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1. Introduction

In this review, the most important developments are presented
for the following general fields of expertise:: (1) Detection of image
manipulation, (2) biometric comparison (face, gait and other bio-
metrics) (3) Camera source identification.

2. Working groups and organizations

The development of forensic image analysis has several inter-
national working groups:

@ OSAC Digital/Multimedia Scientific Area Committee: pre-
viously the SWGIT an American group that has produced a lot
of guidelines and best practice manuals. http://www.swigit.
org The group has terminated operations, since the OSACs
are formed http://www.nist.gov/forensics/osac.cfm.

@ ENFSI DIWG: The ENFSI Digital Imaging Working Group that
is focused on methods, techniques, education and train-
ing.http://www.enfsi.org

@® LEVA: an American group focused on video processing and
training: http://www.leva.org

@ AGIB, A working group in Germany that is focused on facial
image comparison: http://www.foto-identifikation.de/.

* Corresponding author.
E-mail addresses: z.geradts@nfi.nl (Z. Geradts), a.ruifrok@nfi.nl (A. Ruifrok).

https://doi.org/10.1016/j.fsisyn.2020.01.017

® FISWG, An American group since 2009 that is focused on
facial image comparison: http://www.fiswg.org

@ OSAC Facial Identification Subcommittee, An American
group part of the Organisation of Scientific Advice Commit-
tees, with focus on standards and guidelines related to the
image-based comparisons of human facial features: http://
www.nist.gov/forensics/osac/sub-face.cfm

2.1. American academy of Forensic Science [36]

Within the American Academy of Forensic Science the Digital
and Multimedia Sciences Section works in this field.

Since 2003 each year a workshop was organized on Forensic
Image and Video processing with handouts on the methods for face
comparison, video restoration, 3D reconstruction, length mea-
surement, photogrammetry and image processing. Also each year a
scientific session was organized on this field. More information is
available on: http://www.aafs.org.

2.2. ENFSI forensic IT working group

The forensic IT working group of ENFSI [37,38] deals with digital
evidence as such. There exist some overlap with the Digital Imaging
working group, and for that reason joint events are organized.

Since most CCTV-systems are digital nowadays, often the
question of handling the CCTV system itself is a question of digital
evidence. Hard drives and other digital media should be handled in
a secure way with proper forensic imaging software. The working
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group organizes training conferences each year. More information
is available from http://www.enfsi.eu/.

2.3. Outline of this work

Since in the field of forensic image and video investigation there
are many new developments and in the literature over 3000 ref-
erences could be found in the last three years, in this review we
focus only on specific areas. The area of image manipulation
detection as well as the deepfakes which have given much atten-
tion the last years as well as the developments in facial and bio-
metric comparison. Most of the developments are related to deep
learning algorithms, so for this reason Nienke Filius worked on a
review of the literature in the last three years which is included in
chapter 4. Chapter 5 handles images and video in biometrics,
whereas chapter 6 discusses camera identification.

2.4. Detection of image manipulation

In this chapter we go in depth on digital image manipulation
and deep learning. Since deep learning is a major development in
the field, this is a starting point in new literature.

Digital images and videos provide us with an effective and
natural medium for communication, due to its immediateness and
easy way to understand the content. As such digital images have
taken on an important role in a broad range of applications. They
are widely used in news reports, as evidence in legal proceedings
and criminal investigations, for medical imaging, and for signal
intelligence in military and governmental scenario’s [ 1,2]. However,
with the rapid spread of low-cost and easy to use devices for the
capturing of visual data, almost everybody has the accessibility of
recording, storing and distributing large amounts of data. At the
same time, the availability of low-cost, user friendly image editing
software make it extremely easy to create, alter and modify the
information represented by an image without leaving any traces
visible to the human eye (see Fig. 1) [1,3,4]. The art of manipulating
and counterfeiting visual content is no longer restricted to experts
only.

A digital image may go during its lifetime, from capturing to
presentation, through a number of processing steps intended to, for
example, to enhance the quality of the image. However, these steps
could also include actions with the intend to tamper with the
content or to create new content by combining pre-existing ma-
terial. Manipulated images are appearing with increasing frequency
and can have important consequences for governmental, com-
mercial, and social institutions who rely on digital images for

information [4,5]. If for example a manipulated photo is used as
evidence in a legal proceeding it could lead to a misjudgement of
justice. To regain trust in the authenticity and truthfulness of digital
imaging researchers have developed a wide range of techniques for
the detection of image manipulation and for the reconstruction of
an image processing history [2,4].

There are two main questions that arise when we want to verify
the history and authenticity of a digital image: ‘Was the image
captured by the device it is claimed to be captured with?’ and ‘Does
the image still depict its original content?’ [3]. The first question is
of interest when the device suspect of capturing the image repre-
sents the evidence itself. The second question is of a more general
interest and the answer to that questions can be relatively simple
when the original image is known. However, in reality almost no
information of the original image can be assumed to be known in
advance, through research the authenticity of the image has to be
verified in a ‘blind’ way [3,4]. To solve the issue put forward by the
second question is the main goal in image manipulation detection
research.

Image manipulation detection methods can be categorised into
two main categories: (1) active and (2) passive or blind. Active
manipulation detection techniques, such as digital watermarking,
make use of an authentication code that is embedded into the
image’s content before the image is sent. The authenticity of the
image is than verified by comparing the authentication code to the
original code [1].

Passive manipulation detection techniques make use of the
actual digital image itself to assess its credibility. This technique is
based on the assumption that although the digital manipulation
may not leave any traces visible to the human eye, the manipula-
tion probably does disturb the underlying statistical properties or
consistencies. This will introduce artefacts that result in various
forms of irregularities. These irregularities can subsequently be
used to detect the manipulation operations applied [1].

2.4.1. Copy-move

Copy-moves is one of the most common image manipulation
technique used due to is simplicity and effectiveness. In copy-move
part of the original image is copied (cloned), moved to the desired
location within the original image, and pasted. It is mostly used to
hide certain details or to duplicate certain aspects of an image.
Textured regions are ideal for copy-move forgery. They have similar
colour and noise variation properties to that of the original image
which are unperceivable to the human eye looking for in-
consistencies in the image statistical properties. Blurring is usually
applied along the boundary of the modified region to reduce the

(a)

(b)

Fig. 1. Example of image manipulation that appeared in press in July 2008. (a) The forged image displaying four missiles. Only three of them are real, two different sections
(encircled in red and orange, respectively) are replicates of other image sections (b)The original image showing only three missiles [6]. (For interpretation of the references to colour

in this figure legend, the reader is referred to the Web version of this article.)


http://www.enfsi.eu/

542 Z. Geradts PhD et al. / Forensic Science International: Synergy 2 (2020) 540—562

effect of irregularities between the original and pasted region [1].

2.4.2. Splicing

Splicing, or cut-and-paste, is used to modify the composition of
an image by using fragments of one or more different images and
paste them into another image. Geometric transforms (e.g., scaling
or rotating) are often applied to make sure the pasted fragment
compliments the perspective and scale of the original image [3].

2.4.3. JPEG compression properties

Identifying whether or not an image has been previously JPEG
compressed plays an important role in image manipulation
detection. After editing, the image is often saved in JPEG format and
as such re-compressed. This second JPEG compression will intro-
duce a deviating fingerprint when compared to single compression
[4].

2.4.4. Median filtering

Median filtering is mostly used as an anti-forensic technique.
Anti-forensic techniques are techniques applied by the forger to
hide or remove traces left by certain image manipulation opera-
tions [4,7]. A median filter can smooth artefacts of JPEG-
compression and geometric transforms or remove impulsive
noise. Median filtering is a filter that operates by using a sliding
window, also known as a kernel, that moves over the image while
keeping the median pixel value within the window’s dimension [2].

2.4.5. Local noise

Original images have an amount of noise that is uniformly
distributed across the entire image. A common anti-forensic tech-
nique is to add localised random noise to the image regions that are
tampered with to conceal traces of manipulation. The detection of
inconsistent local noise levels over the image can be used to detect
image manipulation [1].

Other techniques used to hide the manipulation operations to
the human eye are enhancements such as sharpening, contrast
adjustment and colour modification [1,4].

Most research in image manipulation detection was focused on
detection of traces left by one specific editing operation (e.g. copy-
move, JPEG compression, resampling, contrast enhancement), then
they developed algorithms to detect the statistical characteristics
that could reveal these traces [8]. The development of these tar-
geted manipulation detection techniques have led to many
important advances in image manipulation detection. However this
approach has an important drawback: forgers have many manip-
ulation operations at their disposal. To determine if and how an
image was manipulated the forensic investigator has to apply
numerous forensic tests. The need to run multiple forensic detec-
tion tests on an image to detect image manipulation confronts the
investigator with new problems. For instance, how to control for
the overall false alarm rate between multiple tests or how to handle
conflicting results. And as new image manipulation operations are
unfold, the traces left by these new operations need to be identified
and an associated detection algorithms needs to be developed [9],
which is both difficult and time consuming.

Therefore, there is a growing interest in the evolvement of
universal forensic detection algorithms, designed to detect many;, if
not all, manipulation operations. The introduction of deep learning
and convolutions neural networks (CNNs) has fuelled these de-
velopments. CNNs have the ability to adaptively learn classification
features from large sets of data, instead of relying on humanly
selected features [9,10]. The objective of this report is to provide an
overview of the developments in the last three years in convolu-
tional neural networks for universal image manipulation detection.

The report is build up as follows. The next chapter gives a brief

overview of convolutional neural networks. The third chapter gives
a summary of the recent developments in universal image
manipulation detection using CNN’s. And the fourth chapter dis-
cusses the benefits and drawbacks of the different CNN architec-
tures with recommendations for future research.

3. Convolutional neural networks

A convolutional neural network (CNN) is very similar to a reg-
ular multi-layer neural network with the exception that it makes
the explicit assumption that the input is an image. CNN’s take
advantage of this assumption by constraining the architecture in a
more sensible way. Unlike regular neural networks with neurons in
the convolutional layer arranged in one dimension, the convolu-
tional layers of a CNN have neurons arranged in three dimensions:
width, height and depth as can be seen in Fig. 2. These dimensions
refer to the dimensions of the image. Every layer transforms the 3D
input volume of the image to a 3D output volume called the feature
map [11].

Although the particular design of CNN’s may differ, they are built
using a common set of basic elements. As a result the CNN’s share a
similar overall architecture [9]. A convolutional neural network is
build of three main layer categories: convolutional layer(s), pooling
layer(s) and fully connected layer(s) stacked together to form al full
convolutional neural network [11].

The convolutional layer is the core building block of a con-
volutional neural network. Every convolutional layer consists of
one or more learnable convolutional filters (i.e. a filter with learn-
able weights and biases). Every filter (or kernel) is small in the
spatial dimension (width and height), but extends through the full
depth of the input image [11]. For example, a typical filter of the
first convolutional layer might have size 5 x 5 x 3 (i.e. 5 pixels
width and height, and an image depth of 3 corresponding to the
three RGB colour channels). Each filter is slid (or more precisely
convolved) across the width and height of the input image. As the
filter is slid over the input image a 2-dimensional activation map is
produced that gives the response of that filter at every spatial po-
sition [11]. The windows of the filter positions can overlap, the
overlapping distance is called the stride [12]. In each convolutional
layer we have an of set filters and each of them produces a 2D
activation map. The activation map of each filter is stacked along
the depth dimension to produce the output volume, known as
feature maps. These filters serve as a set of feature extractors and
the convolutional layers are trained to automatically learn filters
that activate when they see some type of feature [9,11]. The acti-
vation maps are often followed by activation functions, such as
rectified linear unit (ReLU), exponential linear unit (ELU), Para-
metric ReLU (PReLu) or hyperbolic tangent (Tanh). The activation
function introduce non-linearity [12].

The pooling layers function is to progressively reduce the spatial
size of the feature map to reduce the amount of parameters and
computational costs of training the network, and thus to control
overfitting [9,11]. The pooling layer performs a down sampling
operation along the spatial dimensions (width, height) of the
feature maps. It operates by sliding a filter over the feature map
with overlapping windows, only maintaining a single value per
window for every depth slice. Resulting in a volume of smaller size,
but with the depth dimension unchanged [9,11]. There exist many
types of pooling operations. Two of the most popular are average
pooling and max pooling. With average pooling the mean value of
each window is retained and with maximum pooling the
maximum value of each window is retained [9,12]. Most CNN’s are
built using a combination of convolutional layers and pooling layers
stacked on top of one another. “This enables the CNN to learn a set
of low-level features in early layers, then hierarchically group them
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Fig. 2. Left: A regular 3-layer (2 hidden and 1 output) neural network with one dimensional layers. Right: a convolutional neural network with the neurons arranged in three
dimensions. Every layer transforms the 3D input volume to a 3D output volume of neuron activation’s. The red input layer holds the image, with its width and height equal to the
spatial dimensions of the image, and a depth of 3 (the Colour channels Red, Green, Blue) [11]. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)

into high-level features in later layers” [9]. The output is a final set
of feature maps that is passed on to the fully connected layers to
perform the ultimate classification.

Equal to regular neural networks, each neuron in the fully
connected layer is connected to all neurons in the preceding layer
[9,11]. Multiple fully connected layers can be put one after another
to create deep architectures. The ultimate fully connected layer, (or
output layer) has one neuron coinciding with each possible clas-
sification. The output of the ultimate fully connected layer is usually
passed on to a softmax function that maps the classifications to a
set of probability values such that the total sum of the output is
equal to one [12]. It tells you the probability that any of the clas-
sifications is true.

At the start of the training process the filters coefficients are
initially seeded with random values. During CNN training the co-
efficients of the convolutional filters in the network are automati-
cally learned using an iterative algorithm that alternates between
feed-forward and back-propagation runs of the data. The aim of
the algorithm is to minimise the average loss between the true
classification and the network output [9]. When training the CNN is
finished, the CNN is tested by feeding the CNN with a test set and
analysing the results by calculating the accuracy. The accuracy is
the proportion of correct classifications among the total cases
tested.

3.1. Recent developments

Convolutional neural networks (CNN's) have fuelled substantial
advances in image recognition due to their capability to adaptively
learn strong classification features for object recognition. However,
in their existing form CNN'’s are not well suited for image manip-
ulation detection [9]. The main difference between image recog-
nition and image manipulation detection is the signal strength.
Image manipulation detection, in contrast to image recognition, has
to cope with very small differences between the manipulated im-
age and the original image [13].

This issue was recognised by Chen et al. [14], one of the first to
use CNN'’s for image manipulation detection. Chen et al. [14] pro-
posed a CNN model for the detection of different values of median
filtering (3 x 3 and 5 x 5). In their initial experiments conventional
CNN models were directly employed as median filtering forensic
models (i.e. the raw image pixels were used as input to the CNN’s).
These models did not perform well, suggesting that existing CNN
models have difficulty to capture the important statistical forensic
properties [14]. Thus, when using the standard architecture the
convolutional layers tend to extract features that capture an im-
age’s content, instead of identifying traces left by editing and
manipulation [10]. This led researches to investigate CNN archi-
tectures and adapt them to make them suitable for image manip-
ulation detection.

4. CNN architecture
4.1. Preprocessing layer

The need in image manipulation detection to suppress an im-
ages content and capture the pixel value dependencies induced by
manipulation operations led Chen et al. [14] to propose a modifi-
cation to the conventional CNN model: adding a filtering layer. This
filtering layer outputs the median filtering residual (MFR) of an
image, thereby suppressing the interference caused by image edges
and textures. The output MFR is fed into a traditional convolutional
neural network consisting of 5 convolutional layers with ReLU
activation function, followed by max pooling layers after the first,
second and fifth convolutional layer and three fully connected
layers with softmax activation for classification. The input to their
model were gray-scale images sized 64 x 64 and 32 x 32.

The proposed model was trained and tested to detect median
filtering with a binary classification approach (original/manipu-
lated), instead of multi-class classification. Nevertheless, their
approach had promising results. Their proposed model had an
detection accuracy for median filtering (5 x 5 kernel), with input
image size 64 x 64 followed by JPEG compression quality factor
(QF) 70 and 90 of 94,12% and 96,84% respectively, compared to JPEG
compression only. The detection accuracy for median filtering
(5 x 5 kernel) with input image size 32 x 32 was 88,65% and 93,21%
for JPEG compression quality factor 70 and factor 90, compared to
JPEG compression only.

The approach of adding an additional filter to the CNN to sup-
press the image content was also recognised by Kim and Lee [15].
They proposed a model composed of 1 high pass filter, 2 convolu-
tional layers, 2 max pooling layers and 2 fully connected layers. The
output layer used a softmax function to score each class. The high
pass filter passes on signals with a frequency higher than a certain
cutoff value and attenuates signals with a frequency lower than the
cutoff value [16]. The purpose of this High Class Filter (HPF) in the
convolutional network is to extract hidden features within the
image [15]. The full architecture of the CNN model can be seen in
Fig. 3.

The proposed model was trained and tested to identify four
different manipulations operations: median filtering (5 x 5), ad-
ditive white Gaussian noise (AWGN; ¢ = 2), Gaussian blurring
(5 x 5, ¢ = 1.1), and re-sampling (scaling factor 1.5). Their results
showed that the initial accuracy of detecting the original image was
low but increased as the learning progressed. Their proposed
model was able to reach an overall accuracy of 96,67%. The accuracy
of the different manipulation operations can be seen in Fig. 7. The
results of different numbers of training epochs showed that accu-
racy does not always increase as learning progresses. For some
manipulation operations detection became more accurate, but
others decreased in accuracy [15].
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Fig. 3. CNN architecture as proposed by Kim and Lee [15] consisting of 1 HPF, 2 convolutional layers, 2 max pooling layers, and 2 fully connected layers with softmax function for

classification. The networks input dimension is a 256 x 256 sized grayscale image.

4.2. Constrained convolutional layer

To overcome the need for preliminary feature extraction or
preprocessing, Bayar and Stamm [9] proposed a new convolutional
layer: the constrained convolutional layer. “The key idea behind
developing this layer is that certain local structural relationships
exist between pixels independent of an image’s content” [9].
Manipulation of the image will modify these local relationships
between pixels in a traceable manner. Consequently, the manipu-
lation detection feature extractors must learn these relationship
between a pixel and its neighbouring pixels, while at the same time
suppressing the content of the image to prevent the network from
learning content dependent features.

To accomplish this Bayar and Stamm [9] developed the con-
strained convolutional filters that are restrained to learn only a
selection of prediction error filters. “Prediction error filters are fil-
ters that predict the pixel value at the centre of the filter window,
then subtract this central value to produce the prediction error” [9].
The filters in this first constrained convolutional layer is initialised
by randomly assigning each a filter weight and subsequently
enforce the constraint of the prediction error filters. During
training, the constraints are imposed on the filters after each
gradient descent update of the filters’ weight [9].

Their full model consisted of 1 constrained convolutional layer, 2
convolutional layers with ReLU activation function and max pool-
ing layer, and 3 fully connected layers with softmax activation
function for classification (see Fig. 4). The model was trained and
tested to perform universal manipulation detection of four different
editing operations: median filtering (5 x 5), Gaussian noise (¢ = 2),
Gaussian blurring (5 x 5, ¢ = 1.1), and re-sampling (scaling factor
1.5). The input to their model were 227 x 227 sized, grayscale
images.

The proposed model was able to achieve an overall accuracy of
99,11% in detecting the four different manipulation operations [9].
The accuracy of the individual manipulation operations using the
multi-class classification approach can be seen in Table 5.

Building on their previous research in Ref. [9], Bayar and Stamm
[10] performed a series of experiments to systematically examine

the influence of several important CNN design choices to guide the
architecture of CNN models for image manipulation detection. They
investigated (1) the choice of the initial CNN layer, (2) the effect of
different types of nonlinearity following the first layer (e.g. pooling,
non-linear activation function, etc.), (3) the performance of
different pooling techniques (i.e. max pooling and average pooling)
(4) the influence of network depth and the effect of integrating a
1 x 1 layer into the CNN to learn associations across feature maps,
(5) the influence of the choice of activation function (e.g. ReLU,
PRelU etc.), and (6) the effect of different normalisation layers (e.g.
BN, LRN) [10].

Their baseline architecture consisted of 1 constrained convolu-
tional layer, 4 convolutional layers of which the first three were
followed by a max pooling layer and the fourth by an average
pooling layer and 3 fully connected layers with softmax function as
can be seen in Fig. 5. The input to their CNN model is the green layer
of an image patch sized 256 x 256. The (baseline) CNN architecture
is trained to perform universal manipulation detection using five
different editing operations: median filtering (5 x 5), Gaussian
noise (¢ = 2), Gaussian blurring (5 x 5, ¢ = 1.1), re-sampling
(scaling factor 1.5)and JPEG compression (QF = 70).

1) Choice of initial layer. They considered two alternatives for the
initial convolutional layer with the objective to suppress an
image’s content and capture pixel values dependencies, the
high-pass filter (HPF) [15,17] and the constrained convolutional
layer [9]. The CNN model with the constrained convolutional
layer outperformed the HPF model with an overall accuracy of
98,70% compared to 97,99%, as can be seen in Table 1. This
suggests that the constrained convolutional layer is capable of
extracting image manipulation features that may not be
captured using a hand-designed HPF [10].

2) Introducing non-linearity. They investigated the performance of
the proposed model with the introduction of different non-
linear operations (i.e. PReLU + max pooling, max pooling and
absolute value) following the “constrained convolutional layer”.
The overall accuracy per design option can be seen in Table 1.
The baseline model without the introduction of any non-
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Fig. 4. CNN architecture as proposed by Bayar and Stamm [9] consisting of 1 constrained convolutional layer, 2 convolutional layers, 2 max pooling layers, and 3 fully connected
layers with softmax function for classification. The networks input dimension is a 227 x 227 sized grayscale image.

Image

features learned by the constrained convolutional layer, inhibits
representative features and drops the overall detection rate [10].

256x256x1 3) Network depth. Since there is no systematic way to determine
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Fig. 5. Baseline CNN architecture as proposed by Bayar and Stamm [10] consisting of 1
constrained convolutional layer, 3 convolutional layers with PReLU activation func-
tions, 2 max pooling layers and 1 average pooling layer, and 3 fully connected layers
with softmax function for classification. The networks input dimension is a 256 x 256
green layer image. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

linearity following the constrained convolutional layer per-
formed the best with an accuracy of 98,79%. The results suggest
that any type of nonlinearity introduced to the prediction-error

the necessary depth in a CNN architecture, Bayar and Stamm
[10] assessed the performance of their convolutional neural
network with different depths experimentally. They started
with one convolutional layer following the constrained con-
volutional layer and increased the number of convolutional
layers while keeping the number of fully connected layers fixed.
At every depth the model was trained with and withouta 1 x 1
convolutional layer after the last convolutional layer to inves-
tigate how important it is to learn association across the feature
maps and whether the 1 x 1 convolutional filter could improve
final detection rate [10]. The overall detection accuracy for each
layer depth with and without 1 x 1 convolutional layer can be
seen in Table 1. The results show that with two, three and four
convolutional layers, the 1 x 1 convolutional layer improved
detection rates [10]. The best performance was achieved when
they used three convolutional layers followed by a 1 x 1 con-
volutional layer (i.e. baseline architecture) with a detection ac-
curacy of 98,70%.

4) Pooling layer. According to Bayar and Stamm [10] choosing the

correct pooling layer following the 1 x 1 convolutional layer of
the baseline architecture is critical for the performance of the
CNN. The 1 x 1 filters are capable of learning the association
between the highest-level feature maps in the network before
they are fed to the fully-connected layers to perform classifica-
tion. It is important to choose a pooling layer that keeps the
most representative features. They compared the performance
of an average pooling layer to a max pooling layer following the
1 x 1 convolutional layer. As can be seen in Table 1 using a max
pooling layer instead of an average pooling layer decreased
detection accuracy from 98,70% to 97,45%. These results suggest
that the average pooling layer retains the most representative
features from the deepest convolutional feature maps in the
network for image manipulation detection.

5) Activation function. They compared the performance of baseline

architecture with parametric rectified linear unit (PReLU) as
activation function to the performance of the baseline archi-
tecture with rectified linear unit (ReLU) as activation function
and with the exponential linear unit (ELU) as activation func-
tion. The PReLU network outperformed the ELU and ReLU net-
works with a detection accuracy of 98,7% as can be seen in
Table 1. The PReLU network performed 0,92% better than the
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ReLu network and 0,18% better than the ELU network. Further-
more using PReLU the proposed CNN model reached a higher
constant detection rate in fewer number of epochs [10].

6) Normalisation layer. Lastly, they trained the baseline architecture
with two choices of normalisation layers after each pooling
layer, namely batch normalisation (BN) and 5 x 5 local response
normalisation (LRN). Again the baseline architecture using batch
normalisation outperformed the LRN-based model with a
detection accuracy of 98,70% for BN compared to 95,92% for LRN
(see Table 1) [10].

In subsequent research Bayar and Stamm [12] further developed
their original CNN architecture as proposed in Ref. [9] based on
their research in Ref. [10]. Their modified architecture consists of
four conceptual blocks: 1) prediction error feature extraction, 2)
hierarchical feature extraction, 3) cross feature maps learning and
4) classification (see Fig. 6).

The first block, i.e. prediction error feature extraction, consists of a
constrained convolutional layer that suppresses the image’s con-
tent and constraints the CNN to learn the appropriate prediction
error features. This layer learns low-level pixel-value dependency
traces caused by a specific manipulation operation.

The second block, i.e. hierarchical feature extraction, is capable of
learning higherlevel prediction error features and consists of 3
consecutive convolutional layers. Each convolutional layer is fol-
lowed by a batch normalisation (BN) layer, a non-linear activation
function (hyperbolic tangent (TanH)) and a max pooling layer.

The hierarchical feature extraction block is followed by the cross
feature maps learning block and consists of one 1 x 1 convolutional
layer capable of learning associations across feature maps. Again
followed by a BN, activation function (TanH) and average pooling
layer.

The final layer, i.e. classification, consist of 3 fully-connected
layers followed by softmax activation function in the output layer.
However, they considered that other options than the softmax
function might perform better in the final classification decision.
Therefore, they also trained an extremely randomised tree (ET)
classifier to calculate the final classification decision. The input to
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their proposed model is a grayscale image patch, sized 256 x 256.

Compared to the original CNN architecture in Ref. [9], the new
CNN architecture accommodates less filters in the constrained
convolutional layer, different filters in the third convolutional layer,
a different number of filters in the third and fourth convolutional
layer, and an additional convolutional layer, and 1 x 1 convolu-
tional layer. Furthermore, the new CNN architecture makes use of
average pooling instead of max pooling before the feature output
maps are fed to the fully connected layer, it uses different activation
functions plus batch normalisation and it consists of a different
number of neurons in the fully connected layers.

Their proposed network was trained and tested as universal
image manipulation classifier for the detection of five different
manipulation operations: median filtering (5 x 5), Gaussian blur-
ring (5 x 5, ¢ = 1.1), Gaussian noise (¢ = 2), resampling (scaling
factor 1.5) and JPEG compression (QF = 70). The overall manipu-
lation detection accuracy of their proposed model with softmax
activation function was 99,26%. The extremely randomised trees
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Fig. 6. CNN architecture as proposed by Bayar and Stamm [12] consisting of 1 constrained convolutional layer, 4 convolutional layers, 3 max pooling layers, 1 average pooling layer
and 3 fully connected layers with softmax function/extremely randomised tree for classification. The networks input dimension is a 256 x 256 sized grayscale image [12].
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classifier increased the overall classification rate to 99,66% [12].
Table 5 shows the detection accuracy of the individual manipula-
tion operations for both the softmax and ET classifier.

The performance of the proposed model was also tested using
arbitrary parameters for the five different manipulation operations:
median filtering (Kgize: 3, 5, 7, 9), Gaussian blurring (Ksize: 3, 5, 7, 9),
Gaussian noise (¢ = 14, 1.6, ..., 2), resampling (scaling factor: 1.2,
14, ..., 2) and JPEG compression (QF = 60, 61, ..., 89, 90). The
arbitrary parameter settings are more in line with the realistic
scenario where the parameters of the manipulation operations are
unknown. The performance of the proposed model for the detec-
tion of manipulations operations with fixed parameters compared
to arbitrary parameters can be seen in Table 2. Overall the detection
accuracy decreased using arbitrary parameters compared to
detection accuracy using fixed parameters, but overall detection
rates are still high. Manipulation detection using arbitrary param-
eters did require a larger data set to train the model compared to
fixed parameters [12].

As discussed previously different design choices for the con-
volutional neural network can influence the ultimate image
manipulation detection rate. Bayar and Stamm [12] investigated:
(1) the choice of the initial CNN layer, (2) the effect of different
constrained convolutional layer parameters, (3) the influence of
different pooling layers, (4) the performance of different activation
function and (5) the effect of the stride size in the second con-
volutional layer with different input patch sizes on the detection
rate of their proposed model.

1) Choice of initial layer. They compared the performance of the
proposed model using a constrained convolutional layer, no
constrained convolutional layer and replacing the constrained
convolutional with a generic fixed high-pass filter. The results
showed that the overall detection accuracy using the con-
strained convolutional layer with softmax activation function
outperformed the model without constrained convolutional
layer and high pass filter with a detection accuracy of 99,26%.
The model’s performance with no constrained convolutional
layer decreased with 0,90% to 98,36% compared to the model
with constrained convolutional layer. And the model’s perfor-
mance with the high pass filter decreased with 0,31% to 98,95%
compared the constrained convolutional filter.

Table 1

2) Different constrained convolutional layer parameters. Bayar and
Stamm [12] varied the number of filters in the constrained
convolutional layer from 1 to 6 and subsequently the filter size,
using filters of 3 x 3,5 x 5 and 7 x 7. The CNN’s performance
maximised when three constrained filters with filter size 5 x 5
were used, with a detection accuracy of 99,26%.

3) Pooling layer. They assessed the effect of the pooling layer choice
using three different types of pooling layers following the fifth
convolutional layer, namely max pooling, average pooling and
max-pooling with average pooling. The best identification rates
were achieved with max pooling with average pooling after the
fifth convolutional layer compared to average pooling only and
max pooling only, with an overall accuracy of 99,26%. Moreover,
the average pooling layer based CNN converged noticeably
slower and to a lower overall accuracy compared to the other
two alternatives.

4) Activation function. The results of the performance of the pro-
posed model using different activation functions, ELU, RelU,
PReLU and TanH, showed that the TanH activation function had
the highest detection accuracy. Furthermore, both TanH and
ReLU converged slightly quicker to a higher accuracy compared
to ELU, and PReLu [12].

5) Convolutional stride size. “The choice of the convolutional stride
size is important since it will determine the dimension of fea-
tures throughout the CNN. The bigger the convolutional stride,
the smaller the dimension of the feature maps produced by the
CNN” [12]. The detection rate of the proposed CNN using a stride
of 1 versus a stride of 2 in the second convolutional layer were
compared using different input patch size (64 x 64, 128 x 128
and 256 x 256). For image patches sized 128 x 128 and 64 x 64,
a CNN using a stride of 1 outperformed the one using a stride of
2. With patches sized 256 x 256, a CNN with a stride of 2 ach-
ieved higher identification rates than the CNN with a stride of 1.

4.3. Isotropic convolutional filter

Regular convolutional neural networks tend to extract features
unrelated to the detection of image manipulation [9]. To overcome
this problem Chen et al. [18] proposed a convolutional neural
network architecture using convolutional layers with an isotropic

The overall detection accuracy of the CNN for universal image manipulation detection of median filtering, Gaussian blurring, Gaussian
noise, resampling and JPEG compression as proposed by Bayar and Stamm [10] with different design choices.

Design choice Design choice options Accuracy
(1)Initial layer Constrained conv layer (baseline) 98,70%
High pass filter (HPF) 97,99%
(2) Non-linear operation Without non-linearity (baseline) 98,70%
PReLU + max pooling 95,48%
Max pooling 93,19%
Absolute value 94,90%
(3) Network depth 3 conv layers + 1 x 1 conv layer (baseline) 98,70%
1 conv layers + 1 x 1 conv 97,46%
1 conv layers 98,01%
2 conv layers + 1 x 1 conv 98,62%
2 conv layers 98,07%
3 conv layers 97,50%
4 conv layers + 1 x 1 conv 98,16%
4 conv layers 97,52%
(4) Pooling layer Average pooling (baseline) 98,70%
Max pooling 97,45%
(5) Activation function PReLU (baseline) 98,70%
ELU 98,52%
ReLU 97,79%
(6) Normalisation layer Batch normalisation (BN) (baseline) 98,70%
local response normalisation (LRN) 95,92%
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Table 2

Accuracy of identifying the manipulation operations with fixed and arbitrary parameters using the CNN model as proposed by Bayar and Stamm [12] with softmax and

extremely randomised tree classification.

Original Median filtering JPEG compression Gaussian blurring AWGN Re-sampling Average accuracy
Bayar and Stamm (2018) [12] 98,70%  99,08% 99,79% 99,15% 99,96% 98,87% 99,26%
Fixed parameters, Softmax
Bayar and Stamm (2018) [12] 97,21%  99,01% 99,89% 98,73% 98,93% 99,16% 98,73%
Arbitrary parameters, Softmax
Bayar and Stamm (2018) [12] 99,49%  99,77% 99,79% 99,46% 99,98% 99,51% 99,66%
Fixed parameters, Extremely Randomised Tree
Bayar and Stamm (2018) [12] 97,73%  99,59% 99,47% 98,93% 98,61% 99,64% 99,00%

Arbitrary parameters, Extremely Randomised Tree

filter [18], called the rotation-invariant CNN. Rotation invariance
refers to mapping operations that are identical for the image un-
important of it being in rotation of a multiple of 90° or in mirror
symmetry. For most enhancement operations rotation invariance is
a general and essential feature. It is therefore an important factor to
consider in image manipulation detection [18].

The proposed CNN architecture by Chen et al. [18], is a modifi-
cation of the model proposed by Bayar and Stamm in Ref. [10]. In
the model proposed by Bayar and Stamm [10] a constrained con-
volutional layer serves as pre-processing layer to adaptively learn
pixel value dependencies and to suppress image content. According
to Chen et al. [18] the extraction of such dependency features may
be effective for the detection of operations that are based on
adjacent pixels, such as median filtering, but are not suitable for the
detection of histogram alterations related to enhancement opera-
tions. Therefore, they propose an isotropic filter layer to suppress
image content and to learn useful statistical features to detect
enhancement operations.

The isotropic filter is a constrained filter wherein all weights are
both centre symmetrical and mirror symmetrical [18]. The weights
of a5 x 5 isotropic filter are illustrated in Fig. 7, the figures with the
same shape have similar weight values. So, unimportant of being
rotated by a multiple of 90°, the filter will perform the same
operation on the image. The isotropic filter thereby serves as an
extractor capable of adaptively learning the properties of rotation
invariance.

In addition, with the use of isotropic filters the amount of pa-
rameters can be significantly reduced. If we take the 5 x 5 filter
isotropic filter of Fig. 7, there are only six parameters to be learned
which is approximately a quarter of the original filter with
(5 x 5 =) 25 learnable parameters.

For their model they replaced all convolutional filters in the
model by Bayar and Stamm [2] for isotropic filters. An overview of
the full architecture of the rotation-invariant CNN can be seen in
Fig. 8. It consists of 6 groups: one preprocessing group with the
constrained isotropic convolutional layer, four layer groups (group
2—5) each containing an isotropic convolutional layer, batch nor-
malisation, PReLU activation and pooling, and one classification
group (group 6) consisting of three fully-connected layers [18]. The
input to their model are grayscale images sized 256 x 256.

The proposed rotation-invariant CNN was trained and tested for
the detection of six common enhancement operations: unsharp
masking sharpening (UMS) with different settings (¢ = 1, A = 1.5;
g=13,A=1; 0 =0.7 A= 1), Gaussian filtering (5 x 5), median
filtering (5 x 5), Gamma correction (y = 0.5 and 2), histogram
equalisation and S mapping. They compared the detection perfor-
mance of their proposed model with the model proposed by Bayar
and Stamm [10].

The detection rate of the model for the six manipulation oper-
ations can be seen in Table 5. The results show that the model by
Chen et al. [18] outperformed the model proposed by Bayar and

Stamm [10] in detecting the six different manipulation operations.
The overall accuracy was 97,77%% and 92,81% for Chen et al. [18]
and Bayar and Stamm [10] respectively.

Building on their research in Ref. [18] the model was further
developed making use of features from densely connected con-
volutional neural networks. In densely connected convolutional
neural networks each layer is connected to every other layer in a
feed-forward fashion [19].

The model proposed by Chen et al. [7] consists of eight layer
groups. The first layer group is the isotropic convolutional layer. The
second to eight layer groups are traditional convolutional layers.
Each convolutional layer is followed by batch normalisation and
rectified linear units (ReLU). Furthermore it has 3 transition layers,
3 max pooling layers and 1 fully-connected layer. The general ar-
chitecture of their proposed CNN model, is illustrated in Fig. 9. The
input to their model are 256 x 256 sized, grayscale images.

The isotropic filter serves as the extractor that removes aniso-
tropic structures that commonly exist in natural images but are not
related to manipulation detection plus it highlights the features
that are of interest for forensic analysis. Furthermore, it reduces the
number of CNN parameters needed [18]. The transition layers with
1 x 1 convolutions are introduced to lower the number of input
feature maps and as a result improve the computational efficiency
[7].

With an increase in depth of the CNN, the information extracted
in previous layers may have disappeared by the time it reaches the
deeper layers. To overcome this problem, Chen et al. [7], make use
of the dense connectivity pattern. In dense connectivity two adja-
cent layers with the same feature map size are connected directly to
one another. Compared to the traditional pattern in convolutional
neural networks, this dense pattern has better parameter efficiency
and it exploits the potential of the network by feature reuse. The
proposed model was trained and tested for the detection of five
manipulation operations with random parameters and corre-
sponding anti-forensic manipulations shown in Table 3. Anti-
forensic operations are techniques used to hide or even remove
traces left by image manipulation operations [7].

The detection rate of the individual manipulation operations,
including anti-forensic operations can be seen in Table 3. The
overall detection rate of their proposed model for classifying multi-
class operations was 97,71%.

4.4. No constraints

Experiments with fixed, constrained, and randomly initialised
kernels led Boroumand and Fridrich [28] to the notion that no
constraints of any kind should be imposed on the filters from the
first layer. According to them the fixed or constrained kernels
remove information about the image luminance, which can be
damaging for example when trying to detect luminance adjust-
ments, such as gamma corrections and brightness and contrast
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Fig. 8. Rotation invariant CNN architecture as proposed by Chen et al. [ 18] consisting of one constrained isotropic conv layer, 4 isotropic conv layers, 4 pooling layers and three fully

connected layers with softmax function.
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Fig. 9. CNN architecture as proposed by Chen et al. [7] with 8 layer groups, the first being the isotropic convolutional layer and the second to eight the traditional convolutional
layer. Additionally, it has 3 transition layers 3 max pooling layers and 1 fully connected layer.

changes. Therefore, their proposed model consists of 8 ‘traditional’
convolutional layers.

Boroumand and Fridrich [28] tested their model with various
activation functions and with and without batch normalisation
(BN). Their investigation showed the supremacy of the ReLU acti-
vation function as well as the benefit of BN that helped speeding up
the training performance as well as improving overall performance.

Furthermore, they found out that the best performance was ob-
tained by disabling pooling between the first two layers, after
which standard 2 x 2 average pooling with stride was applied for
each following convolutional layer with the exception of the last
where 8 x 8 average pooling layer is applied. The final classification
layer consist of one fully connected layer with softmax activation
(see Fig. 10). The proposed model is designed for a colour input
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Table 3
The Five manipulation classes with random parameter settings and corresponding antiforensic manipulations and the detection accuracy of the multi-class classification
model proposed by Chen et al. [7].

Classification ~ Parameter Parameters Accuracy
class
Original 93,70%
UMS all Unsharp masking sharpening o¢: 1-1.5, 2: 1-1.5 98.98%
(UMS)
Anti-UMS [20] Removing overshoot artefacts in image edges and abrupt change in histogram ends with the same parameter
set-up in Ref. [20].
GCall Gamma correction (GC) v:0.5,0.6, 0.7 95.82%
Anti-GC [21] Gaussian noise with ¢ = 1 is introduced
Anti-GC [22] Adding with random noise of uniform distribution in (-0.5, 0.5)
MEF all Median filtering (MF) Ksize: 3 x3,5%x5,7x7 99,64%
Anti-MF [23] Adding with noise disturbance with the same parameter setup in [23]
Anti-MF [24] Adding with random noises with the same parameter setup in [24]
RES all resampling (RES) Random scaling factors: 0.6—2 98.98%
Anti-RES [25] Setting the strength of distortion ¢ = 0.4
JPEG all JPEG compression (JPEG) Quality factor: 55-95 99.52%
Anti-JPEG [26] The original images are JPEG compressed as above, then dither is added in the DCT coefficients
Anti-JPEG [27] The original images are JPEG compressed as above, then modified with [27] corresponding anti-forensic
method
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Average Pooling Average Pooling T
size 2x2, stride 2 size 2x2, stride 2
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. RelU ? T
Fully Connected
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Fig. 10. CNN architecture as proposed by Boroumand and Fridrich [28] consisting of 8 convolutional layers with ReLU activation and batch normalisation, 7 average pooling layers

and one fully connected layers with softmax function.
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image sized 512 x 512.

The CNN architecture as proposed by Boroumand and Fridrich
was trained and tested for the detection of four manipulation
classes: low-pass filtering (blurring), high-pass filtering (sharp-
ening), denoising (content adaptive low-pass filtering) and tonal
adjustments (histogram equalisation, gamma correction, contrast
enhancement etc.). Every manipulation class covered 8 manipula-
tion operations. After applying one of four manipulation class op-
erations, the images were subsequently JPEG compressed with
quality factor 85. The performance results per manipulation class
can be seen in Table 4. With their proposed architecture they were
able to achieve an overall accuracy of 95,22%.

Boroumand and Fridrich [28] also wanted to build a model that
is suited for the more realistic scenario wherein images are most
likely already JPEG compressed before applying any manipulation,
and are saved as JPEG again, after manipulation. While building the
CNN-model suited for manipulation detection in the aforemen-
tioned scenario Boroumand and Fridrich were faced with two
problems. First, the need to consider a range of final JPEG quality
factors, rather than a fixed quality factor. And second, the diversi-
fication over the downscaling factor that will lead to images with a
wide range of sizes, resulting in problems to train the model.

They approached the first problem by training three separate
detectors for three different final JPEG quality factors, namely 75,
85 and 95. To solve the second problem, they made two small
modification to the CNN architecture described above and trained
the network in three separate phases. In phase one the CNN is
trained on small images with a fixed size (512 x 512). However
instead of computing only the average of each 8 x 8 feature map
before they are fed to the fully connected inner-product (IP) layer,
they added the minimum, maximum and the variance. Hence, the
dimensionality of the input to the fully connected layer becomes
4 x 1024 instead of 1024 [28].

In the second phase the front layer that outputs the 4 x 1024
feature map moments to the fully connected layers is used as a
“universal feature extractor” to extract the four statistical moments
(i.e. average, minimum, maximum and variance) from all training
images. During this phase the model is not trained. The front layer
trained in phase 1 is merely used to convert each arbitrarily sized
image in the training set to 4 x 1024 moments.

In the third phase two fully connected layers are trained to
classify the 4096 (= 4 x 1024) dimensional vectors of moments
extracted from all training images. Followed by a softmax function.
They believe that the four statistical moments provide the full-
yconnected layer with sufficient information to allow the CNN to
adjust itself to accurately classify manipulations applied to images
of arbitrary size and resolution [28]. For final JPEG re-compression
the overall accuracy of the multi-class manipulation detection was
95,84% for QF 75, 97,10% for QF 85 and 97,91% for QF 95.

4.4.1. CNN training
Convolutional neural networks require large amounts of data to
train due to their big learning capacity. Zhan et al. [29] present a

Table 4

Detection accuracy of the model proposed by Bor-
oumand and Fridrich [28] for original and four
different manipulations classes.

Accuracy
Original 92,3%
Low-pass 96,6%
High-pass 92,6%
Denoising 98,6%
Tonal 95.9%

new approach to train CNN models for multiple-class image ma-
nipulations detection using transfer learning.

Traditionally machine learning algorithms use statistical models
that are trained on previously collected labelled and unlabelled
data to make predictions on future data. Most of these algorithms
assume that the distribution of labelled and unlabelled data is the
same. However, transfer learning permits for the domains, tasks
and distributions of the labelled and unlabelled data for training
and testing to differ. Research in transfer learning was inspired by
the human ability to apply previously learned knowledge to solve
new problems or to come up with even better solutions for existing
problems. Similarly, learning the convolutional neural network
how to classify median filtered images to help the convolutional
neural network classifying average filtered images [29].

They use the CNN architecture proposed by Xu et al. in Ref. [30].
This customised deep CNN model can successfully acquire useful
statistical information for steganalysis. Steganalysis is the detection
of messages, files, images or video’s hidden within another file,
image, message or video [31]. The overall architecture consists of
one preprocessing layer, six convolutional layers, each followed by
an activation function, pooling layer and batch normalisation, and
one fully-connected layer with softmax activation function. As
input they used 512 x 512 sized, grayscale images.

Zhan et al. [29] applied transfer learning in two application
settings, namely transfer between tasks and transfer between da-
tabases. For transfer learning between tasks they used the standard
transfer learning approach, which is to train the base network (i.e.
the steganalysis model) and then to copy the first n layers to the
first n layers of the target network (i.e. the convolutional neural
network). The remaining layers are then initialised randomly and
trained towards the target task. For transfer learning between da-
tabases they transferred the parameters of the first and the last
6 — n parameters and randomly initialised the first 2 to n layers
[29].

They trained and tested their multi-class CNN model for the
detection of five different manipulation techniques, i.e. JPEG
Compression (QF 70), median filtering (5 x 5), contrast enhance-
ment (y = 0,4), resampling (scaling factor 1.1) and Guassian noise
(¢ = 2). The performance of their best model for multiple classifi-
cation was able to achieve an overall accuracy of 97,25%. The
detection accuracy of the multi-class model for the individual
manipulation techniques can be seen in Table 5. They observed
from the test results that, with the same learning rate, the accuracy
declined on both sides of the vertex. They concluded that, with
more transferred layer the specificity of the transferred knowledge
constraints the capacity of the convolutional neural network to
learn new tasks. And, with fewer transferred layers, the perfor-
mance will decline due to deficiency of the transferred knowledge.
Furthermore, the proposed model with transfer learning converged
faster compared to traditional CNN model and had more stable test
accuracy during training [29].

With regard to parameter transfer between two databases, the
results showed that with fixed parameters (i.e. learning rate = 0)
the accuracy reached the peak when the first 2—4 layers were
randomly initialised. The accuracy dropped on both sides of the
vertex. Again, suggesting that more transferred layers decreases the
learning capacity while insufficient transferred layers does not
provide enough prior knowledge [29]. Their proposed method is
capable of training a convolutional neural network with a just a
small amount of data in much less time [29].

Mayar et al. [32] investigated if a convolutional neural network
trained for one specific multimedia forensic tasks could be used to
extract deep features that are applicable for learning a different
task. “Deep features are the neuron responses at a particular layer
of the CNN, induced by the feeding forward an image through the



Table 5
Overview of the performance of the proposed CNN architectures for the detection of JPEG compression, resampling and image processing operations. AWGN = Gaussian noise; UMS = unsharp masking sharpening.
Image input Original Median filtering Median filtering JPEG Gaussian blurring AWGN Re-sampling Gaussian filtering S Histogram Gamma UMS Overall
(5 x 5kernel) (3 x 3 kernel) compression (5 x 5 kernel; 6 =1.1) (6 = 2) (scaling factor: (5 x 5 kernel) =~ Mapping equalisation correction accuracy
1.5)
Kim and Lee (2017) [15] 256 x 256 Gy- 90.92% 99,45% 97,50% 99,48% 95,98% 96,67%
scale image
Bayar and Stamm 227 x 227 98,40% 98,27% 99,75% 99,77% 99,35% 99,11%
(2016) [9] grayscale
image
Bayar and Stamm 256 x 256 X X X X X 98,70%
(2017) [10] green layer
image
Bayar and Stamm
(2018) [12]
Soft mm: 256 x 256 98,70% 99,08% 99,79% 99,15% 99,96% 98,87% 99,26%
grayscale
image
Bayar and Stamm
(2018) [12]
Extremely Randomised 256 x 256 99,49% 99,77% 99,79% 99,46% 99,98% 99,51% 99,66%
Tree grayscale
image
Bayar and Stamm 256 x 256 98,91% 98.93 94.25% 97,83% 83,72% 92.7% 92,81%
(2017) [10] as cited in grayscale
[18] image
Chen et al. (2018) [18] 256 x 256 99,98% 99,95% 96,21% 99.22% 95,47% 97,88% 97,77%
grayscale
image
Zhan et al. (2017) [29] 512 x 512 98,90% 99,90% 99,90% 99,90% 83,20% 96,36%
grayscale

image
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network” [32]. Research beyond multimedia forensics has shown
that deep features generalise to seemingly unrelated tasks. For
example, deep features extracted from a CNN pre-trained for object
detection could be used for the training of a scene detection clas-
sifier and vice verse [33].

They applied two different approaches for learning deep feature
extractors: a transfer learning approach and a multitask learning
approach. In the transfer learning approach a convolutional neural
network is initially learned for the detection of one specific
manipulation operation. The lower layers of the CNN are then
frozen. These frozen lower layers are now performing as fixed
feature extractors and the upper layers are learned to target a
different task. So, the knowledge learned for one task is thus
“transferred” to another task. The depth at which the CNN layers
were frozen varied during retraining to evaluate the hierarchical
nature of feature transference. The layers above the shared depth of
the CNN’s act as task specific classifiers [32]. Fig. 11a illustrates the
transfer learning process with sharing depth up to the first fully
connected layer.

To learn a single feature extractor whose output consist of deep
features that are highly discriminating for multi-class manipulation
detection, Mayar et al. [32] proposed the multitask learning
approach. In this approach two (or more) CNNs are trained simul-
taneously on two (or more) different tasks, at the same time the
lower layers of both networks are constrained to learn the same
parameter settings (i.e. weights and biases). The layers shared by
both networks, form a single, unified, feature extractor for deep
features capable of discriminating between two (or more) manip-
ulation detection tasks [32]. A graphical representation of the
multitask learning approach is shown in Fig. 11b with sharing depth
through to the first fully connected layer. Again the layers aloft the
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shared lower layers perform as the task specific classifier.

For their experiments Mayar et al. [32] used a model architec-
ture as proposed in Ref. [12] that has proven to be effective at
manipulation detection and source camera model identification.
The convolutional neural network consists of 1 constrained con-
volutional layer, 4 convolutional layers and 3 fully connected layers
with input image patches sized 256 x 256, green colour channel.
Mayar et al. [32] distinguish two tasks: image manipulation
detection consisting of 5 different manipulation operations (i.e.
median filtering (5 x 5), Gaussian blurring (¢ = 1.1), Gaussian noise
(¢ = 2), resampling (SF 1.5) and JPEG compression (QF 70) and
source camera model identification of 20 different camera models.
A baseline network was trained for both tasks individually to pro-
vide for comparison measures [32]. The results for single task ac-
curacy was 99,6% for manipulation detection and 97,5% for camera
model identification.

When deep features trained for manipulation detection were
transferred to the camera model identification task, the network
was able to reach an accuracy of 97,5% if the shallowest share depth
was used, consisting of the constrained convolutional layer alone.
Accuracy gradually decreased, with increased share depth to 57,8%
at the deepest share depth up to the second fully connected layer.
When deep features trained for camera model identification were
transferred to the manipulation detection task, the network was
able to achieve an accuracy of 99,8% at the shallowest shared depth.
As the shared depth increased the accuracy of the network
decreased, with an accuracy of 97,6% at the deepest shared depth
up through fully connected layer 2.

The difference in accuracy drop when we use camera model
identification learned features for manipulation detection task
compared to when we use manipulation detection learned features
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Fig. 11. Graphical representation of proposed approach by Meyer et al. [32] (a) transfer learning and (b) multitask learning, both using an example share depth up to first fully

connected layer (fc1).
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for camera identification task suggests that there exists a task
asymmetry in the generality of forensic deep features. In other
words, the transfer of features extracted from the camera models to
the manipulation detection task is much better than the transfer of
manipulation features to the camera model identification task. A
possible explanation could be that camera model features are much
more complex than the manipulation features [32]. Furthermore,
the decrease in detection accuracy with increasing sharing depth
suggests there exists a feature hierarchy. Lower level features
learned by the shallower layers are general across tasks, meaning
that higher level features can be successfully learned from the low-
level representation. The high-level features learned in the deeper
layers of the network tend to be more task specific.

When they applied the multitask learning approach the detec-
tion accuracy improved at all share depths for the camera model
identification task compared to the transfer learning method. At the
highest sharing depth up through convolutional layer 2, the mul-
titask learning approach was able to achieve an accuracy of 96,8%
for the camera model identification task. That is an improvement of
39.0% over the transfer learning approach. For the manipulation
detection task accuracy improved for sharing depths up through
convolutional layer 1 and 2 compared to the transfer learning
approach, with an accuracy of 99.4% for sharing depth up to con-
volutional layer 2. Which is an improvement of 1.8%. This shows
that the unified features of the multitask learning approach are
more effective for discerning multiple forensic tasks than the
transfer learning approach, but did not improve over the single-
task baseline accuracy. The use of the extremely randomised tree
(ERT) classifier instead of the softmax function improved the re-
sults in each case slightly [32].

4.4.2. Parameter estimation

An important piece in characterising an image’s processing
history is to be able to determine specifically how each editing
operation was applied. Some of the editing operations that are
applied to manipulate an image are parameterised. For instance, a
user needs to choose a quality factor when compressing an image
or a scaling factor when resizing an image. In some cases estimating
the manipulation parameter settings could be useful or even
necessary to trace back the processing chain or for the detection of
multiple editing operations. Manipulation parameter estimates can
also be used to reverse the effects of manipulation or provide an
investigator with important information on the original image [2].

The development of parameter estimation algorithms to detect
new manipulations or improving upon existing algorithms is both
difficult and time consuming. To develop a more generic approach
that could be easily adapted to perform parameter estimation of
different manipulation operations, Bayar and Stamm [2] proposed a
data driven approach capable of directly learning estimators from a
labelled data set. Therefore Bayar and Stamm [2] approximately
reformulated the manipulation parameter estimation as a classifi-
cation problem. They divided the manipulation parameter set into
different subsets and assigned a classification to each subset. They
assume that the investigator has knowledge on the kind of
manipulation operation that is applied to the image.

They use a CNN architecture that consist of one constrained
convolutional layer, three convolutional layers, each with batch
normalisation (BN), TanH (hyperbolic tangent) as non linear acti-
vation function and max pooling, one 1 x 1 convolutional layer
with average pooling and three fully-connected layers with soft-
max activation function. Fig. 12 depicts the overall architecture of
the CNN. The input to their proposed CNN is a grayscale (or green
colour layer) 256 x 256 sized image patch [2]. The performance of
their proposed generic approach was trained and tested to detect
manipulation parameter settings of four different manipulation

operations: resampling, JPEG compression, Gaussian blurring and
median filtering.

For JPEG compression and resampling they considered two
different scenario’s. In the first scenario the investigator estimates
the parameter settings from a given known parameter set. In the
second scenario, which is a more realistic scenario, the parameter
settings are arbitrary and the investigator only knows an upper and
lower bound.

Resampling: scaling factor estimation. The fixed known set con-
tained the following scaling factor parameters settings:
® = {50%,60%,70%, ...,150%}. The proposed model was able to
achieve an 98,40% estimation accuracy for the detection of the
different scaling factor parameter settings. In the second scenario,
with only an upper and lower bound on the scaling factor, the
parameter set was ® = {[45%,155%]} with the following parameter
setting intervals ® = {[45%,55%], ...,[145%,155%]}. On average their
approach achieved an 95,45% estimation accuracy, with a higher
than 93% estimation accuracy on most scaling intervals. The per-
formance of the CNN decreased with down-scaled images.

JPEG compression: quality factor estimation. The fixed known set
contained the following quality factor parameter settings
® = {50,60,70,80,90}. The overall estimation accuracy of their
proposed model for the fixed parameter setting was 98,90%. The
estimation accuracy decreased when the quality factor was high. In
the second scenario, where only the upper and lower bound on the
quality factor was known, the parameter set was ® = {[45%,100%]}
with & = {[45,55), ...,[85,95),[95,100]} as the quality factor setting
intervals. The overall estimation accuracy was 95,92%. With typi-
cally a higher than 94% accuracy for estimating the quality factor
interval for most JPEG compressed images.

Median filtering: kernel size estimation. According to Bayar and
Stamm [2] forgers typically choose an odd kernel size when
applying a median filtering operation to the image. Therefore, they
assume that the investigator is aware that the forger used a kernel
size value from the fixed set ® = {3 x 3,5 x 5, ..,,15 x 15}. Their
proposed model was capable to achieve an overall accuracy of
99,50% on estimating kernel size.

Gaussian blurring: For Gaussian blurring they also investigated
two different scenarios. In the first they used CNN to estimate the
Gaussian blurring kernel size with size dependant blur variance. In
the second they fixed the kernel size and used the network to
identify the blur variance. In both scenario’s they used fixed sets. In
the first scenario the parameter set consisted of the following
kernel sizes ® = {3 x 3,7 x 7,11 x 11,15 x 15}. The overall detection
accuracy for Gaussian blurring kernel size was 99,38%. The detec-
tion rate decreased when the standard deviation blur variance was
> 2, which is equivalent of choosing a kernel size bigger than 7 x 7.
In the second scenario, the parameter set consisted of the blur
variance settings: ® = {1,2,3,4,5}. Their proposed model could
identify the blur variance with 96,94% accuracy. Similarly, when the
standard deviation blur variance was > 2 the estimation accuracy
decreased.

4.4.3. Multiple manipulations

In many cases of image manipulation the forger applied more
than one manipulation operation to create the forged image,
frequently followed by JPEG re-compression. An image that holds
numerous manipulations will most likely have different statistical
properties for every type of manipulation. Choi et al. [8] were one of
the first to test a convolutional neural network for the detection of
image manipulation with more than one manipulation operation
applied to it.

Their proposed CNN architecture consists of three repeating
blocks of two convolutional layers with ReLU activation function
followed by one max-pooling layer and three fully-connected
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Fig. 12. [2].

layers with softmax activation function. The output layer is a binary
classification: manipulated or original image. The input to their
model is an RGB3 64 x 64 sized sub-image block. Their proposed
method is designed to detect three manipulation operations:
Gaussian blurring (3 x 3, ¢ = 1.1), median filtering (3 x 3) and
Gamma correction (v = 1/2) and all its combinations. In addition,
the proposed model aimed to detect small sub-image block units, to
allow for direct estimation of the operating area in case the image is
indeed manipulated.

The performance of the block unit of their proposed architecture
can be seen in Table 6. The accuracy for Gamma correction detec-
tion was significantly lower compared to the other manipulations,
this means that gamma correction detection was not sufficiently
trained. Choi et al. [8] also found that the false detection of
manipulation operations was predominantly in highly textured
regions, defocused regions and very dark regions.

4.5. Chain detection

Not only the detection that multiple manipulation techniques
were applied is important to determine an image processing his-
tory, also the order wherein they were applied can provide the
investigator with useful information.

Bayar and Stamm [12] used their CNN model proposed in
Ref. [12], to identify an image manipulation history where the
image patch was edited by a sequence of up to two different

Table 6
Detection accuracy of the model proposed by Choi et al. [8] for
original, single and multiple image manipulation operations.

Accuracy
Original 81,93%
Median filtering (MF) 96,50%
Gaussian blurring (GB) 92,72%
Gamma correction 96,44%
MEF-GC 92,85%
GB-GC 92,40%
GB-MF 89,73%
GB-MF-GC 55,91%

manipulations, and subsequently JPEG compressed (QF 90). The
image patches were manipulated using a sequence of the following
manipulations: Gaussian blurring (¢ = 1.1, 5 x 5), median filtering
(5 x 5) and resizing (scaling factor 1.5). This resulted in the
following six combinations of sequences: median filtering-
Gaussian blurring, Gaussian blurring-median filtering, median
filtering-resizing, resizing-median filtering, resizingGaussian blur-
ring and Gaussian blurring-resizing.

Experiments showed they could reach an overall accuracy of
92,90% with the softmax based CNN and an overall accuracy of
94,19% with the Extremely randomised tree (ET) based CNN. Table 7
shows the performance for the individual manipulations and
manipulation chains followed by recompression. Especially the
detection rate of the processing operations followed by median
filtering were improved by the use of the ERT classifier (see Table 8).

4.5.1. Anti-forensics

In this report we discussed a variety of forensic techniques for
the detection of image manipulation [9,10,12,14,15,28]. At the same
time farsighted forgers are developing antiforensic techniques
[21—27] in an attempt to fool these techniques. Similar to manip-
ulation operation detection techniques most anti-forensic tech-
niques target only one specific type of image anti-forensic. With

Table 7

Detection accuracy of the softmax model compared to the ERT model as proposed by
Bayar and Stamm [12] for original, single and multiple image manipulation
operations.

Accuracy Accuracy ERT

Softmax
Original 99,27% 99,33%
Median filtering (MF) 90.54% 91,77%
Gaussian blurring (GB) 93.56% 95,00%
Resampling (RS) 97.15% 98,94%
MEF-GB 98,08% 95,87%
GB-MF 80,13% 86,02%
ME-RS 97,69% 99,17%
RS-MF 84,21% 86,00%
GB-RS 93,94% 96,69%
RS-GB 94,50% 93,17%
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Table 8
Detection accuracy of the model proposed by Yu et al. [13] for classifying
multi-class anti-forensics.

Accuracy
Original 94,15%
Anti-JPEG [26] 97,1%
Anti-JPEG [27] 99,3%
Anti-median filtering [24] 99,4%
Anti-median filtering [23] 99,5%
Anti-contrast enhancement [22] 91,75%
Anti-resampling [25] 97,35%

convolutional neural networks features for anti-forensic classifi-
cation can be learned automatically.

Yu et al. [13], developed a 5-layer regular CNN model consisting
of four convolutional layers, the second and fourth convolutional
layer followed by a max-pooling layers, and one fully connected
layer with softmax activation function. There model was trained
and tested to detect anti-JPEG compression [26,27], anti-median
filtering [23,24], antiresampling [25] and anti-contrast enhance-
ment [22]. According to Yu et al. [13] filter size of the convolutional
layer is critical for the network performance. The more suitable the
receptive filter the better the resulting extracted features. In their
model they use a filter size of 3 x 3 for each receptive field.
Furthermore when CNN’s are applied for image forensics it is
necessary for the pooling units in the pooling layers to overlap to
preserve adjacent area’s for better performance. An overview of the
architecture of the CNN model can be seen in Fig. 13 [13].

To verify if their proposed network was capable of extracting
useful and decisive features with increasing depth of convolutional
layer, they compared units in the same position of certain feature
maps generated by the 4th convolutional layer, between original
and anti-forensic images. Yu et al. [13], concluded that it was
possible to see perceptible differences between units in the same
position, indicating that the network was able to extract useful and
decisive features when dealing with the counter ant-forensic task
in the training process. In their experiments an architecture with
less than four convolutional layers was not capable of extracting a
useful feature base [13].

In their experiments the proposed model was able to reach an
overall accuracy of 96,96%. The detection accuracy of the individual
anti-forensic operations can be seen in Fig. 10.

5. Discussion

The growing interest in the past three years in convolutional

neural networks has fuelled research in image manipulation
detection and in particular universal image manipulation detection
models that are capable of detecting many manipulation opera-
tions. The universal manipulation detection approach is less time
consuming and does not have the problem of controlling the overall
false alarm rate for individual test or handling contradicting
outcomes.

Traditional CNN’s tend to learn features that capture an image
content instead of image manipulation detection features. Re-
searchers have proposed different modifications in the traditional
convolutional neural network to suppress the image content and to
extract features for manipulation detection, such as a pre-
processing layer [14,15], a constrained convolutional layer
[9,10,12] and an isotropic convolutional filter [7,18]. All these
models were able to achieve an overall accuracy higher than 96%
for the detection of median filtering (5 x 5), JPEG compression,
Gaussian blurring (5 x 5, ¢ = 1.1), Gaussian noise (¢ = 2), Gaussian
blurring (5 x 5) and resampling (scaling factor: 1.5) as can be seen
in Table 5.

However, according to Boroumand and Fridrich [28] fixed high
pas filters or filters constrained to be high pass [9,10], remove
important information about the image luminance, which could be
harmful for the detection of luminance adjustments, such as
gamma correction or brightness and contrast changes. Boroumand
and Fridrich compared their model with no additional constraints
to the model proposed by Bayar and Stamm [10]. The model by
Bayar and Stamm had a lower detection accuracy for all manipu-
lation operation, in particular for gamma correction (see Table 5).
Nevertheless, overall accuracy was still above 92%. The high class
filter (HPF) as proposed by Kim and Lee [15] has the additional
disadvantage that it still requires human intervention to choose a
predetermined filter that is not adaptive [10]. This in contrast to the
models with a constrained convolution layer, an isotropic filter or
with no additional constraints that are capable of extracting all
features automatically.

In addition, according to Zhan et al. [29] current preprocessing
layers are not able to suppress all the image content. As a conse-
quence the features extracted from images are in general data
dependant, which leads to poor generalisation performance when
these models are applied to different databases. There are few
studies [7,12,18] that tested their model using images of a different
database. Their results showed that detection performance slightly
decreased. Suggesting that the features learned by the classifier are
associated with the training data.

Adding a pre-processing layer can improve the model by
actively suppressing an image content, but it might not suppress all
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image content. The models proposed by Boroumand and Fridrich
[28] and Yu et al. [13] show that it is actually possible to train a
traditional convolutional neural network with no constraints to
suppress an image content and detect image manipulation by using
a small convolutional filter (3 x 3) and disabling pooling between
the first and second convolutional layer. Nevertheless, all CNN ar-
chitectures discussed in this report are aimed at the detection of
JPEG compression, resampling and image processing operations. Up
to date there is only one paper addressing copy-move and splicing
using convolutional neural networks [34]. Because this paper uses a
binary classification approach (original/manipulated) instead of a
multi-class classification approach this paper is not further dis-
cussed in this report.

As mentioned before training a convolutional neural network
requires large amounts of data. A CNN’s performance depends
highly on the size and quality of the training set. For example, using
a larger database improves detection accuracy [12]. In the studies
discussed in this report the researchers either used self acquired
images or an existing database, such as the BOW database, the Boss
Base database or the Dresden Image Database to extract authentic
images. From these authentic images researchers created their own
data set of manipulated images for training and testing. The deep
feature approach for transfer and multitask learning as proposed by
Mayar et al. [32] could prove to be useful when there is not enough
training data to robustly train a full CNN from scratch. It is therefore
highly recommended to further investigate the possibilities of
transfer learning and multitask learning for convolutional neural
network to decrease the need for large amounts of data. Further-
more, it could be useful to develop an open source database con-
taining manipulated image to test and validate CNN models
independent of their training database.

Neural networks are developing in a rapid pace. Currently,
research in image manipulation detection is already adopting novel
deep learning based methods such as deep siamese convolutional
neural networks [35], multi-scale convolutional neural networks
(MSCNN) [36] and the much faster R—CNN within a two-stream
network [37]. Because these are considered extensions of con-
volutional neural networks they are outside the scope of this
report. We see much interest also in deepfake videos that are
produced, and the detection of the deepfake videos is getting more
difficult since techniques are constantly evolving.

6. Conclusion

In this chapter we discussed the developments in convolutional
neural networks for universal manipulation detection, such as the
different design and training choices that can be made. The main
advantage of convolutional neural networks is that they can auto-
matically learn features for the classification of multiple manipu-
lation operations, without the requirement of human intervention.
The results show a high overall detection accuracy ( > 92%) for
multi-class manipulation detection of JPEG compression, resam-
pling and image processing operations.

The main drawback is the requirement of large amounts of data
for training and testing plus the generalisation of the models across
databases. Currently there are no publicly available image manip-
ulation databases available for training, testing or validation across
models.

Research in image manipulation detection using convolutional
neural networks is limited to the detection of manipulation tech-
niques. It is not able to distinguish between “innocent” changing
image manipulations, such as red-eye correction, and malicious
image manipulations. The proposed models in this report tend to
suppress the image content. However understanding the percep-
tion of an image content could be very important to distinguish

“innocent” from malicious manipulation.
7. Biometric analysis of image material

Biometrics is regularly announced in news items as a panacea
against terrorism, security problems, fraud, illegal migration,
etcetera. Biometrics, which can be defined as the (automatic)
identification or recognition of people based on physiological or
behavioral characteristics, is not a single method or technique, but
consists of a number of techniques, with each their own advantages
and drawbacks. None of the available biometric modalities com-
bines the properties of an ideal biometrics system. We have to
acknowledge that biometrics never can be 100% accurate. However,
if requirements and applications are carefully considered, biometric
systems can provide an important contribution to investigation,
authentication and safety.

Within the context of person identification (individualization),
different processes can be defined. Within different areas of sci-
ence, different terminologies are used for the same process, and
sometimes the same terminologies are used for different processes.
Therefore, a clear definition of the different terms as used in this
text is important and made explicit here.

Human Recognition can be defined as the process of identi-
fying or matching a person, his/her photograph or image with a
mental image that one has previously stored in long term memory.
Recognition requires observation and retention of a person’s fea-
tures and the process of comparison of the retained information
with an external image whether it be the life person, a photograph
or composite image. The word recognition is important for inves-
tigation as well as witness statements. Recognition is within the
forensic community also used for the automated searching of a
facial image in a biometric database (one-to-many), typically
resulting in a group of facial images ranked by computer-evaluated
similarity.

Identification is the most contentious term because this most
often used term can mean several things in different context, like
the automated searching of a facial image in a biometric database
(one-to-many) in biometrics, the examination of two facial images
or a live subject and a facial image (one-to-one) for the purpose of
determining if they represent the same person in forensics, or the
assignment of class or family name in biology and chemistry.
Therefore, the authors of this paper prefer not to use the term
identification unless the meaning is unambiguous within the
context.

Recall is here defined as the process of retrieving descriptive
information of a person from long term memory in the absence of
the person, his/her photograph or other image. Recall requires
observation, retention and reproduction of a person’s features.
Recall is essential for the production of composite images, as pro-
duced by a police artist for investigational purposes. However,
these images can only be used as investigative tools, and can never
be used as proof of identity.

7.1. Pose variation

Pose is the “orientation of the face with respect to the camera,
consisting of pitch, roll, and yaw”. An optimal frontal pose may be
considered as 0° in all directions. Variations to the optimal pose can
be due to photographing a physical subject who can move freely
during the capture process, or misalignment of the camera. As
images are a 2-dimensional representation of the 3-dimensional
world, pose of a subject has a major influence on the image
captured by a capturing device. As a result of this the appearance
and position of facial features can change depending of the pose of
the person and the position of the camera at the moment of
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capture. This is, together with inter and intra observer variability of
landmark annotation, one of the main causes of the limited value of
landmark measurements on photographs [103]. However, devel-
opment of pose detection and automatic landmark detection has
been reported to result in almost 90% identification accuracy in side
view positions [104].

For predicting face recognition performance in a video, it was
observed that face detection confidence and face size serve as
potentially useful quality measure metrics [105].

7.2. -Dimensional face comparison

The most promising approach to the complicating issues of pose
and illumination is the use of 3 dimensional models for pose an
illumination correction. Since the previous review, there has been
an increase in reports [41—47] on development of methods that are
based on the use of 3-dimensional computer models of faces. A
number of 3d-acquisition systems are now available for the
acquisition of these models. Most 3d-cameras work with a
configuration of 1 or more normal digital photo cameras, a flash
and the projection of a pattern on the face. These models can be
used in two ways. A 3d-facial model of a suspect can be compared
to a 3d-model of an unknown person, or the 3d-model of a suspect
is used to compute an image that can be compared to an image of
an unknown person. Since there are many sources of images and
video in practice, a number of studies are focused on the (partial)
reconstruction of 3d-models from 1 or more images or video
streams. Van Dam et all [106] developed a model 3-D face recon-
struction algorithm based on 2D landmarks. he 3D landmark
reconstruction algorithm simultaneously estimates the shape, pose
and position of the face, based only on the fact that all images in the
sequence are recorded using a single calibrated camera.

7.3. Deep learning

With the further development of computer technology, neural
network approaches for facial recognition have gained renewed
interest. Alignment and the representation of the face by employ-
ing explicit 3D face modelling have resulted in improved accuracy
of face recognition in unconstrained environments [107—110].

7.4Facial image comparison

The result of facial image recognition is often the selection of 1
or more target facial images that could be matched with the image
of the unknown person. In practice, however, this often leads to hit
lists with multiple possible matches to the query image, and the
correct target not necessarily on top of the hit list. In such cases, the
decision has to be made by a forensic anthropologists or forensic
image analysts. Since the previous review, more studies and pro-
ficiency tests have been reported on the performance of facial im-
age comparison by lay people and experts, showing that there is a
reason for concern, and that better methods and technology are
needed. A number of institutes have published documents that
describe their procedures for performing facial image comparison.
These procedures show that measures are being taken to limit the
influence of subjective judgments and that there is a need for
quantitative statistical data. The FBI has started a working group in
2009 for facial image comparison that is expected to stimulate the
development of better methods and technology (FISWG).

Human and computer performance has been systematically
compared as part of face recognition competitions, with results
being reported for both still and video imagery. Analysis of cross-
modal performance shows that for matching frontal faces in still
images, algorithms are consistently superior to humans. For video
and difficult still face pairs, humans are superior [107].

People doing facial image comparison can be found in four

different kinds of professions: forensic photographers, forensic
anthropologists, video investigators and imaging scientists.
Knowledge of anatomy and physiology of the face is needed to get a
good interpretation of differences and similarities in facial features.
Similarities or differences in such images can often be explained by
differences in the imaging conditions, pointing to the importance of
knowledge about optics. Small facial details can be distorted, and
artefacts looking like small details introduced due to noise, pixel
sampling and compression, requiring knowledge about image
processing for the proper interpretation of observations. Changes in
image quality, pose and position, lighting and facial expression
greatly influence the comparison process. Therefore, it is strongly
recommended that one acquire reference images of the suspect and
a number of other people with the same video camera in the same
situation under similar lighting conditions. While the techniques of
facial image comparison are generally accepted within their prac-
titioner communities, they are not tested, and their error rates are
unknown. On that basis, the methods of facial image comparison
would appear not to meet the anticipated standards [48,109].

It is well-established that matching images of unfamiliar faces is
rather error prone. Experimental studies on face matching under-
estimate its difficulty in real-world situations. Photographs of un-
familiar faces seem to be unreliable proofs of identity, especially if
the ID documents do not use very recent images of the holders
[110].

Existing scientific knowledge of face matching accuracy is based
almost exclusively, on people without formal training. Human
performance curtails accuracy of face recognition systems, poten-
tially reducing benchmark estimates by 50% in operational settings.
Mere practice does not attenuate these limits [111], and some
training methods may be inadequate [112]. However, large indi-
vidual differences have been reported, suggesting that improve-
ments in performance could be made by emphasizing personnel
selection [115].

White et al. [114] also have shown that forensic facial examiners
outperformed untrained participants and computer algorithms on
challenging face matching tests, thereby providing the first evi-
dence that these examiners are experts at this task. Notably,
computationally fusing responses of multiple experts produced
near perfect performance.

7.5. Eyewitness identification/facial composites

In most of the criminal investigations of a crime, one of the first
steps is to interview eyewitnesses. In these interviews the wit-
nesses are asked to provide a description of the perpetrators. For
investigational purposes this description may be made into an
image by a (police) sketch artist. The sketch artist can also help the
witness to recall the face of the perpetrator by showing multiples
examples of facial features. Instead of sketches, it is also possible to
create photo compositions using examples from databases with
facial images.

As not always images of perpetrators are available, matching of
composite sketches with facial photographs (e.g. mugshots) is of
interest. Matching performance of composite or forensics sketches
against photo galleries are promising but still considerably lower
than photo matching performance of commercially available sys-
tems [117,118].

7.6. Other biometrics

7.6.1. Ear

Even though current ear detection and recognition systems have
reached a certain level of maturity, their success is limited to
controlled indoor conditions. In addition to variation in
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illumination, other open research problems include occlusion due
to hair, ear symmetry, earprint forensics, ear classification, and ear
individuality [119]. The experimental results show that ear recog-
nition may achieve an average rank-one recognition accuracy of
more than 95% [120] Current studies are directed towards more
robust automated methods for ear detection, landmark localisation
and ear recognition using 2D and 3D techniques [121—-123].

7.6.2. Body geometry and gait

With the standardisation of photographs, identification pri-
marily occurs from the face. However, results consistently show
that less body measurements are needed to find no duplicates
when compared to the face. With the combination of eight body
measurements, it is possible to achieve results comparable with
fingerprint analysis [125]. Thicker garments produce higher inac-
curacies in landmark localisation, but errors decrease as placement
is repeated. Overall, comparison to truth reveals that on average
statures can be predicted with accuracy in excess of 95% [126].

Also lower leg shape, sometimes the only body part consistently
depicted in images, has been reported as “an effective biometric
trait” [127]. Recent studies have shown that when face identifica-
tion fails, people rely on the body but are unaware of doing so [128].

Bouchrika et al. [129] reported a method to extract gait features
for different camera viewpoints achieving an identity recognition
rate of 73.6% processed for 2270 video sequences. Furthermore,
experimental results confirmed the potential of the proposed
method for identity tracking in real surveillance systems to
recognize walking individuals across different views with an
average recognition rate of 92.5% for cross-camera matching for
two different non-overlapping views.

Yang [130] describes a method for height estimations on eye
measurement through a gate cycle.

7.6.3. Soft biometrics

Soft biometric information extracted from a human body (e.g.,
height, gender, skin colour, hair colour, and so on) is ancillary in-
formation easily distinguished at a distance but it is not fully
distinctive by itself in recognition tasks. However, this soft infor-
mation can be explicitly fused with biometric recognition systems
to improve the overall recognition when confronting high vari-
ability conditions. The use of soft biometric traits is able to improve
the performance of face recognition based on sparse representation
on real and ideal scenarios by adaptive fusion rules [114].
Depending of the acquisition distance, the discriminative power of
the facial regions can change. This results in some cases in better
performance than achieved for the full face [131].

Soft biometrics introduce a possibility to automatically search
databases based on biometric features obtained from verbal de-
scriptions, resulting in more than 95% identification accuracy [132].

7.6.4. Liveness detection

Spoofing is the act of masquerading as a valid user by falsifying
data to gain an illegitimate access. Vulnerability of recognition
systems to spoofing attacks (presentation attacks) is still an open
security issue in biometrics domain and among all biometric traits.
Galbally [133] propose a technique using 25 general image quality
features extracted from one image (i.e., the same acquired for
authentication purposes) to distinguish between legitimate and
impostor samples. The experimental results, obtained on publicly
available data sets of fingerprint, iris, and 2D face, show that the
proposed method is highly competitive compared with other state-
of-the-art approaches and that the analysis of the general image
quality of real biometric samples reveals highly valuable informa-
tion that may be very efficiently used to discriminate them from
fake traits. Erdogmus et al. [ 134] studied detection problem of more

complex 3D attack texture based

countermeasures.

types using various

8. Camera identification of images and video

In criminal investigations of child porn production and distri-
bution, identification of the source of a digital image has become
very important, because a specific camera, (or a cell phone camera,
a webcam, or a flatbed scanner) could be linked to a suspect using
other types of evidence. Identification of images that might have a
common source can also be helpful in these investigations. The
developments that have been started in the period of the previous
review have not been stopped and have lead to a number of new
methods and software packages [51—97]. The most used method is
based on the estimation of a specific type of fixed pattern noise in
an image that is caused by PRNU - Photo Response Non Uniformity.
The method is also useful in other cases such as murder and fraud
to find a links between a camera and images that have been taken.

For identification of a specific camera as the source of a specific
image, the PRNU patterns have to be estimated from reference
images from the camera and the noise that can be filtered out from
this specific image. These patterns have to be compared and a
similarity measure is used as a measure for the strength of the
evidence that the camera is the source. Common practice is to
compare the PRNU pattern of a specific image with the PRNU
patterns from a large number of camera’s [51,55,60,61,68—70,75].
The quality of the estimation of the PRNU pattern from an image
depends heavily on the image content and this can be taken into
account. However, if there are more images available from the
same, unknown source, e.g. the frames in a video file
[49,50,58,91-95,97,98], much better estimations of the PRNU
pattern can be obtained by averaging techniques. In the newer
cameras one has to compensate for motion compensation
[82,84,88,90]. However several methods are presented to improve
the calculation speed as well as clustering images if the camera is
not available. Also the use of GPUs is discussed within these
methods and optimized with jungle computing [96].

Other sources of fixed pattern noise [52,66,78,85] that have
been investigated are based on detection of image artefacts from
differences in image processing in the camera chips. Also deep
learning is combined with PRNU detection [56,71].

In the forensic practice of a case in which a specific camera has
to be identified, a collection of similar cameras from the same brand
and type are needed for validation of the results. For using PRNU as
evidence, the analyst has to interpret the comparison results. The
ENFSI working group [38] for Forensic IT has conducted three
proficiency tests to find out what different experts might report to
the court about camera identification. In the practice of investiga-
tion of large amounts of images, PRNU is also useful to get in-
dications of possibly common sources. A number of studies have
been found on the implementation of this application.

The methods are expanded further with the issues of digital
zoom as well as with motion compensation algorithms. Further-
more detection of camera model [64,72,80,81] is done, however the
forensic usefulness is limited. We also see several papers in the field
of manipulation detection [65,72] as well as anti forensics to erase
the PRNU pattern and detect this [57,63,73,91].
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