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3D-Polarized Light Imaging (3D-PLI) enables high-resolution three-dimensional mapping

of the nerve fiber architecture in unstained histological brain sections based on the

intrinsic birefringence of myelinated nerve fibers. The interpretation of the measured

birefringent signals comes with conjointly measured information about the local fiber

birefringence strength and the fiber orientation. In this study, we present a novel approach

to disentangle both parameters from each other based on a weighted least squares

routine (ROFL) applied to oblique polarimetric 3D-PLI measurements. This approach was

compared to a previously described analytical method on simulated and experimental

data obtained from a post mortem human brain. Analysis of the simulations revealed

in case of ROFL a distinctly increased level of confidence to determine steep and

flat fiber orientations with respect to the brain sectioning plane. Based on analysis of

histological sections of a human brain dataset, it was demonstrated that ROFL provides

a coherent characterization of cortical, subcortical, and white matter regions in terms

of fiber orientation and birefringence strength, within and across sections. Oblique

measurements combined with ROFL analysis opens up new ways to determine physical

brain tissue properties by means of 3D-PLI microscopy.

Keywords: neuroimaging, modeling, 3D-PLI, white matter anatomy, fiber architecture

1. INTRODUCTION

Understanding the human brain’s function and dysfunction requires a thorough knowledge about
the brain’s fiber tracts, forming a dense network of connections within, but also between the
different brain regions. Over the last years, several imaging techniques have emerged which are
capable of resolving anatomical structures with different spatial resolutions. At the millimeter scale,
diffusion MRI is the most prominent one as it is applicable to both in vivo and post mortem brains
(Basser et al., 1994; Johansen-Berg and Behrens, 2009; Mori and Tournier, 2014). At ultra-high
resolution two-photon microscopy (Laperchia et al., 2013), light-sheet microscopy (Silvestri et al.,
2012), and electron microscopy (Knott et al., 2008), amongst others, have been exploited to image
single cells and neurons in 3D space as well as their local connections. Yet these techniques come
with the cost of excessivemeasurement time, large amounts of data and limited fields of view (lateral
and axial), impeding the study of larger brain volumes so far.
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3D-Polarized Light Imaging (3D-PLI) (Axer et al., 2011a,b)
is a microscopic technique that bridges the gap between large-
scale imaging techniques such as diffusion MRI and ultra-high
resolution microscopy. It enables the reconstruction of fiber
tracts at the meso- and micro-scale from unstained histologial
sections. Recently, polarization sensitive optical coherence
tomography (PSOCT) has emerged as a promising technique for
the mapping of fiber bundles with the ability of depth-resolved
scanning of brain blocks (Wang et al., 2011, 2014; Magnain et al.,
2014). While the signals measured by PSOCT and 3D-PLI both
arise due to the birefringence of brain tissue, their fundamental
difference is that PSOCT captures the reflected light instead of
the transmitted light as 3D-PLI (Caspers and Axer, 2017).

A pitfall of any histological imaging technique is the extraction
of information in the direction perpendicular to the sectioning
plane, i.e., in the depths of the histological section. While in-
plane fiber orientations can be obtained from texture information
of microscopic images via the structure tensor without the
need for any biophysical model (Budde and Frank, 2012), little
information is directly available about orientations perpendicular
to the sectioning plane. Lately, three-dimensional structure
analysis has been applied to image stacks obtained from
light microscopy (Khan et al., 2015) and confocal microscopy
(Schilling et al., 2016). This comes with several difficulties: the
prerequisites of a precise 3D-alignment of the image stack as
well as a coherent contrast over the whole image stack and the
strong dependency of the obtained orientations on the chosen
pre-processing pipeline and kernel size of the structure tensor
(Khan et al., 2015).

As an alternative, 3D-PLI enables to determine fiber
orientations directly from the measurement data without the
need for a manual choice of image processing parameters. This
is achieved by taking measurement data from different views
by tilting the brain section and analyzing it with a biophysical
model (Axer et al., 2011a). Especially, the estimation of the out-
of-sectioning-plane orientation (inclination angle) benefits from
the additional information gained by tilting the brain section as
it is measured conjointly with the fiber density.

Several algorithms for the analysis of the data acquired with
the tiltable specimen stage have been presented so far. The
Markov Random Field algorithm by Kleiner et al. (2012) and
the total variation-cased method by Alimi et al. (2017) both
resulted in a robust estimation of the inclination sign. While this
solved the inclination sign ambiguity, the absolute inclination
was still undetermined. This problem was first solved by Wiese
et al. (2014) who showed how the tilted measurements can be
utilized to extract inclination and fiber density independently
from each other. Their algorithm is based on a discrete
Fourier transformation of the different tilting positions (denoted
as DFT algorithm). Due to its analytical nature, the DFT
algorithm is computationally efficient but suffers from noise
instability.

The here presented approach seeks to overcome this noise
instability and provide a more robust separation of fiber density
and orientation. Our approach utilizes a weighted least squares
algorithm to process the tiltedmeasurements. It is then compared
to the analytical DFT algorithm on synthetic and experimental

data. The examined experimental results represent the first
analysis of large-scale 3D-reconstructed human brain data in 3D-
PLI. The new approach was introduced in Schmitz et al. (2018)
for the first time, yet this work represents a vast extension of the
analysis and results.

2. MATERIALS AND METHODS

2.1. Least Squares Estimation of Fiber
Parameters
2.1.1. 3D-PLI
3D-PLI utilizes the birefringence of nerve fibers which is
measured in customized polarimeters. The birefringence
originates from the regular arrangement of lipids in the myelin
sheath resulting in optical anisotropy. This anisotropy causes a
phase shift of incident polarized light passing the brain tissue.
The optical setup as described in Axer et al. (2011b) is depicted
in Figure 1: first unpolarized light from an LED array (custom-
made design, FZJ-SSQ300-ALK-G, iiM, Germany) passes a
first polarization filter and a quarter-wave retarder mounted
with a principle axis offset of 45◦ with respect to the polarizer
(Jos. Schneider Optische Werke GmbH, Germany), circularly
polarizing the light. Then the light interacts with the brain tissue
mounted on a tilting stage. A second polarizer, rotated 90◦ with
respect to the first one serves as analyzer. The outgoing light is
captured with a CCD camera with 14 bit depth (AxioCam HRc,
Zeiss, Germany), capturing images at a pixel size of 64 × 64µm.
The filters and the retarder are rotated simultaneously in
steps of ρ = 10◦, yielding an image series acquired by the
camera.

The effective physical model behind 3D-PLI describes
myelinated nerve fibers as negative uniaxial birefringent crystals.
Assuming ideal optical components, this model yields the
following expression of the light intensity in each pixel during
rotation of the filters (Axer et al., 2011a):

I(ρ,ϕ, δ) =
IT

2
·
(

1+ sin(2(ρ − ϕ)) · sin δ
)

(1)

with the transmittance IT
2 , the in-plane orientation ϕ (direction

angle), and the retardation δ. For the retardation the following
expression is presumed:

δ =
π

2
d cos2(α) (2)

d with the relative thickness d and the out-of-plane orientation α
(inclination angle). For readability purposes we denote d as trel
in contrast to Axer et al. (2011a). The angles are defined in the
range ϕ ∈ [0◦, 180◦] and α ∈ [−90◦, 90◦]. d was introduced by
Axer et al. (2011a) as the combined effect of section thickness ts,
birefringence1n, and illumination wavelength λ:

d = 4
ts1n

λ
(3)

The sinusoidal profile is analyzed with a Fourier analysis: the IT is
given by the average of the profile, the direction angle by its phase
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A B

FIGURE 1 | Experimental setup and tilting coordinate system. (A) Experimental setup. ρ denotes the rotation angle of the polarization filters. Red arrows depict

possibility to tilt the specimen stage. (B) Tilting coordinate system. Light gray: specimen stage in the planar position without tilt, dark gray: tilted specimen stage. ψ ,

tilting direction angle; τ , tilting angle. Image courtesy: N. Gales.

and the retardation sin δ by its relative amplitude (Axer et al.,
2011a). While this analysis enables unambiguous determination
of transmittance, direction angle, and retardation, α and d are
mapped onto one value, the retardation. Disentanglement of
both parameters is a priori not possible, as any combination of d
and α which fulfills Equation (2) is valid solution. Furthermore,
for d > 1 the outer sin function induces an additional ambiguity.
Therefore, the separation of d and α is only bijective for d ∈ (0, 1].
In Axer et al. (2011a) a constant relative thickness which was
extracted by statistical approach is assumed. This enables the
calculation of the inclination by inverting Equation (2). While
this approach offers a good first guess for the inclinations, the
assumption of a constant d over the whole section did not take
local differences between distinct brain regions into account.
For example, the cortex contains far less myelinated axons than
dense white matter regions such as the corpus callosum. Also, it
has to be noted that the relative thickness depends on the section
thickness which is not precisely known and the birefringence
which depends on the local amount of myelin (Goethlin, 1913).
Therefore, it is clear that the unbiased disentanglement
of both parameters requires additional measurement
information.

A mechanical solution to gain more measurement
information is a tiltable specimen stage built into the polarimetric
system, which introduces a pre-defined tilting angle to the nerve
fiber orientation relative to the sectioning plane (Axer et al.,
2011a). By this means, polarimetric measurements can be
performed from oblique views. Experimentally, this is realized
by a two-nested axis system enabling rotations of the specimen
around the x- and y-axis by up to 8◦. In routine 4 tilting
positions are measured: at each position the brain section is
tilted by±8◦ with respect to one of the axes, denoted as N(orth),
S(outh), E(ast), and W(est) (see Figure 1). All measurements
taken with a tilted sample are registered on the measurement
without tilt (planar measurement) by a projective linear
transformation.

2.1.2. Light Intensity Distribution of the Imaging

System
For an accurate model of the data acquisition, the noise
level of the imaging system must be taken into account. As
the detected signals are light intensities captured by a CCD
camera in our case, the dominant noise sources are shot noise
during image acquisition and the internal signal processing
of the camera (Bertolotti, 1974; Goodman, 2000). Here, the
distribution of interest is the distribution of the number of
detected photoelectrons during exposure time per pixel. With
increasing photon count the variance of the photon count
increases (Goodman, 2000). The dependency of the variance of
the detected photons σ 2 on the number of detected photons as
the expected value µ can only be determined experimentally.
Therefore, 100 samples of the same scene were taken and
analyzed pixelwise for the variances and expected values of the
measured light intensities. The resulting relationship between
variance and expected value is given by σ 2 = 3µ (cf.
Supplementary Material for details). The multiplicative factor
which relates variance and expected value is called gain factor
g (σ 2 = gµ), in our case g = 3. A common way to model
overdispersed count data is a negative binomial model as it
allows an arbitrary expectation value and variance. In general,
the occurrence of k under a negative binomial distribution
parameterized by the expected value and variance is given by

P(k|µ, σ ) =

(

k− 1+ µ2

σ 2−µ

k

) (

σ 2 − µ

σ 2

)k
( µ

σ 2

)
µ2

σ2−µ (4)

The probability to observe the light intensity I given the expected
light intensity µ and the gain factor g can then be expressed as

P(I|µ, g) =

(

I − 1+ µ
g−1

I

) (

g − 1

g

)I

g
−

µ
g−1 (5)
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2.1.3. The Tilting Coordinate System
We will use the coordinate system introduced by Kleiner et al.
(2012): it describes the tilting stage by the direction in which
the stage is tilted ψ and the actual tilting angle τ as sketched
in Figure 1. For the four tilting directions carried out in the
standard measurement, the tilting directions then are ψ =

0, 90, 180, 270◦ with a tilting angle of τ = 8◦. With NTilt as the
number of tilting positions the tilting directions equidistantly

spanning the space are in general given by ψj =
2π
NTilt

(j − 1), j ∈

[1, 2, . . . ,NTilt] with the index j indicating the tilting position.
The tilted vector rt is obtained by applying the appropriate
rotation to the vector in the planar position r: rt = R(ψ , τ )r. The
full rotation matrix R(ψ , τ ) is derived by first rotating around
the z-axis by −ψ , then rotating around the y-axis by τ and then
rotating back around the z-axis by ψ (Wiese, 2017):

R(ψ , τ ) = Rz(ψ)Ry(τ )Rz(−ψ)

=





cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



 ·





cos(τ ) 0 sin(τ )

0 1 0

− sin(τ ) 0 cos(τ )



 ·





cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1





=





cos(τ ) cos(ψ)2 + sin(ψ)2 (cos(τ )− 1) sin(ψ) cos(ψ) cos(ψ) sin(τ )

(cos(τ )− 1) sin(ψ) cos(ψ) cos(τ ) sin(ψ)2 + cos(ψ)2 sin(ψ) sin(τ )

− cos(ψ) sin(τ ) − sin(ψ) sin(τ ) cos(τ )



 .

(6)

As stated in Wiese et al. (2014), due to refraction at the brain
tissue, the actual tilting angle in the sample is reduced and has to
be adjusted according to Snell’s law. Assuming a refractive index
of n ≈ 1.45 for human tissue based on studies of de Campos Vidal
et al. (1980), the tilting angle of the light in the tissue is given by
τint ≈ 5.51◦ for a tilt of the tilting stage by τ = 8◦.

2.1.4. Least-Squares Algorithm
We introduce the indices j for the tilting direction (including
0 for the planar measurement) and i for the rotation angle of
the polarization filters. Additionaly, we denote the total number
of measured tilting stage positions (tilted measurements and
the planar measurement) as NT = NTilt + 1 and the number
of polarizer positions acquired as NP. All measurement data
accumulates to NT · NP light intensities Iji for each pixel.
Application of the Fourier analysis to all measurements as
described in Axer et al. (2011a) results inNT transmittance values
Ij,T , NT retardation values | sin δj| and NT direction values ϕj. In
this notation the intensity curve of a measurement can than be
expressed as

Iji(ρi,ϕj,αj, dj) =
Ij,T

2

(

1+ sin(2(ρi − ϕj)) sin
(π

2
dj cos

2(αj)
))

(7)
In a first step, the effect of the average light intensity,
the transmittance, is eliminated from the fiber orientation
determination. Eliminating it from the further process is
necessary as the light experiences additional absorption and
refraction effects in a tilted measurement, which cannot be
included in the model. Therefore, we define the normalized
light intensity

INji =
2Iji

Ij,T
− 1 (8)

which shifts the data into the range [−1, 1]. As the variance
of the light intensities is known as σ 2

Iji
= gIji the variance

of the normalized light intensity can be derived using error
propagation as

σ 2
Nji

=
gIji

I2j,T
+

gI2ji

NPI
3
j,T

(9)

The normalized light intensities fji predicted by the 3D-PLI
model are given by inserting Equation (7) into Equation (8):

fji(ϕj,αj, dj, ρi) = sin(2 · (ρi − ϕj)) sin
(π

2
· dj · cos(αj)

2
)

(10)

Fitting f to the normalized light intensities IN can now be
formulated as a weighted least squares problem.With the weights
wij = σ−1

Nji
the optimization problem is given by

argmin
ϕ,α,d

χ2 = argmin
ϕ,α,d

NT
∑

j=0

NP
∑

i=0

((

fji(ϕj,αj, dj, ρi)− INji

)

· wji

)2

(11)
subject to ϕ ∈ [0,π],α ∈ [−π

2 ,
π
2 ], d ≥ 0. At this point we do not

restrict the relative thickness to d ≤ 1 as a value of d > 1 could
also occur if the current 3D-PLI model simply does not describe
the data well enough. Two issues need to be overcome to solve
the optimization problem: the bounded parameter space and a
suitable starting point for the local optimization. These issues
resemble the optimization problem of the maximum likelihood
algorithm described in Wiese (2017).

A starting point for the direction angle is given by the
direction angle derived from the planar measurement ϕ0. For
the inclination α and the relative thickness d, the starting point
is determined by brute force minimization. Based on simulation
studies, a 6 × 6 grid equidistantly spanning the parameter space
([ϕ0,αl, dk], k, l = 1, . . . , 6) was found to result in a promising
first guess for the subsequent optimization.

The boundaries of the parameter space could be accounted
for by utilizing an optimization algorithm capable of dealing
with hard boundaries. Yet, in our case a more elegant solution
is to exploit the symmetry of the problem. This enables to
reformulate the bounded optimization problem as an unbounded
problem. As f (ϕ,α, d) = −f (ϕ,α,−d), it is sufficient to allow all
relative thicknesses d and take the absolute value of the relative
section thickness d = |d| before calculating the normalized
intensities. For the fiber orientations, it is also possible to allow all
orientations considering the symmetry of spherical coordinates.
The unbounded orientation given as (ϕu, αu) can be transformed
back into the standard 3D-PLI parameter space by the following
transformations:

α =

((

αu +
π

2

)

mod π −
π

2

)

sgn

(

1

2
−

⌊ϕu

π
mod 2

⌋

)

(12)

ϕ = ϕu mod π (13)

Before calculating the normalized light intensities f , these
transformations are used to symmetrize the unbounded
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Algorithm 1: Pseudocode of the ROFL algorithm

Data: Maps of ϕ0, Ij,T , Iji, j ∈ {0, . . . ,NT}, i ∈ {0, . . . ,NP}

Result: Maps of ϕ, α, d, χ2

for every image pixel do
// calculate normalized intensities and their standard
deviations
for j = 0 :NT do

for i = 0 :NP do

INji =
Iji

2Ij,T
− 1

σNji = error prop. of σIj,i , σIj,T to INj,i

// brute force minimization
for αl, dk ∈ bruteforce grid do

χ2
l,k

= χ2
(

ϕ0,αl, dk, (IN00 , σN00 , . . .)
)

α0, d0 = argmin
α,d

χ2
l,k

// optimization
Levenberg-Marquardt optimization of χ2 with initial
point (ϕ0,α0, d0) → ϕ,α, d,χ2

transform ϕ, α, d into 3D-PLI parameter space

orientation into the parameter space. As optimization algorithm
the Levenberg-Marquardt algorithm was chosen (Levenberg,
1944; Marquardt, 1963). In case of convergence to a point outside
of the parameter space, the before mentioned transformations
are used to symmetrize the result back into the parameter
space. This newly developped algorithm is denoted as Robust
Orientation Fitting via Least Squares (ROFL). A pseudocode is
given in Algorithm 1.

For this study, the ROFL algorithm was implemented in
Python based on the packages NumPy (van der Walt et al., 2011)
and SciPy (Jones et al., 2001 ). The necessary computation time
is very high as the optimization has to be carried out in every
image pixel (about 4 core hours for an image size of≈ 106 pixels).
Therefore, the algorithm was parallelized pixelwise usingmpi4py
(Dalcin et al., 2005) and all calculations were conducted on the
JURECA system (Jülich Supercomputing Centre, 2016).

2.2. Simulated Data
Monte-Carlo simulations were carried out to test the robustness
of the presented approach and the DFT algorithm against
measurement noise.

2.2.1. Generation of Synthetic Data
Simulations can provide information about two problems.
Firstly, the accuracy of the obtained parameters can be compared
to the synthetic ground truth. Secondly, the algorithms can be
tested against biases in their parameter estimation. One sythetic
dataset each was created to answer these questions. For both
datasets, the generation of synthetic 3D-PLI signals for a specific
parameter set is executed in the same way.

Synthetic signals were generated in a similar manner as in
Wiese et al. (2014). A ground truth orientation vector vg with
the parameters (dg ,ϕg ,αg) was rotated into four tilting positions

(North, South, East, West) by τ = 5.51◦, the assumed internal
tilting angle for human brain tissue. For each tilting position
a sinusoidal light intensity profile according to Equation (1)
was calculated. For the transmittance IT 2500 was chosen, as
it represents a typical transmittance value for human brain
sections. To mimic the experimentally observed light intensity
distribution, for each calculated light intensity I a noisy light
intensity Inoisy was then computed by drawing one sample from
a negative binomial distribution with expected value given by I
and variance 3I: Inoisy ∝ NB(I, 3I).

In a first simulation, the accuracy of the obtained parameters
was assessed. As our primary interest here was the validation
of the reconstruction of the inclination and the relative section
thickness, only one direction angle, ϕ = 45◦, was simulated.
This direction angle also represents the worst case scenario for
the four tilting positions as the angle between the orientation
vector and the rotated orientation vector is maximal for ϕ =

ψ and decreases with |ϕ − ψ |. With respect to the inclination
angle, it is sufficient to simulate only positive inclinations as the
inclination sign does not effect the reconstruction precision. As
ground truth vectors all combinations of the fixed direction angle
45◦, inclinations α from 0◦, 1◦, . . . , 89◦, 90◦, and thicknesses
d from 0.01, 0.02, . . . , 0.89, 0.9 were simulated. These fiber
configurations display all different inclination angles for different
tissue scenarios characterized by the relative thickness d. For
each ground truth vector 100,000 samples of 3D-PLI signals
were generated utilizing the beforementioned method to enable a
statistical analysis.

To tests the algorithms against biases in their inclination
estimation, a second dataset of 500,000 samples of orientation
vectors uniformly distributed on the unit sphere were computed.
From these vectors, a dataset of direction and inclination angles
was derived and used to calculate the noisy sinusoidal light
intensity profiles with a relative thickness of d = 0.5.

2.2.2. Evaluation
The simulated sinusoidal profiles were analyzed with the ROFL
algorithm and the DFT algorithm resulting in the reconstructed
vector vr with the parameters (dr ,ϕr ,αr). The accuracy of the
obtained orientation was then measured by the acute angle
γ between the ground truth vector vg and the reconstructed
vector vr :

γ = arccos(|vr · vg |) (14)

The acute angle respects the symmetry of the problem: as the
parameter space is bounded to a half sphere, the maximal angle
between two vectors is 90◦. Therefore, the absolute value of the
scalar product is used in Equation (14). For each ground truth
vector, the overall reconstruction error is given by the mean
deviation angle 〈γ 〉 of all 100,000 samples. The reconstruction
accuracy of the relative thickness d is evaluated by the absolute
relative error between the obtained values and the ground truth:

σd = |
dr−dg
dg

|. The overall error for a fiber configuration is then

again given by the mean relative error of all 100,000 samples 〈σd〉.
To assess if the obtained inclinations are biased, inclination

angles were reconstructed from the second synthetic dataset. The
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resulting inclination angle histograms were then compared to the
ground truth inclination histogram.

2.3. Experimental Data
To test and compare the DFT and the ROFL algorithm on
experimental data, a series of coronal sections of a right human
hemisphere was investigated. The post mortem human tissue
sample used for this study was acquired in accordance with
the local ethic committee of our partner university at the
Heinrich Heine University Düsseldorf. As confirmed by the ethic
committee, postmortem human brain studies do not need any
additional approval, if a written informed consent of the subject
is available. For the research carried out here, this consent is
available.

2.3.1. Data Acquisition
The examined brain was removed within 24 h after the
donor’s death. The right hemisphere was fixed in 4% buffered
formaldehyde solution for 15 days to prevent tissue degeneration.
After immersion in a 20% solution of glycerin with Dimethyl
sulfoxide (DMSO) for cryoprotection the brain was frozen at a
temperature of −80◦C. The coronal cutting plane was decided
to be orthogonal to a line connecting the anterior and posterior
commissures. Before sectioning, the frontal lobe was cut off to
create a stable cutting platform. The sectioning resulted in 843
sections of 70 µm thickness (Polycut CM 3500, Leica, Germany).
Before cutting an image of the cutting surface (blockface image)
was taken for each section. Each section was then mounted on
a glass slide, immersed in a 20% solution of glycerin to avoid
dehydration and sealed by a coverslip. All sections weremeasured
with the mentioned setup with the standard measurement
protocol of the planar measurement and four tilting positions.

2.3.2. Data Analysis
After an intensity based calibration as described in Dammers
et al. (2010) the Fourier analysis was utilized to obtain the
standard 3D-PLI modalities transmittance, retardation and
direction. Then the ROFL algorithm was used to extract maps of
the direction and inclination angles, the relative section thickness
d and the residuum χ2. As a comparison, the DFT algorithm was
applied to determine the inclination angle and relative section
thickness. Also, the residuum was calculated for the parameters
obtained by DFT.

After the sectionwise analysis, the 3D-reconstruction of the
measured sections requires a multi-step registration to retain the
3D volume of the measured brain. Here the blockface volume
generated by aligning the blockface images to a 3D volume serves
as a reference for the registration of the histological sections
(Schober et al., 2015). In a first step, the histological sections
are registered onto their corresponding blockface images via
an affine transformation utilizing in-house developed software
based on the software packages ITK (Yoo et al., 2002) and
elastix (Klein et al., 2009). Then non-linear registration using
the ANTs toolkit (Avants et al., 2011) was performed. Finally,
the scalar modalities were spatially transformed using the
obtained deformation fields. The direction angles were rotated
according to the pixelwise rotations induced by the deformation

computed by the nonlinear image registration. Pixel values
were linearly interpolated. The reorientation can result in
orientations lying outside of the parameter space, therefore the
same mapping as in ROFL (see Equation 13) was applied after
the reorientation.

2.3.3. Validation
Traditional anatomical studies have described the fiber pathways
globally and without considering differences between brains.
At the level of detail presented in this study with a voxel
size of 64 × 64 × 70µm3, the inter-subject variability in
the fine structure of fiber orientations becomes much more
relevant. Therefore, the resulting fiber orientations cannot
easily be compared to anatomical atlases. A complementary
measurement at the same resolution enabling a comparison
is not available either. Additionally, a phantom for 3D-PLI
has not been developed yet, impeding the possibility of a
measurement with a known ground truth. Therefore, we chose
to validate the resulting orientations based on their coherence
across the whole volume and their alignment to anatomical
boundaries, for example, within the sagittal stratum. The results
of both algorithms were furthermore compared from a statistical
point of view by the difference between the predicted and
measured light intensities measured by the sum of the squared
residuals.

3. RESULTS

3.1. Simulation
3.1.1. Accuracy Evaluation
The simulation results of the first simulated dataset are depicted
in Figure 2: The plots show the orientation reconstruction error
and the relative reconstruction error of the relative thickness of
both algorithms as a function of inclination angle α and relative
thickness d.

3.1.1.1. Orientation reconstruction
The orientation reconstruction accuracy of the DFT is valley
shaped with respect to the inclination angle and becomes
minimal for an inclination angle of α ≈ 60◦. From this minimum
the orientation reconstruction error increases slightly for flat
fibers. The most challenging orientations to analyze are very
steep fibers with respect to the sectioning plane: for these, the
orientations predicted by the DFT algorithm differ strongly from
the ground truth. Even for relative thicknesses of d > 0.2 an
average reconstruction error of 〈γ 〉 ≈ 22◦ occurs for α > 80◦.
With decreasing relative thickness d the reconstruction accuracy
also decreases: for d < 0.05, the obtained orientations are
basically random.

In contrast, the orientation reconstruction error for the ROFL
algorithm does not take the form of a valley: for all section
thicknesses d > 0.06, the error is minimal for in-plane fibers with
α = 0◦ and increases with the inclination angle. For very steep
fibers of α > 80◦, the error increases to γ ≈ 12◦ on average.
As before, the reconstruction error increases with decreasing
relative thickness d. In a direct comparison, the orientation
reconstruction error achieved by the ROFL algorithm is lower
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FIGURE 2 | Simulation results. (Left) ROFL algorithm, (Right) DFT algorithm. (Top) Orientation reconstruction error 〈γ 〉 as a function of relative thickness d and

inclination angle α. For illustration purposes the z-axis is clipped at 30◦. (Bottom) relative reconstruction error of the relative thickness 〈σd〉 as a function of relative

thickness d and inclination angle α. For illustration purposes the z-axis is limited to [0, 1].

than the orientation reconstruction error achieved by the DFT
algorithm for all configurations. The minimal error for the ROFL
algorithm is given by 〈γ 〉 = 1◦, compared to 〈γ 〉 = 1.6◦ for
the DFT algorithm. For d ∈ [0.2, 0.9] and α ∈ [0◦, 80◦], the
orientation reconstruction accuracy achieved by the algorithms
are on average 2◦ for ROFL and 4.5◦ for DFTwithmaximal values
of 9.5◦ for ROFL and 18.8◦ for DFT.

3.1.1.2. Reconstruction of the relative section thickness
Similar to the the orientation reconstruction error, the relative
reconstruction error 〈σd〉 of the relative thickness d increases
with the inclination angle. Here, the errors obtained from the
DFT algorithm do not assume the shape of a valley: besides a
noise instability for very high relative thicknesses d > 0.8 the
error increases with the inclination and increases with decreasing
relative thickness d. The relative reconstruction error of the
ROFL algorithm assumes the same shape but is lower: on average,
the relative thickness of fibers with d ∈ [0.2, 0.9] and α ∈

[20◦, 90◦] is determined with an error of 5% compared to 10% for
the DFT algorithm. The most challenging fiber configurations to
reconstruct are again very low relative thicknesses and very steep
fibers: for d < 0.1 and α < 16◦, the relative error amounts to
〈σd〉 > 1 for both algorithms. For very steep fibers, the error
observed in the results of the DFT algorithm increases to up to
80%. The ROFL algorithm achieves a lower error in this case,
yet the best case for d = 0.9 still expresses a relative error of
〈σ 〉 ≈ 42%.

3.1.2. Inclination Bias Evaluation
As the orientation vectors were distributed uniformly on a
sphere, the frequency of the ground truth inclinations is
proportional to the circumference of the cross section of
the sphere at the respective height corresponding to a given
inclination. In our definition of the inclination angle as α ∈

[−π
2 ,

π
2 ], the circumference of the cross section of the unit

sphere at a respective inclination is proportional to cos(α). In
consequence, the inclination frequency p(α) is expected to be

proportional to cos(α): p(α) ∝ cos(α).
The inclination histograms obtained from the simulated

dataset of uniformly distributed orientation vectors are depicted

in Figure 3. The histogram of the ground truth inclinations does
indeed follow the expected cos(α) proportionality as can be seen

from the a · cos(α) curve fit with proportionality factor a in cyan.

The proposed ROFL approach achieves a high agreement with
the ground truth inclination. On the other hand, the histogram
of the inclinations computed by the DFT algorithm reveals a
severe lack of in-plane inclinations. Especially orientations with
α = 0◦ which are the most probable orientations are barely
computed at all. Instead of an increasing density toward 0◦, the
histogram displays two symmetric peaks left and right of 0◦

indicated by black arrows which are not present in the ground
truth. Another observation lies in the frequency of very steep
fibers with respect to the sectioning plane: for |α| > 80◦, the
frequency of DFT inclinations decreases moderately as indicated
by blue arrows.
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FIGURE 3 | Inclination histograms for uniformly distributed orientations obtained from ROFL and DFT algorithms and ground truth. The magenta line depicts a fit

curve to the ground truth inclination histogram. Fit result: a = 0.0087. The black arrows highlight peaks for in-plane orientations, the blue arrows point out differences

between the DFT histogram and the ground truth for out-of-plane orientations. Bin width: 0.25◦.

3.2. Experimental Data
To demonstrate the working principle of the ROFL algorithm
by means of experimental data, one pixel of the stratum
sagittale highlighted in Figure 4A was chosen. The obtained
measurement data from the planar and two tilted measurements
after calibration and coregistration are plotted in Figure 4B.
Figure 4C then shows the normalized light intensities and their
best fit curves according to the polarimetric model as predicted
by ROFL.

The boundaries of the investigated 230 coronal sections
are illustrated in the view of the blockface volume shown in
Figure 5A (Schober et al., 2015; Wiese, 2017). A comparison
of the reconstructed histological sections and the corresponding
part of the blockface volume is depicted in Figures 5B,C utilizing
the clipping box view technique implemented in the PLIVIS tool
(Schubert et al., 2016, 2018). As the blockface images capture
the reflected light during brain sectioning and the transmittance
image the transmitted light, they appear inverted to each other.
As the time between section mounting and measurement was
not constant for all sections, the transmittance differs over
the volume as indicated by the white arrows in Figure 5C.
The reconstruction precision is demonstrated by the smooth
reconstruction at the white matter/gray matter transition zones,
but also by the fine-grained blood vessel structures highlighted in
green in Figure 5C.

Volumetric views of 3D-PLI modalities are shown in Figure 6.
For clarity, the view is the same as in Figure 5. The modalities
retardation | sin δ| (cf. Figure 6A) and relative section thickness
d (cf. Figure 6B) revealed a strong agreement in most brain
regions of the reconstructed volume. Differences, however, were
observed in particular for white matter fiber tracts characterized
by low retardation values. Those tracts took courses (close to)

perpendicular to the sectioning plane according to the fiber
orientation map shown in Figure 6C. The forceps major (FM)
and the stratum sagittale (SS) were worked out as prominent
examples for such tracts (cf. Figure 6). Ultimately, the obtained
fiber orientations (Figure 6), in particular in deep white matter
structures appeared coherent across neighboring sections. Fiber
tracts and pathways were clearly distinguishable from each other
and could be traced through the reconstructed volume.

3.2.1. Comparison of ROFL and DFT Algorithms
Major differences between the ROFL algorithm and the DFT
algorithm were particularly observed for two cases: low relative
section thickness and very steep fibers with respect to the
sectioning plane. Therefore, the vector fields of two regions
were investigated more closely: the stratum sagittale which is
expected to run perpendicular to the sectioning plane and a
region at the boundary of white and gray matter. The vector
fields underlaid with the retardation maps are shown in Figure 7.
The plotted two-dimensional, colored lines are representations
of the projections of three-dimensional fiber orientation vectors
into the respective plane, color-coded by the 3D orientation.
The region of interest at the transition zones of white and gray
matter shown in Figure 7A. Both vector fields are very similar,
but the ROFL algorithm results in less inclined orientations
than the DFT approach. As the plotted vectors represent the
projection of the three-dimensional fiber orientation vectors into
the respective plane, longer vectors imply flatter fibers with
respect to the respective plane which is the case here. The
vector field in Figure 7B shows the xz plane perpendicular to the
coronal sectioning plane to highlight the robust reconstruction
of the stratum sagittale. Minor differences are visible at the
boundary of the stratum sagittale but overall both algorithms
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B C

A

FIGURE 4 | Working principle of the ROFL algorithm demonstrated for a single pixel. (A) Transmittance map. The red circle points out the position of the analyzed

pixel. (B) Measured light intensities of the planar measurement and tilted measurements to west and east after calibration and registration onto the planar

measurement. (C) Normalized light intensities of the planar measurement and tilted measurements to west and east. The dashed lines depict their best fit curves

according to the ROFL algorithm. Fit result: ϕ = 101◦, α = −60◦, d = 0.5, R2 = 0.97.

FIGURE 5 | Reconstructed 3D-PLI volumes. (A) Full blockface volume with black planes representing the boundaries of the analyzed sections shown in (B,C).

(B) Partial blockface volume of the histologically analyzed and reconstructed sections. (C) Transmittance volume reconstructed from the histological sections. The

green arrows highlight reconstructed blood vessel structures. Note, for the reasons of clarity only vessels with very strong birefringence signals are shown here. The

blue arrows indicate white/gray matter transition zones. Note that brightnesses variations pointed out by white arrows occur due to differing times between mounting

of the section on the glass slide and the 3D-PLI measurement.

agreed well. As on simulated data the inclination histograms
exposed a distinct lacking of in-plane fiber orientations with
respect to the sectioning plane for the DFT algorithm, the

inclination histograms obtained from experimental data were
also investigated. For this purpose one region of interest from the
white matter of one section was examined. The fiber orientation
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FIGURE 6 | Reconstructed 3D-PLI modalities. (A) Retardation volume, (B) Relative section thickness volume computed by the ROFL algorithm and denoised

section-wise with a median filter of radius 1. (C) Fiber orientation volume computed by the ROFL algorithm. The vector-valued fiber orientations are encoded in colors

and indicated by the color sphere. FM, forceps major; SS, stratum sagittale.

maps (FOMs) resulting from ROFL and DFT are shown in
Figures 8A,B, respectively. A general glance revealed similar
orientation values for both algorithms, which holds true for
white and gray matter regions. Due to the considerable amount
of noise in the fiber orientations in gray matter, only white
matter pixels were considered for the inclination histograms. A
detailed analysis of the inclination angle histograms of the white
matter regions delineated in Figure 8C yielded the following
observations (cf. Figure 8D): while the frequency of inclination
angles drastically decreases from −15◦ to 0◦ and increases again
to 20◦ for the DFT algorithm, this lacking of orientations was not
observed for the ROFL algorithm. For the regime of high absolute
inclination angles, both histograms agree: both have peaks for
inclination angles of ≈ ±60◦ (cf. arrows in Figure 8D) which
result from fibers oriented perpendicular to the sectioning plane
in the stratum sagittale (cf. Figures 8A–C).

In addition to the potentially biased visual inspection of
the vector fields, an unbiased statistical statement about the
reconstruction accuracy is given by the mean residual: the mean
value of the mean residuals of all pixels is 15% lower for the
results of the ROFL algorithm than the results of the DFT
algorithm.

3.2.2. Agreement of Model and Data
Since the ROFL algorithm performs a least squares fit in all
image pixel, the actual sum of residuals χ2 (as a result of the
optimization process) was accessible. For the DFT algorithm the
residual map can also be calculated, yet this requires additional
computations which take even longer than the runtime of
the algorithm itself. Figure 9 shows maps of the residuum χ2

(Figure 9A), the relative thickness d (Figure 9B) and the fiber
orientation map (Figure 9C) for a selected region of interest.
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FIGURE 7 | Vectorfields obtained with the ROFL algorithm (left) and the DFT algorithm (right) underlayed with the retardation map. (A) Region of interest at the

boundary of white and gray matter, indicated by the red rectangle in the retardation map. Every third vector is mapped. (B) Region of interest in the stratum sagittale,

resliced view of the volume at the position indicated by the red line. Every fifth vector is mapped.

As χ2 is a measure of the difference between the model and
the experimental data, it is expected to increase for artifacts
such as dust particles which rotate with the polarization filters.
Such artifacts were indeed observed in experimental results (cf.
Figure 9A, where dust particles are indicated by green arrows).
For one pixel, a dust particle corrupts one of the 18 obtained
values during filter rotation. Still it does not necessarily have
a strong effect on the resulting fit values as the corresponding
relative thicknesses and fiber orientations do not show signs
of artifacts. The χ2 measure, however, is sensitive to such
artifacts.

In addition, we found areas of increased residuals (cf.
red arrows in Figure 9) we were able to assign to crossing
fiber regions. In the fiber orientation map, crossings
stood out as the center of an abrupt change of colors
(Figure 9C). Also, the optimization process resulted in an
abrupt change of the relative thickness, even with values of
d > 1 for which the relationship between the retardation
and inclination is not bijective anymore (Figure 9B). Due
to the bad agreement between the model and the data,
the residuum finally increased strongly (cf. red arrows in
Figure 9).

4. DISCUSSION AND OUTLOOK

We introduced the least-squares algorithm ROFL for the
reconstruction of fiber orientation and the extraction of
the relative section thickness from measurements with a
tiltable specimen stage in 3D-Polarized Light Imaging (3D-
PLI). This method requires only one additional assumption
besides the polarimetric model: the refractive index of the
brain tissue. This represents a substantial improvement as
compared to other histological imaging techniques which
strongly rely on parameter dependent image processing
pipelines to extract three-dimensional fiber orientations. To our
knowledge, no other histological imaging technique is currently
capable of deriving three-dimensional information from a
biophysical model. This compensates for the disadvantage of
the difficulties accompanying the 3D re-alignment of serial
high-resolution brain section images as required for 3D-PLI
anaylsis.

The working principle of the ROFL algorithm was proven for
simulated data for which it resulted in a significant improvement
of the orientation reconstruction. It was opposed to a previously
implemented analytical algorithm based on a discrete Fourier
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FIGURE 8 | 3D-PLI modalities of a representative brain section. (A) Fiber orientation map in the region of the stratum sagittale derived with the ROFL algorithm. (B)

Fiber orientation map resulting from the DFT algorithm. (C) Transmittance map. The white lines represent a manual delineation of the white/gray matter transition

zones. SS, stratum sagittale. (D) Histogram of the inclination angles of white matter pixels obtained from DFT and ROFL algorithms. The arrow points out peaks of the

histogram for steep fibers with respect to the sectioning plane. Bin width: 2◦.

FIGURE 9 | Identification of artifacts and fiber crossings. (A) Residuum map χ2 with green arrows indicating dust particles. (B) Relative thickness map d. (C) Fiber

Orientation map. Red arrows indicate fiber crossings.
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transformation (DFT). The reconstruction with ROFL became
more reliable, in particular for low relative section thicknesses.
The noise instability of the DFT algorithm for very flat fibers
was already observed by Wiese et al. (2014) and is explainable
by the fact that for very flat fibers the gradient ∂ sin δ

∂α
becomes

small (for in-plane fibers with α = 0◦ it even becomes zero:
∂ sin δ
∂α

|α=0◦ = 0). This makes the DFT algorithm prone to
noise effects in this case. In fact, the simulations proved that
the DFT algorithm is not capable of reconstructing in-plane
orientations. On the contrary, the presented fitting algorithm
still enabled a reliable reconstruction for in-plane fibers. The
random orientations computed by the DFT algorithm for small
relative section thicknesses of d < 0.05 were not surprising,
as for d < 0.05, the maximal possible retardation value is
also | sin δ| = 0.05 and the retardation values of the different
tilting positions become almost indistinguishable. In this case,
the ROFL algorithm provides a superior reconstruction. In the
case of very steep fibers, the ROFL algorithm also outperformed
DFT significantly. Still, the reconstruction accuracy decreases
strongly for very steep fibers also for the ROFL algorithm. This
originates from the signal itself: for α = 90◦, the amplitude of
the sinusoidal signals are almost zero and the measured signals
resemble a constant function with random noise (cf. Dohmen
et al., 2015 for a theoretical description of this issue). While
the reconstruction of out-of-plane fibers remains challenging,
orientation vectors with |α| > 80◦ only make up approx. 3% of
all possible orientations. Therefore, we can conclude that ROFL
accomplishes a very robust orientation reconstruction with an
average accuracy of 2◦ for the vast majority of possible fiber
orientations for relative section thicknesses of d > 0.2 on
synthetic data.

ROFL was applied to 230 consecutive human brain sections
subjected to 3D-PLI. The results were 3D reconstructed to
demonstrate the robustness and reproducibility of our approach.
The obtained modality volumes of retardation, relative section
thickness and fiber orientation were characterized by high
coherence across the sections. Anatomical structures, such
as fiber tracts, white/gray matter borders, vessels could be
reconstructed with high precision. The transmittance volume
displayed brightness variations, yet the strength of our approach
is that the determination of the fiber orientation and relative
section thickness is independent of the transmittance due to the
normalization. By eyesight, no major differences were observed
in the vector fields resulting from the ROFL andDFT approaches.
In the stratum sagittale, both approaches resulted in very
similar orientations with very minor differences. The computed
inclinations were on average α ≈ 65◦ and the computed
relative section thicknesses d = 0.6. This combination actually
corresponds to the minimum of the orientation reconstruction
error of the DFT algorithm obtained from the simulated datasets,
which suggests that a strong agreement with the ROFL algorithm
can be expected. At the boundary of white and gray matter
regions, the ROFL algorithm resulted in less inclined fiber
orientations than DFT but also only very minor differences were
observable.

The inclination histograms, however, yielded a very important
finding: whereas, the frequency of the computed inclination

angles decreased significantly for in-plane fibers with α ≈ 0◦

for the DFT algorithm, the ROFL algorithm was still capable of
reconstructing the whole spectrum of possible inclinations. The
same behavior was observed for simulated data, which proves
a systematic bias of the DFT algorithm. The ROFL result is
also more plausible as for the observed ROI in Figure 8 the
inclination histogram obtained from ROFL agrees far better with
the inclination histogram of uniformly distributed orientations.
Still, it has to be noted that fiber orientations in a small ROI of the
brain cannot expected to be perfectly uniformly distributed due
to the convoluted structure of the human brain. The observed
inclination differences between ROFL and DFT are hard to
observe based on orientation vectors, as the actual inclination
differences of up to 10◦ for in-plane orientations can barely be
distinguished by eye. As the difference between the measured and
predicted light intensities according to the 3D-PLI model also
decreases significantly for the parameters obtained from ROFL
compared to DFT, ROFL yields more accurate results than DFT
also from a purely statistical perspective.

Furthermore, the ROFL algorithm enables a direct way to
evaluate the agreement of model and data based on the residuum
map which would otherwise have to be computed additionally.
This kind of map was exploited to identify measurement artifacts
and, even more importantly, crossing fiber regions which were
not classifiable by previous 3D-PLI analysis approaches (Axer
et al., 2011a; Kleiner et al., 2012; Wiese et al., 2014). Fiber
crossings currently pose the greatest complication for 3D-PLI
analysis as partial volume effects are still present in brain tissue
at voxel sizes of 64 × 64 × 70µm3. A voxel containing fibers
with different courses (i.e., orientations) will inevitably result in a
3D-PLI measurement composed of superimposed birefringence
signals. This might lead to a biased orientation interpretation. To
give an example, a voxel comprising crossing out-of-plane and
in-plane fibers, the ROFL algorithm will preferably reconstruct
the orientation which causes a larger signal, in this case the in-
plane orientation. To overcome this issue, different strategies are
currently being explored: (i) Modeling of crossing fiber structures
and subsequent simulations of tilting measurements utilizing the
simPLI simulation platform introduced by Dohmen et al. (2015).
By this means the behavior of the ROFL algorithm in case of well-
known crossing fiber constellations can be further investigated.
(ii) Realizing the idea of oblique imaging for in-plane resolutions
at the micrometer scale. Preliminary measurements of a mouse
section using a prototypic “tilting” polarizing microscope built
up at an optical bench (pixel size: 1.3 × 1.3µm) already revealed
the benefit of smaller voxel sizes.

While the obtained parameters show a high coherence across
the volume, no quantitative statement about the reliability
of the resulting parameters is possible at this point. Hence,
future studies need to investigate the uncertainty of the
fitted parameters. For Diffusion Tensor Imaging, for example,
bootstrapping approaches were used to obtain orientation
confidence maps (Jones, 2003; Heim et al., 2004; Whitcher et al.,
2008). Especially, the uncertainty of the relative section thickness
is of interest, as this parameter is as an indicator for myelin and
might even be a reliable measure of the local myelin density. As
a matter of fact, the relative section thickness is proportional to

Frontiers in Neuroanatomy | www.frontiersin.org 13 September 2018 | Volume 12 | Article 75

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Schmitz et al. Derivation of Fiber Orientations in 3D-PLI

the local birefringence 1n which was clearly attributed to the
myelin sheath in earlier studies (Goethlin, 1913; Schmidt, 1923;
Schmitt and Bear, 1937; de Campos Vidal et al., 1980). Since
myelin density information is of outmost interest for the research
of degenerative brain diseases characterized by locally altered
myelination (e.g., multiple sclerosis), future studies will address
the correlation between the relative section thickness and myelin
density.

The improved reconstruction comes at the cost of
computation time, which increases by a factor of 5,000. Yet, as
processing a single brain section takes about 3 min using four
compute nodes on JURECA (Jülich Supercomputing Centre,
2016) with the ROFL algorithm in its current implementation,
even the computation of whole brains becomes feasible. Still, the
computation time could further be reduced by utilizing GPU
ressources (Przybylski et al., 2017).

To conclude, the present approach has opened up a new
way to determine physical tissue properties from oblique
measurements in microscopic 3D-PLI. Cortical, subcortical, and
white matter regions could be characterized coherently across
brain sections in terms of fiber orientation and birefringence
strength. This is a prerequisite for subsequent volume-based
connectivity analysis.
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