seems to favor CVA as compared to an I/E of 1.0 or 
higher (Bae et al.,  2021; Laborde et al.,  2021; Van Diest 
et al.,  2014). On the contrary, supplementing RB with 
brief pre-  and/or post- expiratory pauses seems to have no 

F I G U R E  2  Power spectral density 
averaged across all participants for 
each experimental condition. Baseline, 
unguided resting respiration; PRB, pelvic 
floor resonance breathing; PSD, power 
spectral density; RB, standard resonance 
breathing.

F I G U R E  3  Pairwise comparisons between experimental conditions for mean ln RMSSD ± 1SE and ln LF- HRV ± 1SE. Baseline, 
unguided resting respiration; PRB, pelvic floor resonance breathing; RB, standard resonance breathing. *Significant differences (ps < .001); 
ln, natural logarithmic transformation; LF- HRV, low- frequency HRV; RMSSD, root mean square of successive differences.
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noteworthy add- on effect on established markers of CVA 
during RB, like RSA, RMSSD, and/or LF- HRV (Laborde 
et al., 2021; Russell et al., 2017). Compared to the incon-
clusive effects of respiratory pauses, applying respiratory 
loads during RB, especially inspiratory loading, seems to 
reliably strengthen CVA evidenced by medium- sized in-
creases in RMSSD and RSA (Gholamrezaei et al.,  2019, 
2021a, 2021b). Hence, in line with this elegant string 
of research, our results support the utility of coherent, 
complementary stimuli to strengthen CVA during RB. 
Importantly, both approaches seem to exhibit distinct 
advantages in terms of feasibility, which might facili-
tate compliance in respective populations. For example, 
loaded RB should be easier to learn, potentially favoring 
populations with constrained psycho- motoric abilities. 
On the contrary, once familiar with PRB, the latter can 
be practiced without any additional device, which al-
lows its application largely independent of an individu-
al's situational context. Intriguingly, loaded RB and PRB 
might as well complement each other, since distinct stim-
uli (i.e., inspiratory loading vs. pelvic floor recruitment) 
are utilized to generate the observed CVA increments. 
Hence, using inspiratory resistance in conjunction with 
PRB might yield even stronger resonance effects than ei-
ther approach on its own. Of note, a case study showed 
extremely pronounced RSA when an orthostatic stim-
ulus (i.e., head- down tilt) was combined with very large 
tidal volumes (Baden et al., 2014). Similar to loaded RB, 
augmented arterial baroreflex modulation might be piv-
otal to the PRB effect (Gholamrezaei et al., 2019, 2021a). 
However, the latter might utilize additional, distinct path-
ways, compared to inspiratory loading, which has been 
suggested to be driven primarily by larger blood pressure 
swings secondary to stronger intra- thoracic pressure mod-
ulations (Gholamrezaei et al., 2019, 2021a).

First, PRB might induce its cardiac resonance effects 
via the associated muscular effort per se as suggested in 
prior studies utilizing large skeletal muscle groups (e.g., 
Lehrer et al.,  2009; Vaschillo et al.,  2011). However, as 
briefly mentioned earlier, we hypothesize that PRB could 
exert its effects directly acting on cardiac- pulmonary func-
tioning. For example, it has been shown that the pelvic 
floor plays an important, though to date largely neglected 
role in respiration and that voluntary pelvic muscle acti-
vation could further enhance breathing capacity (Gordon 
& Reed, 2020). Specifically, intentional pelvic floor recruit-
ment has been shown to increase maximum voluntary 
ventilation, which might be attributed to strengthened 
activation of the diaphragm (Park et al.,  2015; Park & 
Han, 2015). Noteworthy, this seems to be due to increased 
breathing velocity rather than due to tidal volume incre-
ments, as forced vital capacity, although slightly smaller 
on a descriptive level during pelvic activation, was not 

significantly affected by the latter (Park & Han,  2015). 
Increased intra- abdominal pressure during pelvic floor 
activation seems to decrease diaphragmatic descent, po-
tentially neutralizing the effect of increased respiratory 
muscle force on tidal volume generation (Neumann & 
Gill, 2002; Park et al., 2015; Park & Han, 2015). Hence, it 
could be hypothesized that increased tidal volume, which 
is linked to HRV augmentation during slow- paced breath-
ing, is not the main driver of the PRB effect (Grossman & 
Taylor, 2007). Yet, as compared to RB, PRB could induce 
a steeper inspiratory curve via a more forceful initiation 
of inhalation, which has been suggested to yield stronger 
baroreflex modulation, ultimately augmenting HR oscilla-
tions (Heesch, 1999; Strauss- Blasche et al., 2000). It needs 
to be mentioned though, that the latter, at least to a cer-
tain degree, might be attributed to a stronger sympathetic 
modulation during a more forceful inspiration (Strauss- 
Blasche et al., 2000). However, as shown by Kromenacker 
et al. (2018) via para−/sympathetic blockade, HRV during 
RB originates predominantly from cardiac vagal efferent 
control. Still, to gain clarity regarding this issue, subse-
quent studies should include the pre- ejection period as 
a measure of cardiac sympathetic modulation (Cacioppo 
et al.,  1994; Sherwood et al.,  1990). Additionally, PRB 
could increase cardiac venous return via an additional 
increase in intra- abdominal pressure within a functional 
spectrum, transferring to augmented stroke volume and, 
in turn, boosting CVA following stronger baroreflex stim-
ulation (Balzan et al.,  2014; Kitano et al.,  1999; Russo 
et al., 2017; Takata et al., 1990; Takata & Robotham, 1992). 
Noteworthy, reducing diaphragmatic descent, PRB might 
yield a more pronounced thoracic breathing amplitude 
as compared to RB, thus manifesting in a stronger rib 
cage expansion, which could foster negative intratho-
racic pressure and therefore, baroreflex modulation (e.g., 
Convertino et al., 2011; Park & Han, 2015; Uva et al., 2016). 
Of note, the absence of alterations in mean HR between 
baseline, RB and PRB, emphasizes that the latter amplifies 
the phasic cardiac vagal efferent control (i.e., CVA) rather 
than vagal tone, similar to loaded RB (Gholamrezaei 
et al., 2019, 2021a; Grossman & Taylor, 2007). Thus, the 
PRB effect could largely originate from baroreflex- driven 
CVA increments via shared (i.e., intra- thoracic pressure 
modulations) as well as distinct pathways compared to 
loaded RB (Gholamrezaei et al.,  2019, 2021a). Hence, 
«loaded PRB» might indeed generate additional incre-
ments on baroreflex- mediated CVA, as indicated by dose- 
dependent responses to mechanical stimulation (i.e., neck 
chamber), which however could be limited due to a poten-
tial ceiling effect (Seredyński et al., 2021). However, as the 
hypothesized superimposed CVA boost could rely on the 
non- baroreflex- mediated contribution of pulmonary affer-
ents, the loaded PRB hypothesis might as well be falsified, 
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warranting within- subjects design studies comparing the 
respective techniques (Baden et al.,  2014). Of note, the 
latter could elucidate whether the larger CVA increments 
due to PRB compared to those observed by Gholamrezaei 
et al. (2019, 2021a) in response to loaded RB, are a func-
tion of the technique per se or related to sample charac-
teristics and/or factors like breathing technique (i.e., oral 
vs. nasal). To conclude, it can be hypothesized that PRB 
seems to strengthen functional respiratory- cardiac inter-
actions, which intrinsically occur across the breathing 
cycle, ultimately amplifying CVA.

It is worth mentioning in this regard that recent evi-
dence suggests RB- driven amplification of HR oscillations 
as a potent neuromodulator, as two recent studies report 
increased functional connectivity within brain networks 
related to emotion and cardiac regulation, after several 
weeks of biofeedback- guided RB (Nashiro et al.,  2021; 
Schumann et al., 2021). Noteworthy, Nashiro et al. (2021) 
showed that biofeedback guided RB enhanced functional 
connectivity between the medial prefrontal cortex and the 
left amygdala at rest as well as improved downregulation 
of somatosensory centers during exposure to emotional 
pictures, which indicates improved implicit emotion reg-
ulation. In comparison, a sham biofeedback condition 
targeting HR to be constant rather than oscillatory had 
no such effects, which suggests that the amplification of 
HRV and not necessarily the contemplative effort during 
RB seems to drive its mental−/health bolstering effects 
(Nashiro et al.,  2021). Therefore, it can be hypothesized 
that PRB could strengthen the brain entraining effects of 
RB via inducing stronger increments in HRV, potentially 
yielding stronger therapeutic effects (Lehrer et al., 2020; 
Tatschl et al., 2020). Consequently, future research should 
implement brain imaging methods to elucidate potential 
differences between PRB and RB on cerebral functioning, 
including longitudinal designs. In this regard, HRV bio-
feedback could be advantageous relative to paced RB as it 
would allow to optimally adapt the recruitment intensity 
of the pelvic floor to maximize HRV (Tatschl et al., 2020).

It should be noted that several factors could moderate 
the efficacy of PRB. First, young and healthy individuals 
(as in the present sample) are likely to exhibit stronger 
effects than health compromised and/or older popula-
tions. For example, pelvic floor strength as well as the 
degree of its activation could moderate its effects on di-
aphragmatic function as well as on generating pressure 
modulations (Gordon & Reed, 2020). Therefore, as pel-
vic floor functionality seems to decline with age as well 
as in individuals suffering from anxiety and depression, 
weaker acute effects might be observed in these popula-
tions (Trowbridge et al., 2007; Vrijens et al., 2017; Wente 
& Dolan, 2018). On the contrary, physical fitness is posi-
tively linked to pelvic floor strength, thus suggesting that 

athletes who have been utilizing RB to improve perfor-
mance might experience a particularly strong CVA boost 
due to PRB (Jürgensen et al., 2017; Lehrer et al., 2020; 
Pagaduan et al., 2020). Hence, the magnitude of acute ef-
fects on CVA is likely moderated by an individual's psy-
chophysiological integrity, potentially requiring regular 
practice in respective populations to achieve comparable 
CVA boosting effects as observed in the present study. 
Importantly, a brief 5- min bout of PRB was well toler-
ated in our sample, which is in line with the high safety 
profile of pelvic muscle training reported in the liter-
ature (Dumoulin & Hay- Smith,  2010). Yet, in the con-
text of a potential PRB practice, analogous to strength 
training, session frequency, duration as well as intensity 
should be carefully gauged to optimize its effectiveness 
as well as to avoid any aversive effects, that may occur 
due to excessive pelvic muscle exertion (Bø,  2009). In 
general, the balanced female to male ratio in the present 
study indicates minor sex- specific effects of PRB, which 
however needs to be validated in larger powered replica-
tion studies.

4.1 | Limitations

Despite the promising findings of the present study, 
several limitations need to be addressed. First, no direct 
physiological marker of pelvic floor activation was as-
sessed and therefore, follow- up studies should aim to 
objectively quantify pelvic floor activity to control for 
the moderating effect of applied muscle force. Second, 
the RRI- derived breathing rate estimation yielded 
slightly higher rates than 0.1  Hz. Still, this is likely 
due to an overestimation of the respiratory rate by the 
KUBIOS algorithm as recently suggested (Lipponen & 
Tarvainen,  2021). Accordingly, breathing compliance 
seems to have been reasonable, considering that during 
both RB and PRB the prototypic frequency HRV pat-
tern was observed (Shaffer & Meehan, 2020; Figure 2). 
However, future studies should strive for a thorough 
assessment of respiration via spirometry and breathing 
belts (Miller et al., 2005). This would allow to elucidate 
distinct differences in the respiratory pattern between 
PRB and RB, including tidal volume, respiratory gradi-
ent as well as end- tidal CO2, and abdominal/thoracic 
breathing, which could drive the additional CVA boost 
of PRB (Grossman & Taylor, 2007; Heesch, 1999; Miller 
et al., 2005; Strauss- Blasche et al., 2000). Third, hemo-
dynamic assessment including continuous blood pres-
sure is imperative for future studies to validate whether 
the hypothesized effects of PRB on the baroreflex can 
be verified (Gholamrezaei et al.,  2019, 2021a). Fourth, 
this study did not account for the link between physical 
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fitness and pelvic floor strength, which, as described ear-
lier, could play an important role regarding the efficacy 
of PRB (Jürgensen et al., 2017; Sapsford & Hodges, 2001; 
Zachovajeviene et al.,  2019). Hence, physical fitness 
should be assessed as a potential moderator in future 
studies. Finally, the effects of PRB on psychological 
functioning, an important application of RB, should be 
targeted in subsequent research, which has not been ad-
dressed in this first study (Lehrer et al., 2020).

5  |  CONCLUSION

To conclude, our findings support recent research that 
complementing RB with additional techniques could 
strengthen CVA. In that sense, utilizing the pelvic floor 
as a supplementary stimulus during RB seems to pro-
vide a strong CVA boost, thus extending prior findings 
emphasizing respiratory patterns and resistance breath-
ing. Importantly, PRB seems highly feasible as it can be 
utilized independently of technical devices as required 
with loaded RB. Thus, PRB could provide a simple tool 
to advance the resonance breathing paradigm, poten-
tially contributing to stronger treatment effects. In that 
regard, further studies are warranted to validate the PRB 
technique within distinct populations including athletes 
and clinical samples. Finally, longitudinal research is 
certainly warranted to examine the potential benefits of 
this technique on mental and physical health as well as 
performance.
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