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Major depressive disorder (MDD) is complex and multifactorial, posing a major challenge of tailoring the optimal medication for
each patient. Current practice for MDD treatment mainly relies on trial and error, with an estimated 42–53% response rates for
antidepressant use. Here, we sought to generate an accurate predictor of response to a panel of antidepressants and optimize
treatment selection using a data-driven approach analyzing combinations of genetic, clinical, and demographic factors. We
analyzed the response patterns of patients to three antidepressant medications in the Sequenced Treatment Alternatives to Relieve
Depression (STAR*D) study, and employed state-of-the-art machine learning (ML) tools to generate a predictive algorithm. To
validate our results, we assessed the algorithm’s capacity to predict individualized antidepressant responses on a separate set of
530 patients in STAR*D, consisting of 271 patients in a validation set and 259 patients in the final test set. This assessment yielded
an average balanced accuracy rate of 72.3% (SD 8.1) and 70.1% (SD 6.8) across the different medications in the validation and test
set, respectively (p < 0.01 for all models). To further validate our design scheme, we obtained data from the Pharmacogenomic
Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) of patients treated with citalopram, and
applied the algorithm’s citalopram model. This external validation yielded highly similar results for STAR*D and PGRN-AMPS test
sets, with a balanced accuracy of 60.5% and 61.3%, respectively (both p’s < 0.01). These findings support the feasibility of using ML
algorithms applied to large datasets with genetic, clinical, and demographic features to improve accuracy in antidepressant
prescription.
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INTRODUCTION
Major depressive disorder (MDD) is a common psychiatric disorder
that causes great suffering to patients and their families [1, 2]. The
clinical manifestations of MDD are heterogeneous and are
composed of multiple symptom domains, leading to situations
in which two distinct clinical manifestations may share a common
MDD diagnosis with little clinical overlap [3].
Common treatments for MDD include antidepressant medica-

tions and psychotherapies. Unfortunately, the current clinical
practice of trial and error to determine the optimal treatment for a
specific MDD patient lacks efficiency [4]. This inefficiency is
plausibly caused, at least in part, by the multifactorial etiology and
the above-mentioned phenotypic heterogeneity of MDD [3, 5]. A
major gap in the field is tailoring the right treatment for the
individual MDD patient (i.e., personalized medicine) [6]. The
challenge of predicting which MDD patient will respond to which
treatment often results in delayed treatment response, personal
suffering, extended disability, higher risk of suicide, and high
medical expense [7].

Recent technological advances allow the generation of large
amounts of genomic and phenotypic data that pave the way for a
new era of brain research, which can hopefully translate to the
clinical realm and facilitate the revolution of personalized
medicine. To fully leverage the potential of these data, one may
utilize the results of decades-long research of factors that were
found to be associated with MDD treatment response [8–10], in
addition to using sophisticated computational methods and
mathematical modeling. Specifically, data-driven analytical
approaches and deep analysis of increasingly large databases
may now generate new insights into complex clinical challenges,
such as optimization of MDD treatment. Machine learning (ML) is
an example of such an advanced approach to understanding MDD
and its treatment [11]. ML algorithms are broadly viewed as
searching through a large space of candidate programs, guided by
training experience, to find a program that optimizes the
performance metric [12]. The goal of ML in the context of
optimizing MDD treatment would be to make predictions about
optimal treatment by identifying potentially complex relationships
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among patients’ genetic, clinical, and demographic data [13].
Indeed, over the past several years a number of research groups
have utilized these tools to generate predictions in the context of
MDD diagnostics and treatment with impressive results [14], yet
these studies have infrequently used a combinatorial approach
applied to multimodal data (i.e., data composed of multiple data
types) [15].
Here, we used an ML combinatorial approach to generate an

algorithm that predicts patient response to antidepressants. To
generate and validate this algorithm, we used the large patient
datasets from the Sequenced Treatment Alternatives to Relieve
Depression (STAR*D) study [16–19] and the Pharmacogenomic
Research Network Antidepressant Medication Pharmacogenomic
Study (PGRN-AMPS) [20, 21] that include genetic, clinical, and
demographic data. We hypothesized that such an application
based on integrated multimodal data will enable a more
comprehensive and accurate prediction for the treatment of
depression and will pave the way for similar analyses of
accumulating data by new technologies.

MATERIALS AND METHODS
Study participants
Main sample. Patient data for algorithm assembly and evaluation were
obtained from the STAR*D clinical trial [16–18]. Participants (N= 4041)
were adult outpatients with nonpsychotic MDD and a score ≥14 on the
17-item Hamilton Depression Rating Scale (Ham-D) [22].
The STAR*D study included four sequential levels of medication or

medication combination treatment. Following initiation of treatment,
participants were assessed at multiple time points (2, 4, 6, 9, and 12 weeks
post-treatment initiation with an optional week-14 visit). Clinical depres-
sion severity was measured at each visit by the Quick Inventory of
Depressive Symptomatology (QIDS) scale [23], and the Ham-D scale at
baseline and exit only. Response to treatment was defined as ≥50%
reduction from baseline on either clinical scale. All participants provided
written informed consent at enrollment, with consent and study protocols
approved by institutional review boards at each participating institution.
For the purpose of the current study, we focused on designing prediction

models for citalopram, sertraline, and venlafaxine treatments [18].

External sample. Patient data of the PGRN-AMPS [20, 21] were used for
replication analysis.
PGRN-AMPS included 529 participants with nonpsychotic MDD and a

Ham-D score ≥14 who were recruited at the Mayo Clinic in Rochester,
Minnesota, USA. Participants were offered an 8-week course of treatment
with either citalopram or escitalopram and depressive symptoms were
rated using QIDS and Ham-D scales at initiation, with QIDS being rated at
multiple time points afterward (4- and 8-week post-treatment initiation).
All patients provided written informed consent. The study protocol was
approved by the Mayo Clinic Institutional Review Board. For further details
see Ji et al. [21] and Fabbri et al. [24].
For replication analyses purposes, we focused on PGRN-AMPS partici-

pants who were treated with citalopram.

Treatment outcome
We used QIDS score to evaluate participants’ depression level due to the
longitudinal use of the QIDS questionnaire throughout all treatment visits,
both in the STAR*D study and PGRN-AMPS. Examination of STAR*D
response data in level 1 showed that participants who had at least one
post-baseline visit had their QIDS score recorded for extensively different
periods of treatment: 55.2% of available responses had QIDS records until
week 12–14 of the treatment (n= 2009, out of 3641), 17.1% until week 9
(n= 624), while a substantial portion of participants’ responses, 27.7%, was
recorded only until week 6, 4, or even 2 (11.5%, 8%, and 8.2%,
respectively). To address these inconsistencies, we generated a response
calculation that adjusts for the time of response, named “exponential
response” approach, in addition to using the “classic response” approach.
These approaches define clinical response as follows:

(i) “Exponential response” approach, whereby an “exponential improve-
ment rate” is calculated per patient, per treatment. The exponential
improvement rate is a continuous measure representing exponential

fit for the individual longitudinal measurements of QIDS, during a
specific treatment. This measure takes into account the change of
the score over time, and consequently—the speed and dynamics of
the response. The median of the exponential antidepressant
improvement rates was calculated independently for each of the
STAR*D treatments which were analyzed, using the relevant
response data. These median rates were then used to partition the
data into two sets, each consisting of half of the participants, creating
a dichotomous variable of the exponential antidepressant response
(responder/nonresponder), per STAR*D treatment. For PGRN-AMPS
citalopram-treated participants, the median citalopram rate from
STAR*D was used to partition them into responders and non-
responders.

(ii) “Classic response” approach, where the response is defined by a
reduction of at least 50% in the last QIDS score as compared to
baseline of each treatment, taking into account a single parameter—
change of score from baseline.

All response data were processed using R [25] and Python [26]. Detailed
methods for computing the treatment response measures can be found in
the Supplementary information.

Genetic data
A subset of STAR*D participants who were included in the analyses had
provided DNA samples for genotyping (n= 1953, 48.3% of the overall
study participants) [27]. These DNA samples were genotyped on arrays
measuring 500,000 or more SNPs that tag the majority of common variants
in the human genome.
As part of PGRN-AMPS, DNA from all participants (n= 529) was

genotyped using blood samples, which were obtained at baseline,
measuring approximately the same number of SNPs as for the STAR*D
participants.
More details on these DNA samples can be found in the Supplementary

information.

Algorithm assembly and validation
Assembly. For algorithm assembly purposes, STAR*D data were used.
Following a filtering process of participants’ response data (described in
the supplementary information), 1697 remaining STAR*D participants with
available genetic, clinical, and demographic data were eventually used for
algorithm assembly and validation. These participants were randomly
divided into a training set, validation set, and a test set with
~70%:15%:15% ratio, respectively. Due to the fact that some of the
participants were treated with two different medications or medication
combinations (i.e., proceeded from levels 1 to 2), the training-validation-
test division was participant-based throughout the algorithm assembly,
rather than level-dependent (e.g., if a participant was randomly assigned to
the training group, they remained in this group for all models, treatments,
and purposes). These participants’ clinical and demographic enrollment
and baseline data, in addition to their available genetic data (in the form of
single-nucleotide polymorphisms [SNPs]), were set as ML features. The
dichotomous exponential response of all participants per treatment was
set as the treatment outcome.
We applied a hypothesis-driven approach for the selection of genetic

components [i.e., genes and microRNAs (miRs)], which were reported to be
associated with depression, antidepressant response, metabolism, and side
effects. This literature research was conducted by utilizing PubMed and
UCSC Genome Browser [28], using compatible search words (e.g.,
“antidepressant AND genetics”). The overlap of the list of genetic
components, which were found during this exploration phase with
STAR*D genetic data and the Genome Reference Consortium Human
genome build 37 dataset [29], yielded overall 381 genetic components.
Common SNPs in and around these mapped components were extracted
(up to 6 kb of their flanking regions). Overall, 8120 SNPs were eventually
defined as “literature-mapped genetic features.”
Following several processes that included imputation of residual missing

data, filtering of features, and features’ encoding processes (e.g., “dummy
encoding” [30]), we applied various feature selection algorithms. These
included Elastic Net [31] and Least Absolute Shrinkage and Selection
Operator [32], and were applied to the data of the training set participants.
The feature selection algorithms were submitted initially with over 500,000
features to select from (i.e., the complete STAR*D data)—with only a small
minority being “literature-mapped.” This was done in order to make sure
the most relevant features for treatment response are characterized and
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ranked. The above-described literature research was, nevertheless, utilized
in several feature selection processes, such that literature-mapped genetic
features were given higher weights relative to their non-literature-mapped
counterparts.
We then used several subsets of the final selected features to generate

several ML models (up to 100 features per model) using the following ML
algorithms: support vector machine (SVM) with a linear kernel [33],
eXtreme Gradient Boosting (XGBoost) [34], Random Forest [35], and
Adaptive Boosting (AdaBoost) [36]. Either 5- or 10-fold repeated cross-
validations (CVs) were performed on the training datasets in order to attain
optimal parameters, which were then used to re-train the various models
using the complete training datasets.
We then generated a single algorithm, which integrates the multiple

trained models. This algorithm obtains specific demographic, clinical, and
genetic data of a participant and predicts whether they are a “responder”
or a “nonresponder” for each of the following medications: citalopram,
sertraline, and venlafaxine.
Overall, the data of 1167 STAR*D participants were used in the training

phase of the algorithm assembly.

Validation. The evaluation of the algorithm performance was done using
the validation and final test set of STAR*D participants, which were set
aside at the beginning of the algorithm assembly process. These groups
consisted of 530 participants overall, of which 271 participants were in the
validation set and 259 participants in the final test set. The validation set
was used to further edit the algorithm by identifying the best-performing
models and subsets of features that were selected during the training
phase, while the final test set was not used in any stage of the models’
(and therefore, the algorithm’s) derivation.
For external analysis, the data of PGRN-AMPS participants who were

treated with citalopram were used as a second test set. Following a
filtering process of participants’ response data, a sample of 132
participants was available for analysis.
The basic patient clinical characteristics and demographics of the

various groups are detailed in Supplementary Table 1. For additional
information regarding the algorithm assembly and validation, see
Supplementary information.

Statistical analyses
Since some of the validation and test groups, particularly in the case of
PGRN-AMPS, were imbalanced in terms of responder/nonresponder ratio
(Supplementary Table 2)—balanced accuracy was the main statistical
measure that was calculated. Balanced accuracy is defined as the
arithmetic mean of the proportions of correct classifications (i.e.,
accuracies) for each outcome class individually, and therefore balances
the accuracy for measuring above-chance generalizability whenever one of
the classes is considerably overrepresented in the data [37–39].
To assess statistical significance, a one-sided permutation testing

scheme was used to examine how likely the observed balanced
accuracies would be obtained by chance (i.e., in a scenario of the
absence of real connection between the outcome labels and the final
models’ predictive features [40, 41]). For this, 1000 permutation runs
were performed for each final predictive model independently. In each
permutation run, the outcome labels of the datasets were randomly
shuffled, the models were re-tuned via repeated CV on the training set,
re-trained with the obtained optimal parameters using the complete
training set, and new balanced accuracies were extracted using the
trained models’ predictions for the relevant groups (e.g., the final test
set). The reported p value is the fraction of the 1000 balanced accuracies
that were greater than or equal to the balanced accuracy actually
observed when the original data were used. Statistical significance was
declared for p values <0.05.
To examine whether the variances and proportions of the basic patient

clinical characteristics and demographics between the various datasets
(i.e., training, validation, and the two test sets) are different, we used the
Levene’s test [42] for the continuous variables (baseline age, Ham-D, and
QIDS scores) and the Pearson’s χ2 test of independence [43] for the
nominal variables (ethnicity, sex).
Additional statistical measures of models’ performance were calculated,

including sensitivity, specificity, positive predictive value (PPV) and
negative predictive values (NPV), with the latter (PPV and NPV) adjusted
in accordance with the fixed prevalence of exponential response in
STAR*D (0.5) [44]. Statistical measures of the studies themselves were

likewise calculated, including STAR*D’s and PGRN-AMPS’s response rates
and null-information rates (NIRs).
In order to extract the estimate of the distribution and confidence

interval (CI) of the algorithm’s average balanced accuracy across
medications, we used bootstrapping estimation [45]: random resampling
with replacement the participants’ test sets 100,000 times, each time
generating resampled samples of the same size for each medication
independently, for whom the average balanced accuracy across medica-
tions was calculated.

Analyses of the algorithm’s predictive components
For various post hoc analyses solely, the selected features of the final
algorithm were segmented into more general distinct components:

a. Nongenetic features were segmented into the following domains:

1. Clinical components, based on clinical diagnosis, physical state,
or clinical history (e.g., all features related to the class of anxiety
disorders, according to the psychiatric diagnostic symptom
questionnaire [46], which assesses psychiatric symptoms in
accordance with Diagnostic and Statistical Manual of Mental
Disorders, fourth edition, were segmented to “anxiety disor-
ders”).

2. Demographic components, based on common demographic
characteristics (e.g., “age,” “employment”).

b. Genetic features (i.e., SNPs) were segmented into functional genetic
components according to their location within the genome, either
by residing within the gene itself or in an adjacent intergenic region
(i.e., intergenic SNPs were mapped to their two most adjacent
functional genes, one upstream and one downstream).

Following this segmentation process, we conducted a second literature
research focusing on the predictive components of the algorithm in the
following manner:

a. A search for scientific literature exploring whether the nongenetic
components of the algorithm (i.e., clinical and demographic
components) are known to be associated with depression or
antidepressants. Only if such specific associations were not found,
we further examined whether the relevant components were found
to be associated with other psychiatric disorders and behavioral or
neurological phenotypes.

b. A search for scientific literature exploring whether the genetic
components, which were not found to be associated with
depression or antidepressants in the initial literature research
(during feature selection), were possibly found to be associated
with other psychiatric disorders and behavioral or neurological
phenotypes.

This literature research was done using PubMed, Google Scholar, and
PharmGKB [47]. The search words focused on a specific component name
along with the relevant keyword (e.g., “ZFPM2 AND psychiatry” or “ZFPM2
AND neurology”).

Gene Ontology enrichment analysis
For Gene Ontology (GO) enrichment analysis we used Gene Ontology
enRIchment anaLysis and visuaLizAtion tool (Gorilla; http://cbl-gorilla.cs.
technion.ac.il/) [48], to which the selected algorithm genes (as a target set)
and a complete gene list (as a background set) were imported.
For a visual overview of the experimental design please refer to

Supplementary Figure 1.

RESULTS
Evaluating different approaches to define clinical response to
antidepressants
In order to evaluate the optimal way of using the clinical STAR*D
data, we first compared the “exponential response” approach to
the “classic response” approach in defining response to citalopram
treatment (both approaches are described in the Materials and
methods section and the Supplementary information). Comparison
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revealed that the two approaches to define response largely
matched (85% agreement, n= 2621 out of 3083 citalopram
responses’ analyses, Fig. 1 and Supplementary Table 3). However,
in 15% of the cases there were discrepancies: in 4.5% of the cases
(n= 138), participants were labeled nonresponders by the “classic
approach” and responders by the “exponential approach” (class 1
discrepancy, turquoise slope in Fig. 1). In 10.5% of the cases (n=
324), the “exponential approach” labeled the participants as
nonresponders, while the “classic approach” labeled them as
responders (class 2 discrepancy, yellow slope in Fig. 1).
Analysis of participants’ responses that are affiliated with class 1

discrepancy shows that these mostly lacked measurement data:
the QIDS scores of 77.5% of these responses were not recorded
past week 6 (n= 107, out of 138, Supplementary Table 3 and
Supplementary Figure 2), compared with only 17.8% of all other
responses (n= 525, out of 2945). Therefore, most of these
responses did not have sufficient data over time to reach 50%
QIDS score reduction threshold. Notably, this type of discrepancy
drops substantially as a participant’s response spans to longer
periods of measurements (Supplementary Figure 2). Accordingly,
whenever the exponential approach labeled participants who did
have their depression level recorded past week 6 as “responders,”
they were also labeled as responders by the classic approach (i.e.,
reached ≥50% reduction in the last QIDS measurement) 97.5% of
the time.
Analysis of participants’ responses that are affiliated with class 2

discrepancy showed an opposite trend: 99.4% had sufficient
measurement data, i.e.—QIDS records past week 6 (n= 322,
Supplementary Figure 2), but only 26.5% had over 50% QIDS score
reduction by week 9 (n= 74, out of 279 with available week
9 scores). Therefore, these responses received lower improvement
rates, which labeled the participants as nonresponders by the
exponential approach (yellow slope in Fig. 1). In comparison,
analyzing the responses of the participant population, which the
exponential approach labeled as responders, reveals that 88.7%

had over 50% QIDS score reduction by week 9 (980 out of 1105
with available week 9 scores).

Selecting features for predicting antidepressant response
Several feature selection algorithms were applied to the various
types of STAR*D data during the training phase, which heavily
reduced the number of features (from ~500,000 to 100 or less, per
model), followed by a final selection of features that was
accomplished using the validation set. The number of features
that were ultimately selected and facilitated the generation of the
final algorithm’s ML models was therefore narrowed to 43 features
(combined). For post-algorithm-assembly analysis purposes, we
segmented these 43 selected features into more generalized 36
components of three data domains—genetic, clinical, and
demographic (Fig. 2A). Of these 43 features, 27 features are
genetic variants that were segmented to 26 genetic components.
Notably, a substantial portion of the selected features is
nongenetic: nine are clinical features, which were segmented
into five distinct clinical components, and seven are demographic
features, which were segmented to five distinct demographic
components (Fig. 2A).
The post-algorithm-assembly analysis of the group of the selected

genetic, clinical, and demographic components showed 86.1% (n=
31, out of 36) were previously found to be associated with depression
and/or antidepressants (Fig. 2B and Supplementary Table 4). The rest
of the components, 13.9% (n= 5), were not previously found to be
associated with depression or antidepressants, but were found to be
associated with other psychiatric disorders and behavioral or
neurological phenotypes (e.g., ZFPM2, which was found to be
associated with antipsychotic-induced parkinsonism in schizophrenia
patients [49]). There were no components that were not previously
found to be associated with any psychiatric disorders and behavioral
or neurological phenotypes.
Focusing on the 26 selected genetic components of the

algorithm, the GO enrichment analysis indicated several distinct

Fig. 1 Approaches for defining response to antidepressants. A Four representative participants for the three classes of antidepressant
response definition approaches’ comparison with their original trajectories: “match” class [blue and red, dotted in (B, C)] represents 85% of
participants, class 1 discrepancy (turquoise) 4.5%, and class 2 discrepancy (yellow) 10.5%; added in N are the numbers of participants in each
group. B Response trajectory for the three classes according to the classic definition of 50% reduction in QIDS score (gray line). C Response
trajectory for the three classes according to the exponential fit definition; participants with a slope steeper than the median (gray) are
categorized as responders (blue and turquoise), and the rest (red and yellow) are categorized as nonresponders. [Both (B, C) include the time-
points that were used in the calculation of the trajectories].
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types of terms out of the top ten most significantly enriched that
were found: 40% are general brain-related terms (e.g., “behavior”
or “memory”), additional 40% are neuronal signaling-related terms
(e.g., “glutamate receptor signaling pathway”), and the remaining
20% include other terms (e.g., “regulation of body fluid levels,”
Supplementary Figure 3A).

Evaluation of the algorithm performance
The ML models (with the final selected features’ subsets), which
achieved optimal results both in the training phase’s CV process
and the validation set, were all SVMs with a linear kernel. These
models were combined into a single algorithm, which predicted
response to antidepressants in the training set (n= 1167) with an
average balanced accuracy of 73.4% across medications, with the
best performance in prediction to venlafaxine (average CV
balanced accuracy of 81.2%, SD 11.2, Supplementary Table 5).
In the validation set (n= 271), the algorithm predicted response

to a medication for a participant with an average balanced
accuracy of 72.3% (SD 8.1) across medications (Supplementary
Table 6), with the best performance in prediction to venlafaxine
(balanced accuracy of 80.2; all balanced accuracies with p’s < 0.01).
In the final test set (n= 259), which was not used in any stage of

the algorithm’s derivation, the algorithm achieved average
balanced accuracy of 70.1% (SD 6.8) across medications (Table
1), with the best performance in prediction to sertraline (balanced
accuracy of 75.5; all balanced accuracies with p’s < 0.01). For
comparison, STAR*D’s average response rates across medications
for the same groups of participants (i.e., validation and test sets)
were 55.8% (SD 2.9) and 46.8% (SD 5.3), respectively.
The bootstrap process, which resampled the test’s set

participants, yielded a 95% CI of 61.1–78.4% for the algorithm’s
average balanced accuracy across medications (Fig. 3).

Design testing using an external dataset
Next, we analyzed the performance of the algorithm’s citalopram
model (Supplementary Table 7) on the PGRN-AMPS sample of 132
citalopram-treated participants, which was skewed in terms of
responder/nonresponder ratio (response rate and NIR= 74.2%,
Supplementary Table 2) and had significantly different propor-
tions of various ethnicities and sex ratio compared to some of the
STAR*D datasets (Supplementary Table 1). The model achieved
very similar results to its results in STAR*D (Table 2). Importantly,
the balanced accuracy achieved statistical significance in the
PGRN-AMPS dataset as well to STAR*D.

Fig. 2 Analysis of the algorithm’s predictive components. A List describing the algorithm’s predictive genetic, clinical, and demographic
components (within parentheses are the number of features that are mapped to each component, while the asterisks represent components
whose mapped genetic features do not reside within the mentioned functional gene itself, but rather in an adjacent intergenic region), with
marking per medication. B Pie chart describing the distribution of the selected components according to the two classes, following the
scientific literature explorations. Only if associations of a component to depression and/or antidepressant were not found, we examined
whether it was found to be associated with other psychiatric disorders or neurological phenotypes. C Top feature per medication’s final model
(according to ROC curve variable importance or absolute coefficient size).
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DISCUSSION
We present the assembly process of an algorithm that predicts
individual response to antidepressants, and its performance on
validation and testing datasets. The algorithm demonstrates its
capabilities of selecting a suitable antidepressant for an individual
patient with an average balanced accuracy of 70.1% in a final test
set, compared to 46.8% average initial response rate in the same
set of STAR*D participants. This finding is of high clinical
importance, as clinical experience and evidence show that current
methods of determining the optimal treatment for MDD are
limited and driven by trial and error [50]. Specifically, evidence
emerging from the STAR*D study indicates that it took four
controlled treatment steps, lasting 12–14 weeks each, to achieve
an overall cumulative response rate of 74% [4, 18]. Notably, the
modeled performance of the algorithm using STAR*D data
suggests that a comparable response rate can potentially be
achieved on the initial treatment selection.

Designing a clinically informative algorithm for medication
selection requires a comprehensive definition of treatment
response, to allow accurate classification of participants’ out-
comes. Therefore, we presented in this study a novel exponential
approach to the definition of antidepressant response, taking into
account the change of symptoms load (i.e., clinical scores) over
time, and consequently—the speed and dynamics of the
response. By doing so, this approach normalizes for varying
temporal patterns of measurements for different participants. This
normalization is implemented by factoring multiple longitudinal
measurements, which were made possible due to the deep
longitudinal phenotyping of STAR*D participants, as well to PGRN-
AMPS participants to some extent. These intra-treatment mea-
surements are mostly ignored in the traditional definitions of
response, which often rely on an endpoint measurement
compared to baseline [51]. We argue that disregarding data
collected at multiple time points be a shortcoming, considering
that it was repeatedly shown that trajectories of antidepressant
response are commonly not linear [52–56], with some studies
stating that early therapeutic effects may be better predictors of a
subsequent positive long-term outcome [55–57]. Therefore, we
hypothesize that this approach may be more sensitive to
determine treatment success. We suggest that using such
exponential methods to define response in other datasets merits
further investigation.
On average, the efficacy of antidepressants is in the range of

42–53% [58, 59], using the classic definition of response (a
reduction of ≥50% in the last score as compared to baseline). In
comparison, current available pharmacogenomic tests, which rely
on the genetic background to tailor drug prescription, may yield
slightly higher response rates (39–64%) [60]. Therefore, we chose
to include genetic data in our predictive algorithm. The GO
enrichment analysis, which was performed on the algorithm’s
genetic predictive components, revealed several significant
neuronal signaling-related terms. This is not surprising, since

Fig. 3 Algorithm’s average balanced accuracy across medications. Bootstrap histogram depicting the results of 100,000 bootstrap runs on
the final test set, which generated the bootstrap distribution of balanced accuracies across medications, along with its 95% confidence
interval (purple area). The distribution is compared with chance (dashed vertical line) and the observed average balanced accuracy (solid
vertical line) in the final test set.

Table 2. Citalopram model statistics for both studies’ final test sets:
statistics table describing the success of the citalopram model in
predicting response and no-response for citalopram-treated
participants, in STAR*D and PGRN-AMPS final test datasets.

Statistic STAR*D PGRN-AMPS

Balanced accuracy 60.5% 61.3%

p value (balanced accuracy) <0.001 <0.01

Sensitivity 67% 75.5%

Specificity 54% 47.1%

Accuracy 59.8% 68.2%

PPV 59.3% 58.8%

NPV 62% 65.8%

n= 251 (STAR*D), n= 132 (PGRN-AMPS).

Table 1. Algorithm test statistics.

Statistic Citalopram Venlafaxine Sertraline Mean

Balanced accuracy 60.5% 74.3% 75.5% 70.1% (6.8)

p value (balanced accuracy) <0.001 <0.01 <0.01 –

Sensitivity 67% 70% 69.2% 68.7% (1.3)

Specificity 54% 78.6% 81.8% 71.4% (12.4)

Accuracy 59.8% 75% 75% 69.9% (7.2)

PPV 59.3% 76.6% 79.2% 71.7% (8.8)

NPV 62% 72.4% 72.7% 69% (4.9)

Statistics table describing the success of the algorithm in predicting response and no-response per medication in the final STAR*D test set. n= 251
(citalopram), n= 24 (venlafaxine), n= 24 (sertraline). Standard deviations are given within parentheses.
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many genes that were reported in the scientific literature as
associated with depression and antidepressants’ response (and
were therefore collected in the literature search phase of our
feature selection process) are largely based on studies that
focused on neuronal signaling pathways. Nonetheless, the
significant improvement in treatment success rates provided by
the input of these genes reinforces the notion whereby in-depth
knowledge of an individual’s neurotransmitter circuit connections
may lead to better treatment selection for depression [61, 62].
It is likely that genetic variation among individuals, despite its

significant contributions, is only one of many individual factors
that influence the chance of achieving a response to antidepres-
sants [9, 11]. Notably, heritability in depression is estimated to be
37% [63]. This suggests that, although important, genetic variation
can only partly reveal the complex individual difference in
depression pathobiology, and might also suggest that genetics
will only partly explain treatment response [64, 65]. Such
nongenetic basis is exemplified by previous works of research
groups, which used ML algorithms applied on clinical and
demographic data exclusively, to achieve significant success rates
for the prediction of depression treatment outcomes [66, 67].
Introduction of ML-based prediction tools that aspire to have

clinical relevance should aim to increase generalizability, usually
through validation in completely new and independent datasets
[68]. Therefore, we sought to examine our analytical design in an
external sample of MDD patients, the PGRN-AMPS dataset, using
the citalopram model, which used features that were attainable
from both studies. The resemblance and statistical significance of
this model’s success rates for citalopram-treated participants in
STAR*D and the PGRN-AMPS dataset were therefore highly
encouraging, and support the generalizability of our algorithm
to other patients’ samples. However, these results have limitations:
this evaluation was done only with the citalopram model, a single
model out of three final algorithm’s models, which also originally
had lower success rates in comparison to the other medications’
final models. In addition, the PGRN-AMPS dataset has significantly
different proportions of ethnicities compared to all STAR*D
datasets, and a significantly different sex ratio compared to the
STAR*D training set (both variables are not used as predictive
features by the final algorithm). Further, the citalopram model’s
accuracy in the PGRN-AMPS sample did not surpass its unusually
high NIR, which results from the overall study’s unique response
rate, which was previously reported [20]. Still, when we used
balanced accuracy (a measure that overcomes the differences in
response rates between studies [37–39]), our analytical design
achieved comparable predictive capacities in the PGRN-AMPS
sample as observed in the STAR*D dataset.
The algorithm presented here might serve as a basis for clinical

support platforms, which are part of the emerging field of
precision psychiatry, i.e.—the approach for psychiatric treatment
and prevention that takes into account each person’s variability in
genes, environment, and lifestyle [69–72]. These tools are
expected to significantly improve with time as data derived from
next-generation sequencing technologies and electronic health
records are accumulating and are becoming increasingly available.
Future applications in this field, and specifically with depressive
disorders, can include the formulation of better diagnostic and
prognostic techniques, as well as a better understanding of the
neural circuits involved in their etiology [73].
Several limitations of our study should be acknowledged. First,

the algorithm was developed from a training set derived from a
single study (although the largest and most comprehensive to
date), STAR*D. However, the fact that we found one of our
generated models to perform similarly well in a totally different
sample than the one we used for its training phase mitigates some
of the concerns regarding the generalizability of the findings. In
addition, the available STAR*D SNP data did not include sufficient
information to enable metabolizer phenotypes’ inference, which

could potentially elevate the presented algorithm’s success rates,
considering the abundant evidence in regards to the metabolism
status effects on medication response [74, 75]. In addition, the
algorithm could only create predictions for three medications used
in STAR*D, whereas clinicians these days have more therapeutic
options that were not included in our analyses. Notably, our
findings do suggest that in two different classes of antidepressants
(i.e., SSRI and SNRI)—the algorithm performed better than clinically
expected. Lastly, we assessed the algorithm performance retro-
spectively; prospective future studies are needed to further solidify
the evidence presented in this study [68].

CONCLUSION
In summary, there is a need for new approaches to help clinicians
improve the treatment of depression and other psychiatric
disorders. Applying ML approaches to genetic, clinical, and
demographic data is a promising method to achieve this goal.
The challenge of any prediction algorithm is to select the right
combination of features that will predict a well-defined clinical
outcome. The algorithm that we describe here may be used as a
tool to tackle some of these challenges and support clinicians’
decisions, aiding in a more precise choice of antidepressant
medication. Moreover, utilizing some of the genetic factors that
are found to increase the prediction accuracy of patients’ response
to antidepressants could potentially allow a better understanding
of medications’ mechanism of action, and may lead to the
identification of novel molecular targets, consequently driving the
development of novel treatments for depressive disorders.

CODE AVAILABILITY
The computer code is available from the authors upon reasonable request.
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