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A 6-gene risk score system constructed for predicting the clinical
prognosis of pancreatic adenocarcinoma patients
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Abstract. Pancreatic adenocarcinoma (PAC) is the most
common type of pancreatic cancer, which commonly has an
unfavorable prognosis. The present study aimed to develop a
novel prognostic prediction strategy for PAC patients. mRNA
sequencing data of PAC (the training dataset) were extracted
from The Cancer Genome Atlas database, and the validation
datasets (GSE62452 and GSE79668) were acquired from
the Gene Expression Omnibus database. The differentially
expressed genes (DEGs) between good and poor prognosis
groups were analyzed by limma package, and then prog-
nosis-associated genes were screened using Cox regression
analysis. Subsequently, the risk score system was constructed
and confirmed using Kaplan-Meier (KM) survival analysis.
After the survival associated-clinical factors were screened
using Cox regression analysis, they were performed with
stratified analysis. Using DAVID tool, the DEGs correlated
with risk scores were conducted with enrichment analysis. The
results revealed that there were a total of 242 DEGs between
the poor and good prognosis groups. Afterwards, a risk score
system was constructed based on 6 prognosis-associated genes
(CXCLI11, FSTL4, SEZ6L, SPRRIB, SSTR2 and TINAG),
which was confirmed in both the training and validation data-
sets. Cox regression analysis showed that risk score, targeted
molecular therapy, and new tumor (the new tumor event days
after the initial treatment according to the TCGA database)
were significantly related to clinical prognosis. Under the same
clinical condition, 6 clinical factors (age, history of chronic
pancreatitis, alcohol consumption, radiation therapy, targeted
molecular therapy and new tumor (event days) had significant
associations with clinical prognosis. Under the same risk
condition, only targeted molecular therapy was significantly
correlated with clinical prognosis. In conclusion, the 6-gene
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risk score system may be a promising strategy for predicting
the outcome of PAC patients.

Introduction

Pancreatic cancer (PC) originates from the pancreas, and
the cancerous cells have the ability to invade other parts of
the body (1). PC patients in early stages often do not have
obvious signs or symptoms that are specific enough to suggest
pancreatic cancer, and most patients are diagnosed with late
stage disease or metastasis to other organs (2). Most cases
of PC occur in individuals over the age of 70 years, and PC
can be induced by diabetes, tobacco smoking, obesity, and
genetic conditions (3,4). PC usually has a poor prognosis,
and was responsible for 411,600 deaths globally in 2015 (5).
The most common type of PC is pancreatic adenocarci-
noma (PAC), which consists of ~85% of all PC cases (6).
Therefore, it is important to determine new biological or
pathological indicators related to the prognosis of PAC in
addition to conventional prognostic approaches such as clini-
copathologic staging, tumor biology and molecular genetics,
perioperative factors and the use of postoperative adjuvant
therapy (7).

In the past decade, research has uncovered the genes
affecting the survival of PC patients. For example, genetic
alterations and accumulation of cyclin-dependent kinase inhib-
itor 2A (CDKN2A)/p16, tumor protein pS3 (TP53), and SMAD
family member 4 (SMAD4)/DPC4 are highly correlated with
the malignant potential of PAC, and their expression levels
may predict the prognosis of PAC patients (8). B-cell-specific
Moloney murine leukemia virus insertion site 1 (BMII) is
reported to be significantly upregulated in PC, and its expres-
sion has a positive association with lymph node metastases
and a negative correlation with the survival rates of PC
patients (9,10). The expression levels of aldehyde dehydroge-
nase 1 family, member A1 (ALDHIAI) (11,12) and insulin-like
growth factor 2 mRNA binding protein 3 (/GF2BP3) could be
used to predict the prognosis of PAC (13). Overexpression of
homeo box B7 (HOXB?7) contributes to the invasive behavior
of PAC (14,15). Nevertheless, the prognostic mechanisms of
PAC warrant further investigation.

Bioinformatic analysis is a new way for revealing the
pathogenesis of diseases and identifying novel therapeutic
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Table I. Clinical information of The Cancer Genome Atlas (TCGA)
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dataset and the validation datasets (GSE79668 and GSE62452).

Clinical factors

TCGA (n=178)

GSE79668 (n=51) GSE62452 (n=69)

Age, years (mean = SD) 64.69+11.09
Sex (male/female/-) 91/74/13
Chronic pancreatitis history (yes/no/-) 13/117/48
Diabetes history (yes/no/-) 36/99/43
Alcohol (yes/no/-) 97/57/24
Tobacco (never/reform/current/-) 59/56/19/44
New tumor (yes/no/-) 55/101/22
Pathologic_M (M0/M1/-) 75/3/100
Pathologic_N (NO/N1/-) 44/117/17
Pathologic_T (T1/T2/T3/T4/-) 8/19/134/3/14
Pathologic_stage (/II/III/IV/-) 20/137/4/3/
Radiation therapy (yes/no/-) 38/107/33
Targeted molecular therapy (yes/no/-) 102/48/28
Deceased (death/alive/-) 83/8213
Overall survival months (mean + SD) 17.11+£15.35

64.04+11.57
32/19
22/29

48/1/2
14/37
3/12/31/5

- 4/46/13/6

49/16/4
20.21+£16.69

45/6
26.78+26.12

-, Indicates information unavailable. SD, standard deviation.

targets (16). To screen the key genes correlated with the
prognosis of PAC and develop novel prognostic prediction
strategies, we downloaded and analyzed the public datasets
of PAC. Through a series of bioinformatic analyses, a risk
score system of PAC was constructed and assessed in the
present study. The present study may provide a novel means
for predicting the outcome of PAC patients and helping in
selecting appropriate therapeutic methods.

Materials and methods

Data source. The mRNA sequencing data of PAC (the training
dataset; platform: Illumina HiSeq 2000 RNA Sequencing;
downloaded in March 30, 2017; including 178 PAC samples)
and correlative clinical information were extracted from The
Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/)
database. Meanwhile, ‘PAC’ was used as the search words for
selecting relevant datasets from the Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) database. The
inclusive criteria were as follows: i) the samples were human
tissues (not cell lines); ii) the samples were provided with
prognostic information. Finally, GSE79668 (17) [platform:
GPL11154 Illumina HiSeq 2000 (Homo sapiens); 51 samples]
and GSE62452 (18) [platform: GPL6244 (HuGene-1_0-st)
Affymetrix Human Gene 1.0 ST Array (transcript (gene)
version); 69 samples] were selected and considered as the
validation datasets. The clinical information of the training
dataset and the validation datasets are presented in Table 1.

Differential expression analysis. Among the 178 PAC
samples in the training dataset, 163 PAC samples had prog-
nostic information. The 17 PAC samples with follow-up time
<6 months whose status was still alive at the last follow-up
were considered as ineligible samples since the actual
survival time was unknown (data not available) due to loss

Table II. The 6 prognosis-associated genes to establish the risk
score system.

Genes coef HR P-value
CXCLI1 0451453 0.6367 0.0031
FSTL4 0.54981 0.5771 0.0025
SEZ6L -1.18976 3.2863 <0.0001
SPRRIB 0.37643 0.6863 0.0004
SSTR2 1.17541 0.3087 0.0035
TINAG 0.26515 0.7671 0.0163

HR, hazard ratio.

of follow-up. Then, these 17 ineligible samples were removed
for analysis in our study. Afterwards, the remained 146 PAC
samples were divided into good prognosis and poor prognosis
groups. The PAC samples obtained from living patients with
a survival time >24 months were classified into a good prog-
nosis group, and the PAC samples obtained from deceased
patients with a survival time <6 months were classified into
the poor prognosis group. Under the thresholds of false
discovery rate (FDR) <0.05 and llogfold change (FC)I >0.585,
the differentially expressed genes (DEGs) between the
good and poor prognosis groups were analyzed using the
R package limma (http://www.bioconductor.org/packages/
release/bioc/html/limma.html) (19).

Identification of prognosis-associated gene. The 146 PAC
samples were applied for identifying prognosis-associated
genes. Using univariate and multivariate Cox regression
analyses in R package survival (20), prognosis-associated
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Table III. Cox regression analysis for selecting the clinical factors significantly related to prognosis.

Clinical characteristics

Univariable Cox P-value

Multivariable Cox P-value

Age in years (above/below median)
Sex (male/female)

Pathologic_M (M0/M1)

Alcohol (yes/no)

Tobacco (never/reform/current)
Chronic pancreatitis history (yes/no)
Diabetes history (yes/no)
Pathologic_N (NO/N1)
Pathologic_T (T1/T2/T3/T4)
Radiation therapy (yes/no)

New tumor (yes/no)

Targeted molecular therapy (yes/no)
Risk score

0.0781

0.5630

0.3020

0.8190

0.1490

0.6990

0.6830

0.0128 0.2683

0.0338 0.2258

0.0371 05174

0.0107 0.0269

0.0010 <0.0001
<0.0001 <0.0001

P-values in bold print indicate significant correlations.

genes were selected from the DEGs. Then, significant P-values
were obtained by log-rank test (21), and P-value <0.05
was taken as the threshold for screening prognosis-associated
genes.

Construction and assessment of risk score system. Based
on the prognosis-associated genes, a risk score system was
constructed for the PAC patients. Firstly, the identified
prognostic-associated genes were sorted by their individual
P-value of the Cox regression analysis. Each gene was added
one at a time in the risk score system, and the risk scores of
the included gene were summed. This procedure was repeated
until all the prognostic-associated genes were included.
Finally, a set of minimum number of genes having the smallest
P-value were selected for constructing the risk score system.
Risk scores were obtained based on the linear combination of
the gene expression values experiencing regression coefficient
weighting. The risk score for each patient was calculated as the
sum of each gene's score, which was obtained by multiplying
the expression level of a gene by its corresponding coefficient
(B)s using the following formula:

Risk score =pgenel x Exp genel + pfgene2 x Exp gene2+ - +
Pgene(n) x Exp gene(n)

Subsequently, the risk of the PAC patients in the validation
datasets were assessed using the p value acquired from the
training dataset. Meanwhile, the differences in survival ratio
were analyzed between high- and low-risk groups which were
divided using the median cut-off of the risk scores as the
threshold with log-rank test in Kaplan-Meier (KM) survival
analysis. The differences between the low-risk and high-risk
groups for expressions of the 6 genes were compared with
t-test.

Correlation analysis between risk score system and clinical
factors. Using the risk score system, risk scores were

calculated for the samples in the training and validation
datasets. According to the median of the risk scores, the
samples were divided into high- and low-risk groups. Based
on the clinical information corresponding to the samples,
COX regression analysis (22) was used to perform correlation
analysis for screening the survival associated-clinical factors.

Stratified analysis. Furthermore, stratified analysis was
performed for the survival associated-clinical factors based on
the following strategies: i) under the same clinical condition,
the correlation between survival prognosis and high-/low-risk
groups was analyzed; and ii) under the same risk condition, the
correlation between survival prognosis and different clinical
conditions was analyzed.

Enrichment analysis. According to the risk scores, the
samples were classified into high- and low-risk groups. For
the training dataset, the DEGs between high and low risk
groups were identified using limma package (19). The DEGs
were defined as genes with FDR <0.05. Afterwards, correla-
tion analysis for the DEGs and risk scores were conducted.
To screen significantly enriched biological processes and
pathways, the DEGs positively and negatively related to risk
scores were conducted with enrichment analysis using DAVID
tool (https://david.ncifcrf.gov/) (23).

Results

Differential expression analysis. Among the 146 PAC samples,
18 and 19 PAC samples separately were divided into poor
and good prognosis groups. Under the screening thresholds,
242 DEGs between the two groups were selected.

Construction and assessment of risk score system. Based on
univariate Cox regression analysis, 165 prognosis-associated
genes were selected. Moreover, the 165 prognosis-associated
genes were conducted with multivariate Cox regression analysis
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Figure 1. Overall survival of pancreatic adenocarcinoma (PAC) patients in low- and high-risk groups in The Cancer Genome Atlas (TCGA) dataset (A),
GSE62452 (B), and GSE79668 (C). Red and black separately represent high- and low-risk groups.

and 8 prognosis-associated genes were further screened. Finally,
6 prognosis-associated genes [chemokine (C-X-C motif) ligand
11], CXCLI1I; follistatin-like 4, FSTL4; seizure related 6 homolog
(mouse)-like, SEZ6L; small proline-rich protein 1B, SPRRIB;
somatostatin receptor 2, SSTR2; and tubulointerstitial nephritis
antigen, TINAG) were selected for constructing the risk score
system (Table II). The formula was as follows:

Risk score =0.451 x Exp CXCL11 + 0.5498 x Exp FSTL4 +
(-1.1897) x Exp SEZ6L + 0.376 x Exp SPRR1B + 1.175 x Exp
SSTR2 + 0.265 x Exp TINAG

The risk scores were calculated for the samples using the
risk score system. Afterwards, the 6 prognosis-associated
genes were utilized for performing risk evaluation for
the PAC patients. According to the median risk scores,
the patients in the training dataset were classified into
high-(83 patients) and low-(83 patients) risk groups. In
relation to the high-risk group with the average overall
survival (OS) time of 16.88+14.92 months, the low-risk
group with the average OS time of 18.84+13.91 months had
a higher survival ratio (P<0.0001; Fig. 1A). For the valida-
tion dataset GSE62452, the low-risk group (24 patients;
average OS time=25.1+18.79 months) also had a higher
survival ratio (P=0.0465) in comparison with the high-risk
group (25 patients; average OS time=16.78+16.21 months)
(Fig. 1B). For the validation dataset GSE79668, the low-risk
group (25 patients; average OS time=37.07+32.15 months) had
a higher survival ratio (P=0.0374) compared with the high-risk
group (26 patients; average OS time=17.55+£15.50 months)
(Fig. 1C). The expression distributions of the 6 prognosis-asso-
ciated genes in the high- and low-risk groups of the 3 datasets
are exhibited in Fig. 2. The expression levels of SPRRIB,
TINAG and CXCLI11I were significantly lower, those of SEZ6L
and SSTR2 were higher in the low-risk group of The Cancer
Genome Atlas (TCGA) dataset (Fig. 2A). However, an obvi-
ously decreased expression level of SSTR2 was observed in the
low-risk group of GSE62452 (Fig. 2B) which may be due to the
fact that the gene expression model in the validation datasets
could not be exactly the same as those in the training dataset.

Correlation analysis between risk score system and clinical
factors. The clinical factors significantly related to prog-
nosis were selected by Cox regression analysis. Our results
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Figure 2. Expression distributions of the 6 prognosis-associated genes in the
high- and low-risk groups of The Cancer Genome Atlas (TCGA) dataset (A),
GSE62452 (B) and GSE79668 (C). 0.01<P<0.05; *"0.005<P<0.01; **P<0.005.

showed that risk score, targeted molecular therapy, and new
tumor (event days) were significantly correlated with survival
time (Table III). According to different clinical factors, the
samples were divided into groups and then differential expres-
sion analysis was conducted (Table IV).

Stratified analysis. Correlation analysis under the same clinical
condition showed that 6 clinical factors (age, chronic pancre-
atitis history, alcohol consumption, radiation therapy, targeted
molecular therapy, and new tumor) under different groups were
significantly correlated with survival time (Table V). Moreover,
these 6 clinical factors were used to perform Kaplan-Meier (KM)
survival analysis in the different groups (Fig. 3).
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Figure 3. The Kaplan-Meier (KM) survival curves for the 6 clinical factors (age, alcohol use, new tumor, targeted molecular therapy, chronic pancreatitis
history and radiation therapy) in high- and low-risk groups under the same clinical condition. (A) Survival curves for patients below the age of 65 (left), patients
above the age of 65 (middle), and patients below or above the age of 65 years (right). (B) The survival curves for no-alcohol group (left), alcohol group (middle),
and no-alcohol or alcohol groups (right). (C) Survival curves for no new tumor group (left), new tumor group (middle), and no new tumor or new tumor groups
(right). (D) Survival curves for no targeted therapy group (left), targeted therapy group (middle), and no targeted therapy or targeted therapy groups (right).
(E) Survival curves for no chronic pancreatitis group (left), chronic pancreatitis group (middle), and no chronic pancreatitis or chronic pancreatitis groups
(right). (F) Survival curves for no radiation therapy group (left), radiation therapy group (middle), and no radiation therapy or radiation therapy groups (right).
Red and black separately represent high- and low-risk groups.
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Table V. Results of the stratified analysis under the same
clinical condition.

Clinical factors P-value
Age (=65 years, n=75) 0.0526
Age (<65 years, n=76) 0.0011
Sex (male, n=85) 0.2520
Sex (female, n=64) 0.7210
Chronic pancreatitis history (yes, n=13) 0.6360
Chronic pancreatitis history (no, n=109) <0.0001
Diabetes history (yes, n=32) 0.1200
Diabetes history (no, n=94) 0.0936
Alcohol (yes, n=90) 0.0018
Alcohol (no, n=51) 0.0071
Tobacco (never, n=54) 0.3370
Tobacco (reform, n=53) 0.0502
Tobacco (current, n=17) 0.1180
Pathologic_M (M0, N=68) 0.6310
Pathologic_M (M1, n=2) -

Pathologic_N (NO, n=40) 0.1930
Pathologic_N (N1, n=105) 0.0537
Pathologic_T (T1+T2, n=24) 0.1540
Pathologic_T (T3+T4, n=124) 0.0567
Radiation therapy (yes, n=37) 0.0215
Radiation therapy (no, n=102) 0.0021
Targeted molecular therapy (yes, n=98) 0.0357
Targeted molecular therapy (no, n=45) 0.0019
New tumor (yes, n=54) 0.0357
New tumor (no, n=87) 0.0193

Table VI. Results of the stratified analysis under the same risk
condition.

Clinical factors High risk Low risk

Age in years (above vs. below median) 0.888 0.056
Sex (male vs. female) 0.622 0.939
Pathologic_M (M0/M1) 0.869 0.368
Pathologic_N (NO vs. N1) 0.332 0.906
Pathologic_T (T1 vs. T2 vs. T3) 0.308 0.098
Chronic pancreatitis history (yes vs.no)  0.267 0917
Diabetes history (yes vs. no) 0.643 0.997
Alcohol (yes vs. no) 0.803 0977
Tobacco (never vs. reform vs. current) 0.210 0.534
Radiation therapy (yes vs. no) 0.668 0.173
Targeted molecular therapy (yes vs.no)  0.002 0.154
New tumor (yes vs. no) 0.389 0.997

Under the same risk condition, the correlation analysis
suggested that targeted molecular therapy had significant
association with clinical prognosis (Table VI). KM survival
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analysis was also performed for targeted molecular therapy
under different groups (Fig. 4). Meanwhile, the risk scores and
survival time of the patients, and the expression heatmaps of
the 6 prognosis-associated genes are presented in Fig. 5.

Enrichment analysis. For the training set, there were 373 DEGs
between the high- and low-risk groups. Correlation analysis
showed that 179 and 194 DEGs separately were positively and
negatively related to risk scores. Then, the top 20 DEGs were
selected and conducted with clustering analysis (Fig. 6A).
Additionally, multiple significantly enriched biological
processes (Fig. 6B) and pathways (Fig. 6C) were obtained for
these DEGs.

Discussion

In the present study, a total of 242 DEGs between the poor and
good prognosis groups were selected. Then, 6 prognosis-asso-
ciated genes (CXCLI11, FSTL4, SEZ6L, SPRRIB, SSTR2 and
TINAG) were selected for constructing a risk score system.
The expression levels of SSTR2 were higher in the low-risk
group of the TCGA dataset and GSE79668, while an obviously
decreased expression level of SSTR2 was observed in the
low-risk group of GSE62452. This discrepancy may be due
to the fact that the gene expression model in the validation
datasets could not be exactly the same as those in the training
dataset. The patients in the TCGA training dataset and valida-
tion datasets (GSE62452 and GSE79668) were classified into
high- and low-risk groups according to the median of risk
scores which were calculated according to not only the expres-
sion levels of the 6 genes but also their regression coefficients.
Moreover, the risk score system was confirmed in both the
training and the two validation (GSE62452 and GSE79668)
datasets, suggesting that the constructed 6-gene risk score
system has prognostic prediction value. Therefore, it is neces-
sary to select SSTR2 to build the 6-gene risk score system. Cox
regression analysis showed that risk score and new tumor were
significantly correlated with survival time. Under the same
clinical condition, 6 clinical factors were significantly corre-
lated with survival time. Although only targeted molecular
therapy had a significant association with clinical prognosis
under the same risk condition, the clinical impact was still
unexplainable when various types of molecular-targeted
agents were mixed. However, this association analysis was not
performed since the specific method of targeted-therapy for
each patient is unavailable from The Cancer Genome Atlas. In
addition, multiple significantly enriched biological processes
and pathways for the genes positively or negatively related to
risk scores were obtained.

Angiogenesis is a typical feature of tumor cell growth, and
the CXC chemokines have pleiotropic abilities in mediating
tumor-correlated angiogenesis and tumor metastasis (24,25).
Chemokine receptors chemokine (C-X-C motif) receptor
4 (CXCR4) and CXCRY7 are co-expressed in PC samples (26).
CXCLI4 is highly expressed in PC tissues suggesting its
correlation with the pathogenesis of PC (27). FSTLI was
found to have a low expression in PC, and inhibits the cell
growth and proliferation in PC patients (28,29). The expres-
sion of SSTR2 is lost in the process of PAC development,
which contributes to tumor cell growth via the activation
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enriched biological processes (B) and pathways (C) for the risk score-associated DEGs.

of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)
signaling and the overexpression of CXCLI6 (30). SSTR2
plays antitumor roles in PC, and its re-expression via gene

transfer may be a promising gene therapy approach for the
disease (31,32). Therefore, CXCLI11, FSTL4 and SSTR2 may
be related to the mechanisms of PAC.
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However, little research has reported the involvement of
SEZ6L, SPRRIB and TINAG in PAC. As a transmembrane
protein with multiple domains, SEZ6L protein plays roles in
signal transduction and protein-protein interaction (33). SEZ6L
expression is elevated in lung cancer tissues, and SEZ6L vari-
ants are correlated with the progression of lung cancer and can
increase the risk of the disease (34,35). The mRNA expression
of SPRRI is caused before the formation of Chinese hamster
ovary (CHO) cells in G, phase, and thus SPRRI expression
is responsive to growth-arresting signals (36). As a base-
ment membrane glycoprotein, TINAG can be recognized
by autoantibodies in some types of human tubulointerstitial
nephritis (37). The TINAG-related protein (TINAG-RP) was
found to have higher expression levels in a colorectal adeno-
carcinoma cell line (38). SEZ6L, SPRRIB and TINAG play
roles in other types of malignant tumors, indicating that they
may also function in the development and progression of PAC.

Furthermore, the following limitations should be mentioned
in this study. On the one hand, the prognostic prediction model
based on the expression levels of these 6 prognosis-associated
genes should be validated in an independent patient cohort
by clinical experiments. Whether our model is superior to
conventional prognostic factors still needs to be explored based
on more research. On the other hand, the prediction accuracy
of the risk score system may be influenced by data heteroge-
neity, platform differences and sample size differences of the
training and validation datasets. Thus, further experiments are
still needed to confirm these results.

In conclusion, 242 DEGs between the poor and good
prognosis groups were screened, and 6 prognosis-associated
genes (CXCLI11,FSTL4,SEZ6L,SPRRIB, SSTR2 and TINAG)
were selected for constructing a risk score system. Moreover,
the 6-gene risk score system may be utilized for predicting the
clinical prognosis of PAC patients. However, further research
is still needed to validate the prognostic prediction value based
on the expression levels of these 6 prognosis-associated genes
in an independent patient cohort with PAC.
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