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METHODOLOGY
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Abstract 

Background:  Wearable smart watches provide large amount of real-time data on the environmental state of the 
users and are useful to determine risk factors for onset and progression of myopia. We aim to evaluate the efficacy of 
machine learning algorithm in differentiating indoor and outdoor locations as collected by use of smart watches.

Methods:  Real time data on luminance, ultraviolet light levels and number of steps obtained with smart watches 
from dataset A: 12 adults from 8 scenes and manually recorded true locations. 70% of data was considered train-
ing set and support vector machine (SVM) algorithm generated using the variables to create a classification system. 
Data collected manually by the adults was the reference. The algorithm was used for predicting the location of the 
remaining 30% of dataset A. Accuracy was defined as the number of correct predictions divided by all. Similarly, data 
was corrected from dataset B: 172 children from 3 schools and 12 supervisors recorded true locations. Data collected 
by the supervisors was the reference. SVM model trained from dataset A was used to predict the location of dataset 
B for validation. Finally, we predicted the location of dataset B using the SVM model self-trained from dataset B. We 
repeated these three predictions with traditional univariate threshold segmentation method.

Results:  In both datasets, SVM outperformed the univariate threshold segmentation method. In dataset A, the accu-
racy and AUC of SVM were 99.55% and 0.99 as compared to 95.11% and 0.95 with the univariate threshold segmenta-
tion (p < 0.01). In validation, the accuracy and AUC of SVM were 82.67% and 0.90 compared to 80.88% and 0.85 with 
the univariate threshold segmentation method (p < 0.01). In dataset B, the accuracy and AUC of SVM and AUC were 
92.43% and 0.96 compared to 80.88% and 0.85 with the univariate threshold segmentation (p < 0.01).

Conclusions:  Machine learning algorithm allows for discrimination of outdoor versus indoor environments with 
high accuracy and provides an opportunity to study and determine the role of environmental risk factors in onset and 
progression of myopia. The accuracy of machine learning algorithm could be improved if the model is trained with 
the dataset itself.
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Background
Myopia is common all over the world, especially in East 
and South Asia. The prevalence of myopia in high school 
graduates may be as high as 80% to 90% with 10% to 20% 
of these individuals having high myopia (myopia worse 
than − 5.00 D) [1]. It is predicted that half of the popula-
tion of the world will have myopia by 2050 [2], and one-
tenth of the total population will have high myopia. Not 
only does myopia result in burden associated with the 
cost and management of the refractive error, the ocular 
complications resulting from high myopia are a signifi-
cant cause of visual impairment and blindness [3, 4]. It 
has been suggested that the increasing prevalence of 
myopia can be largely explained by educational pressures 
resulting in long hours of near based activity and an asso-
ciated reduction in outdoor time [5]. Evidence indicates 
that increased time outdoors has a positive effect on 
reducing the incidence of myopia as well as slowing the 
myopic shift in refractive errors [6–18].

To better understand the role of indoor and outdoor 
time on myopia incidence and prevalence, methods 
that can efficiently and objectively gather and accurately 
determine the indoor/outdoor location of the wearer 
as well as the time spent at these locations are needed. 
Presently, there are two methods that are actively used 
to gather such data. The first method utilizes subjective 
recall of time spent indoors versus outdoors with instru-
ments such as telephone or face-to-face interviews, ques-
tionnaires, diaries and the like, and as such is subject to 
recall bias [3]. The second method relies on objective 
capture of data using for example, wearable devices or 
a biomarker. However, objective data gathering devices 
collect large amount of data and as such, are unwieldy to 
analyse using traditional techniques. Previously reported 
data with wearables calculated outdoor time using mag-
nitude of sunlight exposure but the threshold used to 
discriminate between outdoor versus indoor environ-
ments varied between studies [4, 19–21]. In such stud-
ies, receiver operating characteristic (ROC) curves were 
drawn to obtain a cut-off point of sunlight exposure as 
the boundary to differentiate indoor versus outdoor envi-
ronments. The area under the ROC curve (AUC) ranged 
from 0.82 to 0.96 but given they used a specific threshold 
suited for a particular environment, extrapolation of this 
threshold to other locations was not always possible. In 
addition, Guggenheim et al. [22] and Tideman et al. [23] 
attempted to apply biomarkers such as vitamin D and 
conjunctival ultraviolet autofluorescence (UVAF) levels 
[24, 25] to estimate sunlight exposure to obtain outdoor 
activity time. However, due to the invasiveness and com-
plex nature of the procedure their use was limited, and 
therefore difficult to implement widely in the general 
public. More recently, other techniques were also used to 

collect information on time spent outdoors, such as the 
Global Positioning System (GPS) [26] and accelerometers 
[27–29].

To date, there have been no reports that have compre-
hensively considered multiple features to differentiate 
between indoor and outdoor environments. Methods 
used in artificial intelligence such as machine learning 
algorithms may be more effective in objectively deter-
mining the indoor/outdoor location of the users. We 
therefore applied machine learning algorithms to deter-
mine the accuracy of identifying and classifying outdoor 
and indoor environments for data collected with a smart 
watch (the wearable).

Methods
Smart watch
Our team designed and developed a smart watch named 
‘Mumu’ equipped with a light sensor, accelerometer 
and GPS receiver. The light sensor samples luminance 
and ultraviolet intensity at 20-s intervals. Both the 
front and back of the smart watch have light sensors to 
detect whether it is being worn. The accelerometer con-
sists of three axes that indicate the X, Y, and Z axes in 
space and through filtering, peak-valley detection, and 
removing interference, and finally converts these into 
counting steps. The built-in GPS receivers are used for 
receiving satellite signals and collecting data on the lon-
gitude and latitude of the location. Weather and tem-
perature are synchronized in real time from the official 
website of the Shanghai Meteorological Bureau. The 
smart watch samples data once a minute. One piece of 
data consists of: time (year/month/day/00:00:00, 3 data 
points of luminance (lx), 3 data points on ultraviolet 
light intensity,count of steps, weather (sunny/cloudy) 
and wearing status. The above data were uploaded by the 
mobile terminal to a software platform, that was devel-
oped for collecting, analyzing, and counting the data.

Data collection
Two datasets were collected and included: Dataset A 
(n = 76,284, 12 adults) and Dataset B (n = 23,539, 172 stu-
dents from 3 schools). Each dataset consists of two parts. 
First, luminance, UV, number of steps and the weather 
were collected by the watch itself and transported to the 
computer terminal every minute. Second, the real posi-
tions were recorded by the volunteers or the supervi-
sors every minute, and were uploaded to the computer 
terminal after summarizing and arranging. The research 
followed the tenets of the Declaration of Helsinki, the 
study was approved by the institutional review board of 
the Shanghai Jiao Tong University and informed consent 
obtained from all subjects after explanation of the nature 
and possible consequences of the study.
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For Dataset A, we recruited 12 adults (23.8 ± 1.6 years, 
21–28 years; 6 males and 6 females) with each adult wear-
ing 2 smart watches (both the right and the left wrists) 
and sampling data from 3 scenes in a school (classroom, 
staircase, and playground) and 5 out-of-school scenes 
(park, house, square, road, and shopping mall) with data 
gathered on both sunny and cloudy days (all weather 
records were based on the real-time synchronization 
data from the official website of Shanghai Meteorologi-
cal Administration). Additionally, time spent outdoors 
and indoors was recorded by the adult participants on a 
log sheet and taken to be the reference. A total of 76,284 
pieces of data were uploaded to the software platform. A 
corresponding written log record of scene/location were 
considered for the analysis.

For Dataset B, we randomly chose 172 students (age 
9–11  years) in 6 classes from three primary schools in 

Shanghai. Children wore the smart watches for one day at 
school, sampling data from 3 scenes in school (classroom, 
staircase and playground). The indoor or outdoor loca-
tion of the students were recorded by twelve supervisors 
subjectively and recorded on a log sheet. The supervisors 
followed the students the entire day. A total of 23,539 
data points were collected and uploaded to the software 
platform (Step 1 in Fig. 1).

Machine learning algorithm
Discrimination of environment to either an indoor or an 
outdoor environment could be converted into a binary 
classification problem. In machine learning, the computer 
learns a decision boundary in the feature space that sepa-
rates or classifies the data points into two classes. When 
the training is completed, the learning is transferred to 
classify new data points based on the learned decision 

Fig. 1  Flowchart of study design. In step 1, two datasets were collected. In step 2, each dataset was split into a training set to build a predicting 
model and a testing set to test the model. In step 3, two models were built and used to predict 2 testing groups
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boundary [30]. In binary classification, the most com-
monly used classification algorithms are neural network 
[31], support vector machine (SVM) [32], Gaussian pro-
cess [33], random forest [34], naive Bayes [35], ensemble 
[36], and discriminant analysis [37]. Based  on  the  com-
parison of seven kinds of algorithms, we chose support 
vector machine (SVM), as the tool to build the model 
due to its reported high accuracy. Table 1 showed seven 
common classification type deep learning algorithms to 
determine positional accuracy. Results reveal that all of 
the pairwise comparisons between these seven meth-
ods show significantly different (p < 0.001), except that 
between accuracy of neural network algorithm and aver-
age accuracy of these algorithms (p = 0.165).

The core principle of the SVM algorithm is to establish 
a ‘hyperplane’ in the feature space that separates indoor 
and outdoor data by maximizing the distance between 
each of the data points from this hyperplane. In other 
words, firstly the algorithm involves finding the classifica-
tion hyperplane. Thereafter, we adjusted the parameters 
which determined the hyperplane so that the distances 
from the data points to the separating hyperplane were 
maximized. Assuming we have ‘n’ points (xi, yi) in the 
training set, the parameters ai and b can define the hyper-
plane. The hyperplane can be formulated as following.

where x indicates arbitrary vector sampling from the 
feature space. As the various data collected by smart 
watches are nonlinear, we added ‘kernel function’ to the 
model. That is, through the spatial transformation of φ 
(generally low-dimensional space is mapped to high-
dimensional space x → φ (x)) to achieve nonlinear sepa-
ration. Then the hyperplane defined in the transformed 

f (x) =

n∑

i=1

aiyi�xi, x� + b

space (high-dimensional space) can be formulated as 
following.

Data processing
The data collected from the smart watches were inte-
grated with the data as recorded by the participants and 
the supervisors. The valid data contained 11 features: 
time, luminance 1, luminance 2, luminance 3, ultraviolet 
intensity 1, ultraviolet intensity 2, ultraviolet intensity 3, 
counting steps, weather, wearing status and location but 
for the purpose of the analysis the following variables 
were used to build the SVM model: luminance 1, 2 and 3; 
ultraviolet intensity 1, 2 and 3 and counting steps.

Model building
From each dataset, the processed data were separated 
into a training set (70% of the enrolled data) that was 
used to build the model, and a testing set (30% of the 
enrolled data) that was used to test the new model. For 
the procedure, we downloaded LIBSVM (A Library for 
Support Vector Machines), an SVM pattern recognition 
and regression package for windows [38], set up a Python 
environment on the computer and used ‘grid.py’ to opti-
mize the parameters based on the processed data. ‘grid.
py’ is a parameter selection program for C-SVM (Con-
text-SVM) classification of RBF (Radial Basis Function) 
kernels. The user only needs to give a range of param-
eters, and ‘grid.py’ will use cross-validation to calcu-
late the accuracy of each combination of parameters to 
find the best parameters. To optimize the model hyper-
parameters, cross-validation was performed with differ-
ent hyper-parameter settings in the training set. We used 
radial basis function (RBF) as the kernel function of our 
SVM model, which is expressed as

in which γ is used to control the variance of RBF. The loss 
function we used to optimize the parameters was hinge 
loss with L2 regularization term, in which c controls the 
weights between hinge loss and L2 regularization as

where w indicates the normal vector of the hyperplane of 
SVM algorithm which is also defined as

f (x) =

n∑

i=1

aiyi�φ(xi),φ(x)� + b

K (x, z) = e
−

�x−z�2

2γ 2

L =

N∑

i=1

[1− yi(wxi + b)]+ +
1

2c
�w�2

w =

n∑

i=1

aixiyi

Table 1  Common classification type deep learning 
algorithms to determine positional accuracy

All of the pairwise comparisons between these seven methods show 
significantly different (p < 0.001), except that between accuracy of neural 
network algorithm and average accuracy of these algorithms (p = 0.165)

Machine learning algorithms Accuracy % (N)

Gaussian process 78.4% (17,949/22,886)

Ensemble 79.7% (18,242/22,886)

Neural network 80.2% (18,361/22,886)

Discriminant analysis 83.8% (19,183/22,886)

Naive Bayes 87.4% (20,006/22,886)

Random forest 90.9% (20,805/22,886)

SVM 97.1% (22,229/22,886)

Total 85.4% (136,775/160,202)



Page 5 of 12Ye et al. J Transl Med          (2019) 17:314 

We tested 8000 paired of parameters γ and c to decide 
the best values for hyperparameters γand c. Finally, the 
SVM model was built using the generated parameters, 
and the training set data input into the program. Finally, 
we selected the luminance, ultraviolet, and count of steps 
as the characteristics based on the optimal feature com-
bination given by the SVM model automatically. A fur-
ther two SVM models were built: Model A from training 
group of Dataset A (n = 53,398) and Model B from train-
ing group of Dataset B (n = 16,477) (Step 2 in Fig.  1). 
Details of the python code can be found in Appendix.

Location prediction
The SVM model predicted the indoor or outdoor loca-
tion after inputting the testing group data.

We used both SVM Model A and traditional univariate 
threshold segmentation method to predict the indoor or 
outdoor location of testing group A (n = 22,886, 30% of 
Dataset A) and compared the accuracy, AUC, sensitivity, 
specificity and Youden Index of these two methods. Uni-
variate threshold segmentation method drawn a receiver 
operator characteristics (ROC) curve to determine the 
best discriminating threshold for detection of indoor and 
outdoor activity and we chose luminance as a variable.

We then we applied Model A and univariate threshold 
segmentation method to predict the indoor or outdoor 
location of testing group B and compared the accuracy, 
AUC, sensitivity, specificity and Youden Index of the two 
methods in predicting the location of testing group B.

Finally, we applied SVM Model B and univariate 
threshold segmentation method to predict the indoor or 
outdoor location of testing group B (Step 3 in Fig. 1).

Statistical analyses
Data were analyzed using SPSS version 22.0 (SPSS, Inc., 
Chicago, IL, USA). The luminance and UV values from 

different locations and weather conditions were tested 
using independent t-tests. The areas under the ROC 
curve with 95% confidence intervals were drawn to eval-
uate sensitivity, specificity and Youden Index of all data. 
The accuracy of the SVM machine learning algorithm 
compared with the real observation was assessed using 
Cohen’s kappa.

Results
Figure  2 presents the luminance and ultraviolet intensi-
ties as recorded using the smart watch from both data-
sets A and B. The total mean values of outdoor luminance 
and ultraviolet intensity was much higher than indoor 
luminance and ultraviolet intensity (p < 0.05). The abso-
lute values of indoor luminance were relatively low (mean 
values lower than 400  lx), while those of outdoor illu-
mination were relatively high (mean values higher than 
1000 lx).

Based on the data collected, ROC curves for both the 
SVM and univariate threshold segmentation method 
were drawn for dataset A (Fig. 3a). The accuracy of SVM 
and univariate threshold segmentation were 99.55% and 
95.11%. The AUCs of SVM and univariate threshold seg-
mentation method were 0.99 and 0.95. The sensitivities 
of SVM and univariate threshold segmentation method 
were 0.99 and 0.89, respectively, and the specificities 
were 0.99 and 0.98 respectively.

In cross validation, ROC curves for SVM and univari-
ate threshold segmentation method were drawn (Fig. 3b). 
The accuracy of SVM and univariate threshold segmen-
tation method were 82.67% and 80.88%. The AUCs of 
SVM and univariate threshold segmentation method 
were 0.90 and 0.85. The sensitivities of SVM and univari-
ate threshold segmentation method were 0.72 and 0.77, 
respectively, and the specificities were 0.97 and 0.95 
respectively.

Fig. 2  The luminance and UV of indoor and outdoor in dataset A and dataset B
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In dataset B, ROC curves for SVM and univariate 
threshold segmentation method were drawn (Fig.  3c). 
The accuracy of SVM and univariate threshold segmen-
tation method were 92.44% and 80.88%. The AUCs of 
SVM and univariate threshold segmentation method 
were 0.96 and 0.85. The sensitivities of SVM and uni-
variate threshold segmentation method were 0.89 and 
0.77, respectively, and the specificities were 0.92 and 
0.95 respectively.

Table  2 provides the results for the remainder 30% 
from set A as predicted by SVM Model A. Of the 
22,886 data (7325 indoor, 15,561 outdoor), 102 (0.45%) 
were misclassified (59 outdoor locations were mistaken 

as indoors, and 43 indoor locations were mistaken as 
outdoors).

Table 2 provides the results of locations of dataset B 
predicted by SVM Model A. Of the 23,539 data (9952 
indoor, 13,587 outdoor), 4079 (17%) were misclassified 
(3788 outdoor locations were mistaken as indoors, and 
291 indoor locations were mistaken as outdoors).

Table  2 provides the results of locations of dataset 
B predicted by SVM Model B. Of the 7062 data (2181 
indoor, 4881 outdoor), 534 (7%) were misclassified (495 
outdoor locations were mistaken as indoors, and 39 
indoor locations were mistaken as outdoors).

Fig. 3  a The ROC curves of SVM (model A) and univariate threshold segmentation method for identifying indoor/outdoor locations of Testing 
group A. b The ROC curves of SVM (model A) and univariate threshold segmentation method for identifying indoor/outdoor locations of Testing 
group B. c The ROC curves of SVM (model B) and univariate threshold segmentation method for identifying indoor/outdoor locations of Testing 
group B
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Discussion
With both datasets A and B, the SVM was more accu-
rate than univariate method in predicting the outdoor 
location. However, when dataset A was used to predict 
dataset B, then the accuracy was lesser than when dataset 
B was used. Dataset A was collected by adult volunteers 
with good compliance. Therefore, the precision of data is 
high and the amount of data available is large. Dataset B 
was the real school data of primary school students. The 
wearers of the watches couldn’t record the true location 
by themselves, and therefore it was necessary for a super-
visor to observe and record the real indoor and outdoor 
conditions one-to-one. In addition, students have normal 
curriculum arrangements, which is not convenient for 
intervention. So the amount of available data is small.

In previous studies, a single indicator (for example, 
luminance) was used to determine indoor and outdoor 
environments. Importantly, the luminance thresholds 
used to determine indoor versus outdoor environments 
varied across different studies, possibly due to the vari-
ations across the region, weather patterns, duration of 
data collection etc. This demonstrates that the method 
of using a single indictor with a cut-off threshold as basis 
for determination may not apply well in a real-life, long 
term monitoring situation. For example, our study found 
that the luminance outdoors on cloudy days was lower 
than that on sunny days. A predictive model output using 
data gathered from sunny days alone would likely have a 
higher cut-off threshold for classification of outdoor ver-
sus indoor locations. GPS was another method used to 
detect location through comparing the signal-to-noise 

ratio characteristics of indoor and outdoor environments. 
Tandon [20] found that a threshold of an SNR > 250 can 
distinguish indoor and outdoor environments (sensitiv-
ity = 82%, specificity = 88%, Youden Index = 0.70 and 
AUC = 0.890), which was lower than the light sensor 
method reported by Jennifer et  al. [21]. In the current 
study, we applied a machine learning algorithm, to dif-
ferentiate between indoor and outdoor environments for 
data on multiple environmental features collected from a 
smart watch. The predictive performance of the machine 
learning algorithm was satisfactory and provides an alter-
native opportunity to objectively detect and record time 
spent outdoors by children and adolescents. Application 
of machine learning algorithms has greatly contributed 
to medical data classification.

In our study, machine learning was used to convert the 
indoor and outdoor discrimination problem into a data 
classification problem. Multiple factors were taken into 
consideration, including time, illumination, ultraviolet 
intensity and counted steps. Overall considerations and 
weigh comprehensively of our methods design is more 
suitable for the actual situation. The SVM algorithm 
showed the best performance among seven candidate 
machine learning algorithms in our study. We com-
pared the SVM algorithm with other published meth-
ods, including light sensors and GPS (Table  3) and it is 
observed that the SVM algorithm has higher sensitivity 
(99%), specificity (99%) and Youden Index (0.99) com-
pared to other methods. Thus, the SVM algorithm has the 
potential to be a more reliable and feasible tool for sepa-
rating indoor and outdoor environments using multiple 
dimensions instead of one dimension. Moreover, in order 
to more accurately predict location by taking advantage 
of multiple variable analysis, our approach can use not 
only numerical variables but also categorical variables by 
converting the categorical input to numerical input. With 
an appropriate kernel, our algorithm works well even if 
the data were not linearly separable in the base feature 
space, making the model match the actual circumstances 
better and being more accurate than previous studies.

However, our study had some limitations. Firstly, the 
amount of data collected in Dataset B is small, because 
the collection requirements were difficult and the num-
ber of supervisors were insufficient. Secondly, the data 
were collected only on sunny and cloudy days. Other 
weather conditions, such as rainy, snowy and foggy, 
should be added to the learning pool of the SVM model. 
Finally, the scenes selected were limited to 3 scenes 
(classroom, playground, and stairs) in a primary school 
and 5 out-of-school scenes (park, road, square, house, 
and shopping mall). Although they reflected the most fre-
quent scenes in a school-age child’s daily life, more scenes 
are needed to improve the applicability of this method.

Table 2  Location of  the  testing group A  predicted 
by  Model A, the  dataset B predicted by  Model A  and  the 
testing group B predicted by Model B

a  59 outdoor locations were mistaken as indoors, and 43 indoor locations were 
mistaken as outdoors Kappa = 0.990, p < 0.001
b  3788 outdoor locations were mistaken as indoors, and 291 indoor locations 
were mistaken as outdoors. Kappa = 0.692, p < 0.001
c  495 outdoor locations were mistaken as indoors, and 39 indoor locations were 
mistaken as outdoors. Kappa = 0.821, p < 0.001

Model Data sets Real location Predicted Total

Outdoor Indoor

A A Outdoor 15,502 59a 15,561

Indoor 43 7282 7325

Total 15,545 7341 22,886

A B Outdoor 9799 3788b 13,587

Indoor 291 9661 9952

Total 10,090 13,449 23,539

B B Outdoor 4386 495c 4881

Indoor 39 2142 2181

Total 4425 2637 7062
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The collection of big data from an individual’s daily life 
provides a good platform for the application and devel-
opment of artificial intelligence for the benefits of pub-
lic health. Importantly, such data are more valid as they 
are not limited to hospital diagnostic information or 
radiologic history but are generated though the course 
of daily life and therefore are more representative of the 
individual’s state. With such data, an individual can make 
a more valid and accurate assessment of their personal 
health status and the data will provide insights to disease 
development and therefore prevention patterns. Clearly, 
the use of appropriate algorithms to harness the data to 
meaningful conclusions is critical. Having considered the 
above, we believe that the machine learning algorithm 
we applied could make smart watch more intelligent to 
distinguish indoor between outdoor and record outdoor 
time precisely and is useful as an objective and feasible 
device for exploring specific relations between myopia 
and outdoor time. Now we have applied this method in 
our outdoor intervention clinical trail from 2017 [39].

Conclusion
Machine learning algorithm allows for discrimination 
of outdoor versus indoor environments with high accu-
racy and provides an opportunity to study and deter-
mine the role of environmental risk factors in onset and 
progression of myopia. Furthermore, the smart watch in 
combination with the machine learning algorithm could 
provide a useful monitoring tool for community- or 
school-based public health interventions or individual 
health management.
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Table 3  Machine learning algorithm compared with other published methods

a  Signal-to-noise ratio (SNR); Area under the ROC curve (AUC)

Author Method Cut point AUC​ Sensitivity Specificity Youden Index

Tandon [20] Luminance segmentation method 110 lx 0.82 74% 86% 0.60

Tandon [20] GPS segmentation method 250 SNRa 0.89 82% 88% 0.70

Flynn [21] Luminance segmentation method 240 lx 0.96 92% 90% 0.82

Dharani [19] Luminance segmentation method 1000 lx – – – –

In our study SVM Machine learning algorithm – 0.99 99% 99% 0.99
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Appendix

#!/usr/bin/env python2.7
#-*- coding:utf-8 -*-
#Bin Ye,dr_yebin@163.com#

"""
"""

from sklearn import metrics
import random
infile = "data/data.csv"
outfile1 = "result/train.csv"
outfile2 = "result/test.csv"
data = map(lambda x:x.strip().split(","), open(infile).readlines())
data = list(data)
train_X = []
train_Y = []
test_X = []
test_Y = []

for line in data[1:]:
tmp = [float(x) for x in line[:-3]]
tmpy = int(line[-2])
if line[-1] == "train":

train_X.append(tmp)
train_Y.append(tmpy)

else:
test_X.append(tmp)
test_Y.append(tmpy)

print(test_X[0])
from sklearn.svm import SVC
import numpy as np
from sklearn.preprocessing import StandardScaler

def writeF(clf, X, Y, outfile):
y1 = clf.predict(X)
fp = open(outfile, 'w')
fp.write("real\tpred\n")
num = 0
n = len(y1)
for i in range(len(y1)):

fp.write(str(Y[i])+'\t'+str(y1[i])+'\n')
if Y[i] == y1[i]:

num = num+1
print(num, n, num*1.0 / n,"88888888888888")
fp.close()

def writeF2(clf, X, Y, outfile):
y1 = clf.predict_proba(X)
fp = open(outfile, 'w')
fp.write("real\tpred\n")
num = 0
n = len(y1)
for i in range(len(y1)):

fp.write(str(Y[i])+'\t'+str(y1[i])+'\n')
fp.close()
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def readData(infile):
data = map(lambda x:x.split(), open(infile).readlines())
data = list(data)
y = [int(x[0]) for x in data[1:]]
y1 = [float(x[1]) for x in data[1:]] 
y = [abs(x-2) for x in y]
return y, y1

def run(clf, clf2, test_X, test_Y, outfile2, outfile_roc, rocin):
#writeF(clf, test_X, test_Y, outfile2)
#writeF2(clf2, test_X, test_Y, outfile2+'_proba')
tmpdata = map(lambda x:x.split(), 

open(outfile2+'_proba').readlines())

tmpdata = list(tmpdata)
fp = open(outfile_roc, 'w')
fp.write("real\tpred\n")
for line in tmpdata[1:]:

fp.write(line[0]+'\t'+line[1][1:]+'\n')
fp.close()

y_true, y_score = readData(outfile_roc) 
fpr, tpr, cuts = metrics.roc_curve(y_true, y_score, pos_label=1) 
print("AUC:",metrics.roc_auc_score(y_true, y_score)) 
fp = open(rocin, 'w')
fp.write("fpr\ttpr\n") 
for i in range(len(fpr)):

fp.write(str(fpr[i])+'\t'+str(tpr[i])+'\n') 
fp.close()

a00 = 0
a01 = 0
a10 = 0
a11 = 0

data = map(lambda x:x.split(), open(outfile2).readlines()) 
data = list(data)
for line in data[1:]:

if line[0] == '1':
if line[1] == '1':

a11+=1
else:

a10+=1
else:

if line[1] == '1':
a01+=1

else:
a00 +=1

print(a11, a10, a01, a00)
print("Precision:", a11* 1.0 / (a11+a01)) 
print("Recall:", a11*1.0 / (a11+a10)) 
print("----------------------------------------")

def readTest(infile):
data = map(lambda x:x.strip().split(","), open(infile).readlines())
data = list(data)
X = []
y = []
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for line in data[1:]:
tmp = [float(x) for x in line[:-1]]
tmpy = int(line[-1])
X.append(tmp)
y.append(tmpy)

return X, y

#writeF(clf, train_X, train_Y, outfile1)
#writeF2(clf2, train_X, train_Y, outfile1+'_proba')

def findTrainTest(X, y):
"""
"""
n = len(y)
indexes = list(range(n))
random.shuffle(indexes)
num = int(n * 0.7)
train_X = [X[index] for index in indexes[:num]]
train_Y = [y[index] for index in indexes[:num]]
test_X = [X[index] for index in indexes[num:]]
test_Y = [y[index] for index in indexes[num:]]
return train_X, train_Y, test_X, test_Y

def train(train_X, train_Y, test_X, test_Y, outfile1, outfile2):
scaler = StandardScaler()
scaler.fit(train_X)
train_X = scaler.transform(train_X)
test_X = scaler.transform(test_X)
clf = SVC()
clf.fit(train_X, train_Y)
clf2 = SVC(probability=True)
clf2.fit(train_X, train_Y)
writeF(clf, train_X, train_Y, outfile1)
writeF2(clf2, train_X, train_Y, outfile1+'_proba')
writeF(clf, test_X, test_Y, outfile2)
writeF2(clf2, test_X, test_Y, outfile2+'_proba')
return clf, clf2

def run2(infile, inbase):
X, Y = readTest(infile)
train_X, train_Y, test_X, test_Y = findTrainTest(X, Y)

clf, clf2 = train(train_X, train_Y, test_X, test_Y, 
"result_each/%s_train.csv"%inbase, "result_each/%s_test.csv"%inbase)

run(clf, clf2, test_X, test_Y, "result_each/%s_test.csv"%inbase, 
"roc_each/%s_test.pred"%inbase, "roc_each/%s_roc.in"%inbase)

run2("data/qiyuan_3.csv", "qiyuan")
run2("data/hongwen_3.csv", "hongwen")

#run(test_X, test_Y, "result/test.csv", "roc/test.pred", "roc/roc.in")
#run(test_X_qiyuan, test_Y_qiyuan, "result/test_qiyuan.csv", 
"roc/test_qiyuan.pred", "roc/roc_qiyuan.in")
#run(test_X_hongwen, test_Y_hongwen, "result/test_hongwen.csv", 
"roc/test_hongwen.pred", "roc/roc_hongwen.in")
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