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Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to a satisfactory
result. Induction of HBV-specific T cells by therapeutic vaccination or immunotherapies may be an innovative strategy to
overcome virus persistence. Vaccination with commercially available HBV vaccines in patients did not result in effective control
of HBV infection, suggesting that new formulations of therapeutic vaccines are needed. The woodchuck (Marmota monax) is a
useful preclinical model for developing the new therapeutic approaches in chronic hepadnaviral infections. Several innovative
approaches combining antiviral treatments with nucleos(t)ide analogues, DNA vaccines, and protein vaccines were tested in
the woodchuck model. In this paper we summarize the available data concerning therapeutic immunization and gene therapy
using recombinant viral vectors approaches in woodchucks, which show encouraging results. In addition, we present potential
innovations in immunomodulatory strategies to be evaluated in this animal model.

1. HBV Infection and Current
Treatment Strategies

World Health Organization estimates that about 2 billion
people worldwide have been infected with hepatitis B virus
(HBV). Since the introduction of preventive vaccination pro-
grams against hepatitis B in over 170 countries, the number
of new infections is continuously decreasing. Despite the
success of prophylactic vaccines, chronic HBV infection is
still a global health problem. Over 360 million people are
persistently infected with HBV, of whom 1 million die each
year from HBV-associated liver cirrhosis or hepatocellular
carcinoma (HCC). The outcome of HBV infection varies
greatly from person to person. In most of the cases the
infection is cleared spontaneously, however, 5%–10% of
adults develop chronic infection. By contrast, 40%–90%
of children which are born to HBV-infected mothers will
progress to develop a persistent liver disease [1].

In the recent, years a marked progress has been made
in the treatment of chronic hepatitis B. Currently, the two
types of antiviral therapies are approved: treatment with
pegylated interferon alpha 2a (PEG-IFNα) or nucleos(t)ide

analogues, such as adefovir, entecavir (ETV), lamivudine,
telbivudine, and tenofovir [2–5]. However, the efficacy of
those therapies in preventing liver cirrhosis and HCC is
still limited. Treatment with PEG-IFNα leads to a sustained
antiviral response in only one third of patients, regardless
of combining the therapy with polymerase inhibitors. On
the other hand, the treatment with nucleos(t)ide analogues
significantly suppresses HBV replication that leads to a
decrease of necroinflammation in the liver. However, those
antivirals cannot completely eradicate the virus. After with-
drawal of the drug, the rebound of viremia is observed in the
majority of patients. Furthermore, the long-term treatment
is subsequently associated with the appearance of drug-
resistant HBV strains that is often the cause of the therapy
failure [6, 7]. Therefore, the new approaches in treating
chronic hepatitis B are urgently needed.

2. Immunological Control of HBV Infection

It is well documented that an appropriate adaptive immune
response is required to efficiently control the HBV infec-
tion. T cell-mediated immune response directed against
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hepatitis B virus antigens is crucial for resolution of the
infection [8–12]. HBV-specific CD8+ T cells are able to
clear HBV-infected hepatocytes by secretion of Th1 antiviral
cytokines, such as interferons (IFNs) and tumor necrosis
factor alpha (TNFα), and direct cytotoxic mechanisms
(perforin/granzyme, ligand-ligand induced cell death, e.g.,
Fas-Fas-L) [12–16]. An early, vigorous, polyclonal, and
multispecific cellular immune response against the viral
proteins is associated with the clearance of hepatitis B in
acutely-infected patients. In contrast, chronic HBV carriers
demonstrate weak, transient, or often undetectable CD8+

T cell response that correlates with HBV persistence [17–
21]. Humoral immune response, especially neutralizing
antienvelope antibodies, play a key role in preventing HBV
spread to noninfected hepatocytes [20, 22].

Recent studies indicate that several mechanisms may
be involved in the loss of the function of HBV-specific
T cells during chronic hepatitis B. It was shown that
high-level viremia negatively influences the virus-specific
immune responses. High viral replication in the liver with
viral load higher than 107 copies/mL is correlating with
hyporesponsiveness of virus-specific CD8+ T cells in patients
with chronic hepatitis B [23]. Moreover, the prolonged
exposure to viral antigens occurring during the chronic viral
infections can trigger the T cells to become tolerant and
prone to apoptosis. The interaction between programmed
death 1 (PD-1) receptor and its ligand PD-L1 (also known
as B7-H1) plays an important role to prevent an overre-
action of the immune system [24]. Recent studies revealed
that inhibitory molecules such as PD-1 and CTLA-4 are
markedly upregulated on virus-specific T cells, resulting in
exhaustion (e.g., lack of IFNγ production and proliferation)
[25]. Simultaneously, this mechanism can contribute to the
development of the chronic infection by impairment of the
effective antiviral response. This hypothesis was previously
proven for hepatitis C virus (HCV) [26, 27] and human
immunodeficiency virus (HIV) infection in humans [28–
30], as well as lymphocytic choriomeningitis virus (LCMV)
infection in mice [31, 32], and more recently for HBV
[33, 34]. Furthermore, several studies imply that functional
defects of antigen presenting cells (APCs), mainly dendritic
cells (DCs), may contribute to the impaired T cell response in
chronic hepatitis B patients [35–41]. In vitro studies showed
that DCs isolated from HBV chronic carriers produce lower
amount of antiviral cytokines, such as type I interferons
and TNFα, in comparison to healthy controls [35, 36]. In
addition, those DCs are less efficient in T cell activation
and stimulation of T cell proliferation [35, 39–41]. The
novel report demonstrated that myeloid DCs from chronic
HBV patients express increased level of inhibitory PD-L1
molecule and therefore may down regulate functions of
HBV-specific T cells [39]. Several investigations underline
the significance of CD4+ CD25+ regulatory T cells in
pathogenesis of persistent viral infections [42]. In HCV-
and HIV-infected patients, it was shown that regulatory
T cells may downregulate HCV- and HIV-specific CD8+

and therefore influence the disease progression [43–45].
The role of regulatory T cells in HBV infection is still not
clear. Nevertheless, the increased numbers of CD4+ CD25+

regulatory T cells were detected in the blood and the liver
of patients with chronic severe hepatitis B [46]. In addition,
the liver itself is an organ with tolerogenic properties that
might contribute to the immunological tolerance during
chronic HBV infection [47, 48]. Finally, viruses developed
the strategies to efficiently evade the host immune response
resulting in persistent infections. Viral immune escape due to
the mutation of CD4+, CD8+, and B cell epitopes in a given
HLA background have been observed in patients infected
with HIV, HCV, and HBV [49–54].

Several studies demonstrate that the treatment with
lamivudine alone, or in combination with interleukin-12
(IL-12), result in the restoration of the HBV-specific CD4+

and CD8+ immune response in chronic HBV-infected indi-
viduals. However, the therapeutic effect was not sustained in
those patients [55–57].

3. Clinical Trials of Therapeutic Immunization

Over 20 years, continuous efforts have been undertaken to
develop a therapeutic vaccine for chronic hepatitis B to
enhance the virus-specific immune responses and overcome
persistent HBV infection [58–71].

Numerous clinical trials of therapeutic immunization
exploited the conventional prophylactic hepatitis B surface
antigen- (HBsAg-) based protein vaccines. These studies
demonstrated reductions in viremia, HBeAg/anti-HBe sero-
conversion, and HBV-specific T cell responses in some
patients. However, the anti-viral effect was only transient
and did not lead to an effective control of the HBV [58–65].
Combination of the HBsAg protein vaccines with antiviral
treatment with lamivudine did not lead to a satisfactory
improvement of the therapies [66–68].

The strategies designed to specifically stimulate HBV-
specific T cell responses were also not successful [69–71]. The
lipopeptide-based vaccine containing a single cytotoxic T
lymphocyte (CTL) epitope derived from HBV nucleocapsid
was able to induce a vigorous primary HBV-specific T cell
response in naı̈ve subjects [76]. However, in HBV chronic
carriers, the vaccine initiated only poor CTL activity and
had no effect on viremia or HBeAg/anti-HBe seroconversion
[69]. The DNA vaccine expressing small and middle envelope
proteins proved to elicit the HBV-specific cellular immune
response in chronic HBV carriers, however, this effect was
only transient [70].

Yang et al. presented the novel DNA vaccine for treatment
of chronic hepatitis and combined the immunizations with
lamivudine treatment [71]. The multigene vaccine contains
five different plasmids encoding most of HBV antigens and
human IL-12 gene as a genetic adjuvant. The combination
therapy led to sustained antiviral response in 6 out of 12
HBV chronically infected patients. The responders were able
to clear HBeAg and had undetectable viral load at the end
of a 52-week follow-up. Those effects were correlating with a
detectable T cell response to at least one of the HBV antigens.
[71]. Nevertheless, further studies are needed to evaluate this
strategy on a larger cohort of HBV chronic carriers.

The therapeutic vaccine-based HBsAg complexed with
human anti-HBs was proposed by the group of Wen et al.
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[77]. Immunogenic complexes (ICs) stimulate robust T cell
responses by increasing uptake of HBsAg through Fc recep-
tors on APCs and, therefore, modulate HBsAg processing
and presentation. It was demonstrated that this vaccine
administered to HBeAg-positive patients led to decrease of
HBV DNA in serum, HBeAg seroconversion, and develop-
ment of anti-HBs in part of the subjects [78]. Currently,
the IC-based vaccine is the only one that entered phase III
of clinical trials in chronic hepatitis B patients [79]. Even
though the IC-based vaccine led to antiviral effect, clearance
of HBV was not observed in treated patients. It seems that
the vaccine alone is not sufficient to achieve the full control
over HBV. Therefore, some steps have been undertaken to
combine the IC-based vaccine with nucleos(t)ide analogues
treatment, (Wen et al., personal communication). The
ongoing clinical trial will show whether IC are effective as
a therapeutic vaccine in chronic hepatitis B.

4. Transgenic Mouse Model for Studies on
Therapeutic Immunization

Over the years, various animal models, including chim-
panzees, woodchucks, ducks, and HBV transgenic mice,
were established for development and evaluation of novel
therapeutic strategies. Considering the cost, ethical rea-
sons, and available amount, HBV transgenic mice are the
most widely used models. Studies using HBV transgenic
mouse models demonstrated that DNA immunization with
the expression plasmids encoding different HBV proteins
could induce HBV-specific antibodies and stimulate CTL
responses. However, the functionality of HBV-specific CTLs
induced in transgenic mice may be not fully developed
[80–82]. Improvement of DNA vaccination regimen [83]
and blockade of PD-1/PD-L1 interaction [34, 84] could
enhance functional T cell responses and lead to inhibi-
tion of viral replication in vivo without causing hepatitis.
Apart from the DNA immunizations, the other therapeutic
approaches including administration of Toll-like receptor
(TLR) ligands, HBV-specific siRNA, and direct activation
of APCs were evaluated in HBV transgenic mice [85–
87]. Those strategies were able to effectively reduce the
HBV replication, and are currently under investigation
as combined therapies. Nevertheless, this model has a
significant limitation. As the HBV genome is inserted into
the mouse chromosome, full HBV life cycle does not take
place in the transgenic mice and no liver inflammation can
be observed [88]. Thus, the animal models with naturally
occurring hepadnaviral infection are required for the long-
term evaluation of the therapeutic effect. In comparison to
chimpanzees, woodchucks are easily available and afford-
able.

In this paper we would like to introduce woodchucks as a
useful preclinical model for designing of the new therapeutic
vaccines in chronic hepadnaviral infections. We will summa-
rize the available data concerning therapeutic immunization
approaches in woodchucks and present potential innovations
in immunomodulatory strategies that yet to be evaluated on
this animal model.

5. The Woodchuck as a Preclinical
Model for Pathogenesis and Therapy of
Chronic Hepatitis B

The Eastern woodchuck (Marmota monax) is naturally infe-
cted by woodchuck hepatitis virus (WHV). WHV was dis-
covered in 1978 as a virus closely related to HBV [89]
and classified as a member of Hepadnaviridae family. WHV
and HBV show a marked similarity in the virion structure,
genomic organization, and the mechanism of replication,
but differ in several aspects, for example, regulation of
transcription (Table 1) [90]. WHV causes acute self-limiting
and chronic infection similar to HBV infection in the
pathogenesis and profiles of the virus-specific immune
response [91]. This feature of the woodchuck model makes
it so significant for investigation of the new therapeutic
approaches in chronic hepatitis B.

Experimental infection of neonates or adult woodchucks
with WHV reflects the outcome of HBV infection in humans.
In adult woodchucks infection with WHV usually leads to
the resolution of infection and only 5%–10% of animals will
develop the chronic hepatitis. The exposure of woodchuck,
neonates to WHV results in development of chronic WHV
infection in 60%–75% of the cases [92]. The continuous
replication of WHV in the liver during the chronic infection
is nearly always associated with development of HCC in the
woodchucks [93, 94]. After diagnosis of HCC the survival
prognosis of the animals is estimated on about 6 months,
like in humans. The common features of HBV- and WHV-
induced carcinogenesis give the opportunity to examine the
new anti-HCC therapies in the woodchucks [95].

For many years, the studies on immunopathogenesis
of WHV infection in woodchucks were restricted to deter-
mination of humoral immune responses [96]. The lack
of appropriate methods to evaluate antigen-specific T cell
responses was the serious limitation of this model.

Proliferation assay for peripheral blood mononuclear
cells (PBMCs) based on incorporation of [3H]-thymidine by
cellular DNA, routinely used for human and mouse system,
has been ineffective in the woodchuck PBMCs [97, 98].
The failure of this approach is consistent with the fact
that woodchuck lymphocytes do not express the thymidine
kinase gene (Menne et al., unpublished results). This obstacle
had been overcome by usage of the alternative radioactively
labeled nucleotide 2[3H]-adenine [72]. Development of
2[3H]-adenine-based proliferation assay enabled to detect
the T-helper lymphocyte responses after stimulation of
woodchuck PBMCs with WHV core, surface and X antigens
(WHcAg, WHsAg, and WHxAg, resp.) [72, 99]. In addition,
using the 2[3H]-adenine-based proliferation assay in PBMCs
from acutely infected animals, several T-helper epitopes
within WHcAg [72] and WHsAg were identified [Menne et
al., unpublished results].

Recently established, a novel CD107a degranulation assay
for woodchuck PBMCs and splenocytes made a significant
breakthrough in studying pathogenesis of hapadnaviral
infections in the woodchuck model [73]. Several studies
demonstrated that detection of CD107a, as a degranulation
marker, is a suitable method for determination of antigen
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Table 1: Virological and clinical comparison between HBV and WHV.

HBV WHV

Virology

Classification
Family: Hepadnaviridae Family: Hepadnaviridae

Genus: Orthohepadnavirus Genus: Orthohepadnavirus [91]

Host Human Woodchuck (Marmota monax)

Structure
40–42 nm spherical; enveloped nucleocapsid;
partially double-stranded DNA genome [22]

42–45 nm spherical; enveloped
nucleocapsid; partially double-stranded
DNA genome [91, 104]

Proteins

Surface glycoproteins (large-L, medium-M,
small-S), core protein, “x” protein, “e” antigen,
DNA polymerase with reverse-transcriptase
activity [22, 105]

The corresponding proteins [91]

Replication strategy
Replication of HBV DNA occurs by reverse
transcription of an RNA intermediate within
cytoplasmic nucleocapsids [22]

The same mechanism [97]

Genetic diversity 8 major genotypes [105]
1 major genotype (minor sequence
differences) [91]

Integration into host chromosome Yes [22]
Yes, often close to N-myc oncogene
region [106]

Clinical course of infection

Epidemic 350 million people infected worldwide
Endemic in some woodchuck population
in North America

Vertical transmission
The most common: from mother to newborn

Neonatal woodchucks infected by WHV
inoculum

chronicity rate: 45%–90% [20, 105] chronicity rate: 60%–75% [92]

Horizontal transmission
Transmitted by body fluids, 90% of individuals
recover [105]

Adult woodchucks infected by WHV
inoculum, 90%–95% of animals recover
[92]

Clinical features of chronic infection
Variable HBV DNA levels: 104–1012 copies/mL WHV DNA levels: 109–1011 copies/mL

Variable HBsAg levels WHsAg: mean 100–300 ug/mL

liver transaminases elevation [20, 22, 105] liver transaminases elevation [92, 107]

Disease progression

Liver cirrhosis
2%–5% in HBeAg-positive patients (genotype
dependent) [20]

Not common

Hepatocellular carcinoma
5-year cumulative HCC incidence in patients with
cirrhosis: 16% (data in Asia) [20]

Nearly 100% of chronic infected animals
have HCC after 3 years [92, 94, 95, 107]

Efficacy of nucleos(t)ide analogues
treatment

Effective: entecavir, tenofovir, telbivudine,
adefovir, lamivudine [2–5]

Effective: clevudine, telbivudine,
entecavir, emtricitabine, tenofovir,

Less effective: tenofovir, adefovir,
lamivudine [74, 108–118]

Development of resistance mutations Yes [6, 7, 105]
Lamivudine-resistant strains isolated
[119]

specific cytotoxic T lymphocytes [100, 101]. The assay
enables detection of WHV-specific CTLs basing on their
granule-dependent effector function. Recognition of the
infected cells by CTLs results in the exposure of CD107a
molecule on the CTL surface. In the woodchuck system,
CD107a molecule can be stained by cross-reactive antimouse
CD107a antibody, what enables the flow cytometric analysis
of the woodchuck CTLs.

Introduction of those immunological tools for studying
of the T cell response in woodchucks revealed a significant

similarity between the pathogenesis of WHV infection in
woodchucks and HBV in humans. It was demonstrated that
acute self-limiting and resolved WHV infections correlate
with robust multifunctional T-helper and cytotoxic T cell
responses [72, 73, 99]. Moreover, this efficient cellular
immune response to viral antigens results in the liver injury
and is necessary for viral clearance. With the novel CD107a
degranulation assay, one immunodominant CTL epitope
within WHcAg (aa 96–110) [73] and one CTL epitope within
the WHsAg (aa 220–234, Frank et al., unpublished results)
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Figure 1: CD4+/CD8+ T cell epitopes in WHcAg and WHsAg in woodchucks. Immunodominant epitopes’ sequences are labelled in italics
[72–75].

were characterized (Figure 1). In contrast to self-limiting
infection, WHV chronic carriers demonstrate weak or no
virus-specific T cell responses against the identified epitopes
[72, 73, 99].

The establishment of the assays for monitoring of cellular
immune response in woodchucks is of great importance for
a reliable evaluation of therapeutic and immunomodulatory
strategies for treatment of chronic hepatitis B in the wood-
chuck model [96, 102, 103].

6. Therapeutic Vaccination Approaches in
the Woodchuck Model

Recently described advancements in the characterization and
monitoring of the woodchuck immune system during the
WHV infection, made this animal model particularly useful
for development of the immunomodulatory approaches in
chronic hepatitis B. The natural occurrence of chronic WHV
infection in woodchucks, that is closely related to HBV
infection in humans, allows to evaluate the potentially new
therapeutic strategies directly in chronic WHV carriers. Up
to date, several studies of diverse therapeutic vaccinations
have been carried out in woodchucks (Table 2).

The pioneer investigations based on therapeutic vaccines
based on WHV core [96] or surface antigens in combination
with a helper peptide FIS [120], or with potent Th1 adjuvants
like monophosphoryl lipid A [121] did not lead to satis-
factory results. Those experiments proved that vaccinations
could induce specific B- and/or T cell responses in chronic
WHV carriers. However, this alone was not sufficient to
achieve the control of virus replication.

It is assumed that high level viremia, during the
chronic hepatitis B, can inhibit the therapeutic effect of
the vaccination. Treatment of chronic HBV patients with
lamivudine could transiently restore HBV-specific T cell
immune response [55, 56]. Therefore, reduction of viral load
by the nucleos(t)ide analogues pretreatment might support

the efficacy of immunization to enhance the virus-specific
immune responses. This hypothesis was tested in three
experimental trials of the combination therapies in chronic
WHV carriers.

The first study performed by Hervás-Stubbs et al. was
based on lamivudine therapy [108]. Five chronically WHV-
infected woodchucks were treated orally with the drug for 23
weeks. At week 10, after decline of WHV DNA by 3–5 logs,
three animals were vaccinated with 3 doses of serum-purified
WHsAg combined with T-helper FIS peptide derived from
sperm whale myoglobin. The vaccination induced T-helper
responses against WHV antigens, shifting the cytokine
profile from Th2 to Th0/Th1. However, no beneficial effect
on WHV viral load and WHsAg levels was observed in
comparison to nonimmunized animals. After withdrawal of
the lamivudine treatment the values of viremia returned to
the pre-treatment levels.

The second trial evaluated the therapy with a very
potent antiviral drug: clevudine (previously called L-FMAU)
combined with a WHsAg-based immunization [74, 109,
110]. A large cohort of thirty 1-2-year-old chronically WHV-
infected woodchucks was enrolled in the study. Half of the
animals were orally treated with clevudine (10 mg/kg/day)
for 32 weeks; the other 15 woodchucks received placebo.
After withdrawal of clevudine treatment, 8 animals from
each group were vaccinated with the four doses of formalin
inactivated alum-adsorbed WHsAg and 7 were injected with
the saline as a control. Combination of the drug and vaccine
therapy resulted in marked reductions WHV DNA (6–
8 logs) and WHsAg in serum during the 60-week monitoring
period, in contrast to the vaccine only and placebo groups,
where both markers remained at high levels. Combination
therapy did not enhanced anti-WHs responses beyond those
measured for vaccine alone. However, treatment with clevu-
dine and vaccine together led to more sustained and robust
lymphoproliferative responses to WHsAg and additionally
to WHcAg, WHeAg, and WHxAg. Moreover, combination
therapy delayed the onset of the liver disease and prevented
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Table 2: Studies on therapeutic vaccinations in the woodchuck model.

Vaccines Application Adjuvants Outcome Reference

WHcAg intramuscular Viral elimination in 1 of 6 animals
Roggendorf et al.,
1995 [96]

WHsAg and Th-peptide intramuscular Th-peptide
Transient anti-WHs antibody response
Two woodchucks died

Hervás-Stubbs et al.,
1997 [120]

WHsAg and Th-peptide intramuscular Th-peptide
No induction of anti-WHs antibodies
Detectable T-cell responses to WHV
proteins

Hervás-Stubbs et al.,
2001 [108]

WHsAg in combination
with clevudine (L-FMAU)

intramuscular alum

Reduction of serum viral loads and
viral replication in liver
Induction of anti-WHs and detection
of T-cell responses to WHV proteins
Delayed occurrence of HCC

Menne et al., 2000,
2002 [74, 109, 110]

WHsAg intramuscular
monophosphoryl
lipid A

No reduction of serum viral load,
Development of antibodies to the preS
region of WHsAg

Lu et al., 2003 [121]

Plasmid DNA expressing
WHsAg, WHcAg, and
woodchuck IFN-γ in
combination with
lamivudine

intramuscular ∅ Transient reduction of serum viral
loads

Lu et al., 2008 [112]

WHsAg/anti-WHs
immunogenic complex and
DNA vaccines in
combination with
lamivudine

intramuscular ∅

Transient reduction of serum viral
loads
Transient appearance of anti-WHs
antibodies and WHcAg-specific T cell
response

Lu et al., 2008 [112]

Plasmid DNA encoding
WHsAg and WHcAg in
combination with entecavir

intramuscular ∅ Transient reduction of serum viral
loads

Lu et al.,
[unpublished results]

Plasmid DNA encoding
WHsAg and WHcAg in
combination with protein
WHsAg/WHcAg vaccine in
combination with entecavir

intramuscular ∅

HCC development in up to 38% of treated chronic WHV
carriers in the long-term follow-up study [111].

Recently, a novel therapeutic approach for treatment of
chronic hepatitis B in a woodchuck model was described.
The therapy combined the antiviral treatment with immu-
nization with plasmid DNA and antigen-antibody immuno-
genic complex vaccines together [112]. DNA vaccines are
considered to stimulate both humoral and cellular immune
response, polarizing T cells in the direction of Th1 response
[122]. Immunization of the naı̈ve woodchucks with the plas-
mids encoding WHV core and preS2/S genes (pWHcIm and
pWHsIm, resp.) induced the lymphoproliferative responses
against the antigens and provided a protection against WHV
challenge [123]. In addition, the DNA vaccine expressing
HBsAg proved to elicit the vigorous T cell responses in
chronic HBV carriers, however, this effect was only transient
[70]. The HBsAg/anti-HBs IC vaccine is currently under the
investigation in chronic HBV patients [77–79].

To evaluate the efficacy of previously mentioned
immunotherapy in woodchucks, firstly 10 chronic WHV
carriers were treated with 15 mg of lamivudine, daily for
21 weeks. At week 10, four animals were pretreated with

cardiotoxin and then received three immunizations with
DNA vaccine containing three plasmids expressing WHsAg,
WHcAg, and woodchuck IFNγ (pWHsIm, pWHcIm and
pWIFN, resp.). Simultaneously, the other four woodchucks
received three doses of the combination of DNA vaccine
and WHsAg/anti-WHs immunogenic complex. Two chronic
WHV carriers served as lamivudine monotherapy control.
Lamivudine treatment resulted in only a slight decrease
of WHV DNA levels in the woodchucks serum (0,7 and
0,32 log, resp.). Surprisingly, the DNA vaccination did
not lead to any additional therapeutic effect beyond that
observed for lamivudine treatment alone. In contrast, the
triple combination of antiviral treatment, plasmid DNA
encoding WHcAg, WHsAg, and wIFNγ and IC vaccines was
able to decrease WHV viral load up to 2,9 log and the serum
WHsAg up to 92%. Moreover, three of the four treated
animals developed anti-WHs antibodies. Nevertheless, these
effects were not sustained and all parameters reached
the baseline levels shortly after withdrawal of lamivudine
treatment. In addition, the vaccination did not induce WHV-
specific T cell responses in the majority of woodchucks, even
in animals that exhibited virological responses. Significant
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lymphoproliferative responses against WHV antigens were
detected only in one animal after three immunizations with
DNA vaccine [112]. The study demonstrated the benefit
of using the combinatory therapy in chronically WHV-
infected woodchucks. However, the transient therapeutic
effects, suggest that this strategy needs further optimization.

The results from the previous studies clearly confirm
the poor efficacy of the lamivudine therapy in woodchucks
[108, 112, 124]. A new strategy evaluated the potency of an
entecavir treatment and increased number of immunizations
[Lu et al., unpublished results]. Chronically WHV-infected
woodchucks were pretreated with the entecavir for 21 weeks;
10 weeks in a daily and 11 weeks in a weekly manner.
During the weekly administration of the drug, one group
of animals received 6 immunizations with two-plasmid DNA
vaccine (pWHsIm and pWHcIm),the second group received
combination of DNA vaccine together with purified WHV
core and surface antigens, and the third group remained
untreated. The entecavir therapy resulted in rapid and signif-
icant decrease of the viral load and WHsAg levels in serum of
the animals. The effect was especially pronounced in animals
that additionally received vaccines. In woodchucks treated
only with entecavir, the increase of viremia was observed
already during the weekly administration or immediately
after withdrawal of the drug. By contrast, in both groups of
animals, that were immunized with DNA or DNA/proteins
vaccines, the delay before the rebound of WHV replication
was significantly prolonged. In addition, entecavir treatment
was effective to suppress WHV replication and enhanced the
induction of WHV-specific T cell responses. An increased
CTL activity was detected in individual woodchucks after
DNA or DNA/proteins vaccinations. Moreover, two animals
completely eliminated the virus from the blood and were
WHV DNA negative in the liver [Lu et al., unpublished
results].

Altogether, the results obtained in the woodchuck
model concerning combination of nucleot(s)ide therapy and
immunization proved the synergistic effect of both thera-
peutical approaches. The therapeutic effects observed during
such therapies were significantly increased and prolonged in
comparison to the monotherapy alone. In addition, those
therapeutic approaches could stimulate the WHV-specific T
cell responses, usually impaired in WHV chronic carriers [72,
73]. A combination of antiviral treatment and vaccination
is required for the improvement of virus specific T cell
responses. Designing of the future therapeutic approaches
should include pretreatment with the potent antiviral drugs,
such as entecavir or clevudine, that proved their efficacy in
the woodchuck model.

7. Therapeutic Immunization
Using Recombinant Viral Vectors
and Prime-Boost Strategy

Previous results from therapeutic immunization trials on
woodchucks, chimpanzees, and humans indicate that the
licensed vaccines are not able to boost a functional antiviral
T cell response. There is a need to use more potent strategies.

Vaccines based on recombinant viruses have gained a great
interest because of their ability to stimulate robust humoral
and cellular immune responses. Viral vectors were investi-
gated as prophylactic and therapeutic vaccines against many
human pathogens such as measles virus, herpes simplex virus
(HSV), human papillomavirus (HPV), HIV, and rabies [126–
130]. However, the utility of those recombinant vaccines in
the treatment of chronic hepatitis B was not yet evaluated.

Preliminary results obtained from the study in chroni-
cally HBV-infected chimpanzees immunized with retroviral
vector, based on Moloney murine leukemia virus, encoding
HBcAg suggest that further investigation of viral-vector
based vaccines should be taken into consideration [131]. In
the experiment, one of the three therapeutically immunized
chronic carrier chimpanzees cleared the virus and showed
HBeAg seroconversion. Significant ALT elevations observed
in this animal implicate restoration of HBV-specific cytotoxic
and humoral responses without causing fulminant hepatitis.
Moreover, the other two chimpanzees demonstrated high
anti-HBe titers after the therapy and one of them HBcAg-
specific CTLs [131]. This study demonstrates not only the
benefit of using the recombinant viral-vectors for treatment
of chronic HBV infection in primate model, but also the
possible advantage of using core antigen-based therapeutic
vaccines. Even though the retroviral vector vaccination was
well tolerated in the chimpanzees, several clinical trials
suggest that gene therapy with traditional retroviral vectors
can lead to oncogenesis [132, 133]. Therefore, the usage of
another recombinant virus as a carrier of the proteins could
be beneficial.

8. Recombinant Adenoviruses as the Vaccines

Recombinant adenoviruses have been one of the intensively
investigated viral vectors for therapeutic purposes. Devel-
opment of the novel methods for manipulating of the viral
genome resulted in the three generations of the recombinant
adenoviruses and with increasing capacity [125] (Figure 2).
Several trials imply the usefulness of those vectors in
gene therapy of genetic diseases and cancer [134–137]. For
many years, the first generation replication-deficient E1 or
E1/E3-deleted adenoviral vectors have been explored as the
vaccine carriers in prevention of the infectious diseases
[138]. Adenoviral vectors have several advantages that can be
beneficial for potent therapeutic vaccines.

First of all, adenoviruses are relatively susceptible for
genetic modifications and can be easily produced in high
titers. After transduction of the cells, adenoviral genome
is not integrated into the host DNA and stays in the
episomal form. As a result, the risk of the possible acti-
vation of the cellular oncogenes is minimal. Adenovirus-
based vaccines proved to elicit a vigorous and sustained
humoral and T cell responses to the incorporated antigen
that is considered to be crucial in clearance of persistent
viral diseases [127, 139–141]. The benefit of adenoviral
vectors as a vaccine carrier is not only limited to stable
delivery of proteins of interest. Several findings on additional
immunostimulatory effects, for example, induction of the
innate immune response, that originate from the nature
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Figure 2: Genome structures of the first, second, and third generation of adenoviral vectors. Wild-type adenoviral sequences are labelled
in black. The localization of the early genes (E1–E4) is represented by arrows. Deletion sites are shown as a thin line or as striped boxes for
alternative deletions. ITR: inverted terminal repeats; Ψ: packaging signal (modified from: X. Danthinne [125]).

of adenoviruses itself, may enhance the vaccine efficacy.
Capsid of adenoviruses demonstrates immunostimulatory
properties, that is why the coadministration of the adjuvant
is usually unnecessary. Those vectors can directly transduce
DCs causing their maturation and upregulation of MHC
and costimulatory molecules on their surface, thus lead to
enhanced antigen presentation. Moreover, it was shown that
AdV-transduced DCs are secreting antiviral cytokines, such
as IFNα, TNFα, and IL-6 [142]. Interleukin-6 is one of the
most important factors that suppress the function of the
regulatory T cells [143, 144].

Nevertheless, modified adenoviruses apart from the
abovementioned advantages have one serious limitation.
Thus far, vectors that were comprehensively examined as
the vaccines have been based on the human adenovirus
serotype 5 (Ad5) [127]. This serotype is the most common
in the human population. Anti-Ad5 neutralizing antibodies
are detectable in 45%–90% of adults [145]. The preexisting
immunity directed against Ad5 is considered as a main
reason of failure in the phase I clinical trial of a protective
HIV-1 vaccine. STEP study guided by Merck pharmaceutical
concern, based on 3-dose regimen of a trivalent Ad5 vaccine,
suggested that the immunization might increase the risk of
HIV-1 infection in the subjects with high neutralizing anti-
Ad5 titers [146–148]. Moreover, even single immunization
may induce immunity to the vector in seronegative individ-
uals.

The negative effect of the pre-existing or Ad5-induced
immunity against the vaccine, mostly when the therapy
requires multiple dosages, may be overcome by heterolo-
gous prime-boost regimen. The utility of the rare human
serotypes (e.g., serotype 35) [149, 150] or recombinant
adenoviruses of nonhuman origin has been recently tested

[151]. In particular, subsequent priming immunizations
with plasmid DNA vaccine followed by a booster vaccination
with AdV seem to be a very promising strategy. DNA
primeadenovirus boost regimen proved to induce more
robust and potent immune response in comparison to
plasmid DNA alone and provided protection against the
pathogen challenge in several animal models of infectious
diseases [149, 152–154]. Furthermore, a clinical trial of
multiclade HIV-1 DNA plasmid-Ad5 boost vaccine, HIV-
uninfected individuals demonstrated high immunogenicity
even in the presence of high anti-Ad5 antibody titer. In
addition, the vaccine proved to be well tolerated in the
participants of the study [155].

9. Improvement of Adenoviral Vectors

Several studies indicate that the transgene expression level
can be increased from adenoviral vectors by the presence
or insertion of an intron sequences [156–158]. Therefore,
we constructed the new recombinant adenoviruses serotype
5 and 35 encoding WHV core protein and containing
an intron between promoter and WHcAg gene sequences.
Preliminary experiments showed that vaccination with the
AdVs containing the intron sequences led to induction of
robust cellular and humoral immune responses in mice.
Moreover, immunization of the mice in DNA prime-AdV
boost manner, using improved vectors, resulted in more
vigorous and multispecific T cell responses in comparison
to immunization with plasmid DNA alone [Kosinska et al.,
unpublished results].

Immunization of chronically WHV-infected woodchucks
with plasmid DNA vaccine in combination with entecavir
treatment showed a marked therapeutic effect. Addition of



Hepatitis Research and Treatment 9

Table 3: Studies on gene therapy of chronic hepatitis and HCC in the woodchuck model.

Vector Application Outcome Reference

Helper-dependent AdV expressing
woodchuck IFNα

Intravenous (portal
vein)

Transient inhibition of WHV replication Fiedler et al., 2004 [163]

Helper-dependent AdV expressing
woodchuck IFNγ

Intravenous (portal
vein)

No effect Fiedler et al., 2004 [163]

AdV expressing woodchuck IFNγ in
combination with clevudine (L-FMAU)
and emtricitabine (FTC)

intravenous
T-cell infiltration and inflammation in
the liver

Jacquard et al., 2004 [164]No additional antiviral effect beyond the
treatment with the nucleot(s)ide
analogues

AdV expressing woodchuck IFNγ and
TNFα in combination with clevudine
(L-FMAU)

intravenous Transient inhibition of WHV replication Zhu et al., 2004 [165]

High-capacity AdV expressing murine
IL-12 under the control of a liver-specific
inducible promoter

intrahepatic (via
laparotomy)

Inhibition of WHV replication in the
liver and decreased viral load in serum.

Crettaz et al., 2009 [166]Induction of anti-WHs antibodies.

The effect was observed only in animals
with basal viremia lower than 1010

copies/mL.

AdV expressing herpes simplex virus
thimidine kinase combined with
gancyclovir treatment

intratumoural (via
laparotomy)

Necrotic areas in the tumour mass and in
the liver. Bilbao et al., 2000 [167]
No reduction in tumour volume.

AdV expressing murine IL-12 and B7.1
molecule

intratumoural (via
laparotomy and MRI
guidance)

CD4+ and CD8+T cell infiltration in the
liver. Pützer et al., 2001 [168]
Reduction in tumour volume.

Semliki forest viral vector expressing
murine IL-12

intratumoural (via
laparotomy)

Induction of T cell responses to tumour
antigens.

Rodriguez-Madoz et al.,
2009 [75]Induction T cell responses to WHcAg and

WHsAg.

Dose-dependent, transient reduction in
tumour volume.

the recombinant adenoviruses to this regimen could be a
new, more potent approach in treatment of chronic hepatitis
B. We will apply DNA prime-AdV boost approach in
WHV chronically infected woodchucks in combination with
nucleos(t)ide analogs and evaluate its therapeutic potential.

10. Adenoviral Vectors for Gene
Transfer Strategies in Treatment
of Chronic Hepatitis B

Over the last 20 years, modified adenoviruses have been
extensively studied as a vehicle for gene delivery to the
liver, because of their high transfection efficiency and their
natural tropism for hepatocytes [159, 160]. Moreover, the
development of the third generation of adenoviral vectors
that lack all viral coding sequences (e.g., helper-dependent
adenoviral vectors), resulted in their increased capacity and
minimized immunogenicity of the vector allowing long-
term transgene expression [161]. High cloning capacity of
those vectors enables usage of inducible or tissue-specific
promoters and coexpression of multiple therapeutic or
immunomodulatory genes [162].

So far, several trials of virus-mediated gene therapy for
treatment of chronic hepatitis and HCC were performed in
chronically WHV-infected woodchucks and in cell culture
systems. Those strategies were mainly based on delivery of
antiviral cytokines, such as IFNα, IFNγ, IL-12 by recombi-
nant adenoviruses, to reduce viral replication or modulate
the immune response (Table 3).

Transduction of primary woodchuck hepatocytes from
chronic WHV carriers with helper-dependent AdV encoding
woodchuck IFNα (wIFNα) resulted in the reduction of
WHV proteins expression in vitro [169]. In vivo studies
on chronically WHV-infected woodchucks, demonstrated
that a single injection of 1 × 1012 vp of this vector into
the liver’s portal vein could inhibit WHV replication by
1 log up to 11 weeks after the treatment [163]. The same
approach with helper-dependent AdV expressing woodchuck
IFNγ (wIFNγ) did not show any antiviral effect, even
though the transduction led to the production of biologically
active interferon [163]. Another study combined intravenous
delivery wIFNγ by recombinant adenoviral vector with
nucleos(t)ide analogues therapy. Chronic WHV carriers were
treated with clevudine and emtricitabine (FTC), together, for
8 weeks and after the initial drop in viral load one group of
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animals received additionally two i.v. injections of 3 × 1010

PFU of Ad-IFNγ. Delivery of wIFNγ induced inflammation,
caused by T cell infiltration, and increased hepatocyte
turnover. However, this effect did not induce additional
antiviral outcome in comparison clevudine/emtricitabine
biotherapy alone [164]. Similarly, poor therapeutic effect was
observed for gene therapy based on both wIFNγ and wTNFα.
Intravenous injection of those recombinant adenoviruses
during clevudine treatment led to decrease of replicative
intermediates of WHV DNA in the liver, beyond what
could be achieved by clevudine alone. Nevertheless, 6 weeks
after injection there was no significant difference between
the groups of WHV carriers receiving AdV expressing the
cytokines or beta-galactosidase as a control [165]. The
benefits of using the immunomodulatory genes in this study
are difficult to assess, since it was reported that adenovirus
infection alone is sufficient to transiently suppress the WHV
replication in chronically infected woodchucks [170]. The
lack of therapeutic effect by direct delivery of IFNγ is con-
sistent with in vitro data obtained from persistentlyinfected
woodchuck primary hepatocytes. Treatment of the cells with
wIFNγ, even in the presence of wTNFα, was not able to
inhibit the WHV replication. Moreover, high concentration
of those cytokines resulted in the loss of the cells during
the culture [171]. This observation underlines the cytotoxic
effect of Th1 cytokines on the woodchuck hepatocytes. Rapid
downregulation of the IFNγ expression, after transduction
of the liver cells with viral vector, could be one of the
mechanisms to protect the organism from the potential
toxicity of this cytokine in vivo [163]. In addition, several
reports indicates that the level of wIFNγ and wTNFα is
higher in the liver of chronic WHV carriers in comparison to
naı̈ve animals [172, 173]. Therefore, continuous presence of
inflammatory cytokines in the liver during the chronic WHV
infection could result in hyporesponsiveness of hepatocytes
to such a therapy.

The novel strategy to treat chronic WHV hepatitis is
based on adenovirus-mediated delivery of murine IL-12
(mIL-12) gene into hepatocytes [166]. Interleukin-12 is a
proinflammatory cytokine produced naturally by antigen
presenting cells. IL-12 stimulates production of IFNγ and
TNFα by T and natural killer (NK) cells and enhances
their cytotoxic activity [174]. In the study, mIL-12 gene
expression could be regulated by inducible promoter that
was responding to progesterone antagonist RU486. Eight
chronic WHV carriers received single dose of 2× 1010 i.u. of
AdV expressing mIL-12 (HC-Ad/RUmIL-12) by intrahepatic
injection at laparotomy. Two weeks after, the expression of
mIL-12 was induced by the administration of RU486. The IL-
12 treatment resulted in intense and sustained suppression
of WHV replication in the liver as well as decreased viral
loads in the serum. This effect, however, was visible only in
the animals with basal viremia lower than 1010 WHV copies
per milliliter of serum. Animals, which responded to the
therapy, developed a vigorous T cell response to WHcAg,
measured by woodchuck IL-2 production, and demonstrated
WHeAg and WHsAg seroconversion. Moreover, the FoxP3
levels in the livers of those animals were decreased, while in
nonresponder woodchucks FoxP3 values were significantly

upregulated [166]. This finding suggests that the intrahepatic
expression of IL-12 may inhibit the regulatory T cells in the
liver during the chronic WHV infection. Indirect induction
of inflammatory cytokines, such as IFNγ and TNFα by IL-12,
seems to be a more efficient strategy in breaking the tolerance
to virus antigens than direct delivery of those cytokines. It
suggests that probably additional events occur in the liver
after AdV-mediated IL-12 transfer that supports the antiviral
effects of this therapy.

11. Gene Transfer Strategies for the Treatment
of Hepatocellular Carcinoma

Adenoviral delivery of genes for cytokines and other
immunomodulators is widely used in cancer therapy in the
animal tumor models as well as in patients [137, 175–178].
The T cells play an important role not only in defense
against the pathogens, but also in antitumor immunity and
inhibition of the tumor growth. Interleukin-12 inhibits the
angiogenesis and induces a potent antitumoral immune
response by stimulation of IFNγ secretion. Therefore, IL-12
is a promising candidate for cancer gene therapy [179–183].
Strategy based on recombinant adenoviruses expressing IL-
12 demonstrated antitumor effect in the murine models with
transplantable HCC [184, 185] and was also evaluated in
woodchucks [168].

In the study, large (2–5 cm) intrahepatic tumors of
5 woodchucks were injected with a single dose of 1 ×
109 PFU AdV expressing IL-12 and B7.1 molecule (AdIL-
12/B7.1). The B7.1 molecule (also known as a CD80) is
naturally expressed on the professional APCs and provides
the synergistic effect in the tumor regression [181, 186,
187]. In 4 out of 5 animals, AdIL-12/B7.1 was delivered by
laparotomy into the three HCC nodules and three nodules
were injected with a vector expressing GFP as a control.
Animals were sacrificed 7–14 days later and the tumor
volumes were assessed. On average, treated tumors showed
an 80% reduction in the volume whereas the size of the
AdGFP-injected nodules increased. Remission of the tumors
was associated with CD4+ and CD8+ T cell infiltration
into the tumor tissue and increased local IFNγ levels after
AdIL-12/B7.1 injection. One of the treated woodchucks
received the intratumoral injection by magnetic resonance
imaging (MRI) guidance and was monitored for 7 weeks.
During this period the tumor size decreased from 8,6 cm3

to 0,5 cm3[168]. This observation shows that administration
of AdIL-12/B7.1 during MRI guidance, with therapeutic
effect similar to laparotomy, could prevent the animals from
harmful consequences of the surgery.

The study proved that the gene therapy based on IL-12
leads may be a promising strategy to treat HCC. By contrast,
treatment with AdV encoding herpes simplex thymidine
kinase combined with gancclovir administration did not lead
to reduction in the tumor size [167]. Nevertheless, the short
time of monitoring during the study makes it difficult to
evaluate the prolonged antitumoral effect of this approach.

A recent study presents gene therapy with semliki
forest viral vector expressing high levels of murine IL-
12 (SFV-enhIL-12) on remission of HCC in chronically
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WHV-infected woodchucks. In the research, the vector was
delivered by surgery into multiple sites of HCC tumors in
the liver [75]. A total of nine woodchucks were enrolled in
the experiment. Six of the woodchucks, two animals each,
received different doses of SFV-enhIL-12: 3 × 109 vp, 6 ×
109 vp, and 1, 2 × 1010 vp, and three animals served as a
control and received saline injections. The tumor size was
monitored by ultrasound examination for 23 to 24 weeks. In
all woodchucks, reduction in tumor volume was observed,
however, this effect was transient and dose dependent.
Animals treated with the highest dose of SFV-enhIL-12
showed the most spectacular reduction of the tumor size
71% and 80%. Nevertheless, the tumors started to grow
between 6 and 14 weeks after the treatment. The antitumoral
effect was associated with the induction of the immune
response towards the tumor antigens, demonstrated by T
cell proliferation assay, upregulation of leukocyte markers
expression, and cytokine production, such as IFNγ, TNFα,
IL-6, and IL-12. In addition, the therapy resulted in transient
induction of lymphoproliferative responses against WHcAg
and WHsAg and led to short-term reduction in WHV viral
load [75].

The results presented here indicate that viral-mediated
gene therapy in treatment of chronic hepatitis B and
HCC needs further optimization. However, treatment of
the woodchucks with viral vectors allowed to achieve a
long-lasting expression of the cytokines and their higher
concentration preferably in the liver. Therefore, this strategy
is proven to be more effective than an approach based on
using of the soluble cytokines. In addition, adenovirus-
mediated gene transfer is proven to be a safe and a well-
tolerated strategy in the woodchucks.

12. Conclusion

The current progress indicates the feasibility of therapeutic
approaches for treatment of chronic HBV infection. There
is a general agreement that a combination of antiviral
treatment and immunomodulation is essential to achieve a
sustained control of HBV infection. However, many scientific
questions are still not answered. The question how HBV
infection leads to defective immune responses to HBV
proteins remains to be investigated. This issue is the key
to a more rational design of new therapeutic approaches.
Recently, HBV proteins were found to suppress host innate
responses [188]. It has to be clarified whether an early
blockage of innate immune responses may further negatively
influence the priming of adaptive immune responses. In
addition, different groups reported consistently that TLR2
and TLR4 signalling may be impaired in chronic HBV infec-
tion patients [189, 190]. Thus, it is worthy to test whether
an enhancement of innate immune responses in chronic
carriers is necessary for restoration of specific immune
responses. With the increasing number of available vaccine
formulation, a more crucial question raised recently: what
is the optimal combination of these vaccines. Obviously, it
is necessary to test the mutual influences of different types
of vaccines to maximize their effects and avoid the negative
interference between the vaccines. Finally, the future design

of therapeutic vaccines needs to be considered in nonnaı̈ve
hosts since patients have undergone other infections. It is
yet not possible to foresee how the pre-existing infections
and immunological backgrounds will influence the effect
of therapeutic vaccines. Understanding these issues will be
helpful for the translation of recent progresses for clinical use
of therapeutic vaccines.
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