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Background: The electrocardiogram (ECG) is a key tool in patient management.

Automated ECG analysis supports clinical decision-making, but traditional fiducial point

identification discards much of the time-series data that captures the morphology of the

whole waveform. Our Symmetric Projection Attractor Reconstruction (SPAR) method

uses all the available data to provide a new visualization and quantification of the

morphology and variability of any approximately periodic signal. We therefore applied

SPAR to ECG signals to ascertain whether this more detailed investigation of ECG

morphology adds clinical value.

Methods: Our aim was to demonstrate the accuracy of the SPAR method in

discriminating between two biologically distinct groups. As sex has been shown to

influence the waveform appearance, we investigated sex differences in normal sinus

rhythm ECGs.We applied the SPARmethod to 9,007 10 second 12-lead ECG recordings

from Physionet, which comprised; Dataset 1: 104 subjects (40% female), Dataset 2:

8,903 subjects (54% female).

Results: SPAR showed clear visual differences between female andmale ECGs (Dataset

1). A stacked machine learning model achieved a cross-validation sex classification

accuracy of 86.3% (Dataset 2) and an unseen test accuracy of 91.3% (Dataset 1). The

mid-precordial leads performed best in classification individually, but the highest overall

accuracy was achieved with all 12 leads. Classification accuracy was highest for young

adults and declined with older age.

Conclusions: SPAR allows quantification of the morphology of the ECG without the

need to identify conventional fiducial points, whilst utilizing of all the data reduces

inadvertent bias. By intuitively re-visualizing signal morphology as two-dimensional

images, SPAR accurately discriminated ECG sex differences in a small dataset. We

extended the approach to a machine learning classification of sex for a larger dataset,

and showed that the SPAR method provided a means of visualizing the similarities of

subjects given the same classification. This proof-of-concept study therefore provided

an implementation of SPAR using existing data and showed that subtle differences

in the ECG can be amplified by the attractor. SPAR’s supplementary analysis of

ECG morphology may enhance conventional automated analysis in clinically important

datasets, and improve patient stratification and risk management.

Keywords: electrocardiogram, sex and gender, patient stratification, ECG waveform analysis, symmetric

projection attractor reconstruction, machine learning
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INTRODUCTION

The electrocardiogram (ECG) plays a key role in the diagnosis,
treatment and monitoring of cardiovascular disease. Qualitative
analysis of the ECG by clinicians incorporates the morphology
of the whole waveform, but much of the automated analysis
undertaken to support rapid clinical decision-making focuses on
the identification of fiducial points on the signal, and discards the
intervening data. Although there is an increasing emphasis on
waveform morphology within ECG research, this still tends to be
concentrated on specific parts of the signal (1, 2).

Early studies into the nature of the ECG of healthy individuals
identified various factors that impact the ECG, including
sex, age and body shape (3–6). Whilst such differences may
be appreciated qualitatively at a clinical level, they are not
routinely incorporated into the analysis or interpretation of
ECG parameters (7). However, with the increasing automated
analysis of the ECG to support clinical decision-making and
the application of machine learning to problems such as risk
stratification, there is a renewed focus on factors that may have
a subtle impact on an individual’s ECG.

We have recently developed an approach to signal analysis
that allows us to easily quantify information from the
morphology of the whole waveform using all of its underlying
high fidelity time-series data. Symmetric Projection Attractor
Reconstruction (SPAR) is a method for visualizing and
quantifying the morphology and variability of any approximately
periodic signal (8–10), effectively replotting all the underlying
data into a simpler two-dimensional representation, which
we call an ‘attractor’. We have previously applied SPAR to
various physiological signals, including the ECG (11, 12),
arterial blood pressure (8–10, 13) and photoplethysmogram
(PPG) (14), where it has been shown to supplement standard
cardiovascular assessment.

Our primary motivation for this study was to demonstrate
the accuracy of SPAR in discriminating between two
biologically distinct groups. Significant sex differences have
been demonstrated in the ECG through the conventional
assessment of fiducial points, including a reduced QRS
amplitude and longer QT interval in females, which are
proposed to result from the interaction of various factors,
including an individual’s anatomy, endocrinology, autonomic
regulation, and genetics (15, 16). Therefore, we focused on
a binary discrimination of sex in resting ECGs, selecting
signals that had been pre-adjudicated as ‘normal sinus rhythm’
to avoid introducing further confounding factors due to
disease states.

Recent studies (17, 18) have applied deep learning techniques
to problem of sex classification from the ECG, and showed that
sex can be discriminated with high accuracy by combining all 12
leads. However, the ‘black box’ nature of the methods in these
studies does not readily provide an insight into how these results
are achieved. Recognizing that a clinical audience welcomesmore
clarity around how such machine learning classification results
are generated and how they can be interpreted, we focused this
study on the development of visualization tools within the SPAR
approach and incorporated a classification of sex by lead to

facilitate the interpretation of our results in the context of the
existing literature.

We applied the unique visualization of the SPAR method
to the ECG in a two part study using publicly available 10
second 12-lead ECGs from Physionet (19). In the first part,
we introduced our approach using Dataset 1 (104 subjects)
and showed how our attractor images corresponded to known
characteristics of sex differences in the ECG. We then extended
our study to Dataset 2 (8,903 subjects) and showed how SPAR
can be applied to the problem of stratifying a larger population
using machine learning, and how the visualization tools of SPAR
analysis support the interpretation of our findings.

METHODS

We undertook a two part study. Figure 1 provides an overview
of the dataset and methods applied in each arm of the study.
Further details on all parts of the Methods are included in the
Supplementary Material.

Data
The data for each part of the study was denoted Dataset 1
and Dataset 2 respectively. For both parts, publicly available 10
second 12-lead ECGs were obtained from Physionet (19). These
databases are well documented and further information can be
found in the references given below. All subjects had a sex label
(Female/Male) provided in the accompanyingmetadata. Only the
first recording was taken for any subject if multiple recordings
were available.

Dataset 1 consisted of the first baseline 12-lead 1000Hz ECG
recordings from all 104 subjects (42 female, 19–50 years) who
participated in the ecgrdvq, ecgdmmld and ecgcipa experimental
studies (2, 20–22). Each study involved healthy adults, with
baseline ECG recording taken prior to a pharmacological
challenge. Validated standard ECG interval data (RR, PR, QRS,
QT) and more nuanced repolarisation intervals (JTpeak and
TpeakTend) were provided in the accompanying metadata.

Dataset 2 comprised the 12-lead 500Hz ECG recordings of
8,903 subjects (4,833 female, 2–94 years) from the PTB-XL
database (23) where the ECG recording was labeled “Norm”
(noting that the alternative labels to “Norm” were “Myocardial
Infarction”, “ST/T Change”, “Conduction Disturbance” or
“Hypertrophy”). This label criteria identified 9,528 recordings
since some subjects had more than one recording, but we took
only the first recording labeled “Norm” from each subject. We
also note that the label “Norm” reflects a normal sinus rhythm
appearance on the ECG, whichmay not necessarily mean that the
subject was healthy, and a subject may have had a separate prior
recording which was not deemed to be of normal appearance.

All the ECG recordings were short, so each 10 second signal
was analyzed as a single window. Importantly, no further filtering
was applied to the signals taken from Physionet and no data
was discarded.

SPAR Method: Attractor Generation
The SPAR method transforms the entire digital signal into a
corresponding two-dimensional image. Our original method (8)
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FIGURE 1 | Data and methods summary. A summary of the two datasets and an overview of the methods applied to them.

places N = 3 equally spaced points on the signal. As these points
are moved along the signal, their values are plotted in three-
dimensional phase space, creating a bounded representation
of the entire waveform. We then project the resulting three-
dimensional object to a two-dimensional image, which we call
an “attractor”. Figures 2A,B shows two ECG signals and their
corresponding attractors, and we encourage those unfamiliar
with the method to view the Supplementary Videos I, II, which
show how the signal is transformed into the attractor.

To date, our SPAR method has used N = 3 points on the
signal as described previously (8). However, there is no constraint
that we have to take only three points on the signal, and any
number of points could be used, allowing different waveform

features to be emphasized whilst still providing a simple two-
dimensional ‘attractor’ visualization. The use of N > 3 points is
particularly pertinent for a complex waveform such as the ECG
where the different features of the signal’s morphology represent
distinct biological processes. Increasing the value of N should
enable the amplification of more features from the waveform
and we have therefore extended our SPAR method to such cases
(24) (also, Lyle JV, Aston PJ, submitted). Thus we investigated
the use of different numbers of points in this study and found
that complementary information was provided from attractors
generated with all odd numbers of points for N = 3, 5, . . . ,
13. Supplementary Figure 2 provides further information on the
generation of attractors with N > 3 points. We will refer to
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FIGURE 2 | Typical female and male ECG signals, their corresponding 3-point attractors and attractor measure set profiles. (A, B) A 2 second excerpt from 10

second lead II signals from a typical female (A) and male (B) lead II signal with their corresponding 3-point attractors. Small differences in the appearance of the

signals are amplified in the attractor. The overall appearance of the female attractor is one of a more dispersed distribution with wider arms, whereas the male attractor

shows higher density, narrow arms. We also observe that the upper arm of both attractors is more variable than the other two arms. For both subjects, this is the

result of the beat-to-beat variation in the T to P (interbeat) interval. (C) The measure set profiles associated with the attractor images in (A) [female, red] and (B) [male,

blue.] The three measure sets quantify the attractor images, and we can clearly see differences between the female and male measures. The r density profile shows

that both attractors have their points concentrated in the first third of the attractor moving out from the center, but that the density peak is more central and greater in

the female attractor. The θ density indicates that although each attractors most dense parts lie at the same angle from the center, they are of lower density in the

female attractor. The attractor outline r profile indicates that the male attractor is slightly larger than the female one and highlights that both attractors reflect

beat-to-beat variability in their upper arm.

an ‘N-point attractor’ to clarify the number of points used in
its generation.

The SPAR method requires an equal spacing between the N
points placed on the signal. This spacing is taken as 1/N of the
average cardiac cycle length of the signal. For example, if the
average heart rate of the signal is 60 beats per minute, then the
average cycle length is 1 second and the points for a 3-point
attractor will be placed 1/3 second apart. We determined the
average cardiac cycle length of the signal using a QRS detector
based on the Pan-Tompkins method (25, 26).

Each lead of a 12-lead ECG has a different appearance and
so has its own corresponding attractor. We therefore generated
attractors using N = 3, 5, . . . , 13 points from each lead of every
signal in Dataset 1 and Dataset 2.

SPAR Method: Quantifying the Attractor
Whilst the attractor provides a simple visualization of the ECG, it
also allows for its features to be easily quantified. An image on a
plane can be described by its polar coordinates, the radial distance
r and angular distance θ, and we take this approach to generate
three sets of measures that summarize the attractor:

• the radial density distribution (r density) based on the distance
from the center to the outer edge of the attractor,

• the θ density distribution (θ density), and
• the outline shape of the image as maximum r in the θ direction

(attractor outline r).

These measures are illustrated by measure profile plots in
Figure 2C. Further details on how these measure sets are
determined are provided in the Supplementary Material and in
Supplementary Figure 3.

Machine Learning: Binary Classification of
Sex Using the Attractor Measures
The attractor image allows us to quantify the morphology and
variability of the underlying signal, with small changes on the
waveform being amplified on the corresponding attractor. To
provide a proof-of-concept assessment of the clinical utility of the
ECG attractor, we usedmachine learning as a tool for recognizing
patterns in the attractor measures sets (r density, θ density,
attractor outline r) and made a simple binary classification of sex
from these.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 September 2021 | Volume 8 | Article 709457

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Lyle et al. Detecting Sex With SPAR

FIGURE 3 | Overview of the stacked machine learning model. Each 10 second ECG lead was used to generate 20 N-point attractors (N = 3, 5, …, 13), each of which

is quantified by three measure set profiles. A k-NN algorithm provides a classification of sex for each measure set (r density, θ density, attractor outline r) for each

attractor. The posterior probability scores of each of these classifications formed the feature input to a neural network classifier which provided a classification of sex at

(i) a lead level; and (ii) a subject level using data from all the 12 leads. Figure 4 provides the ranges of parameters considered when optimizing the model and further

detail of the decisions made in defining the machine learning process and the cross validation approach is provided in the Supplementary Materials.

Development of the Machine Learning Model

We developed our machine learning model using Dataset
2. Given the size of the dataset (8,903 records) we opted to
present a cross-validated result, and Dataset 2 was initially
randomly stratified into 10 folds (n = 890 or n = 891)
such that data was balanced by sex and age (over 10 year
ranges) in each fold. The folds used can be found within
the accompanying files of the Supplementary Material. To
ensure independence of model development and optimization,
each cross-validation run separated training, validation
and test folds. When we introduced a stacked model (as
discussed below), this independence was maintained by a
nesting of the cross-validation. The Supplementary Material

and Supplementary Figure 4 describe the detail of
this approach.

The early phases of our machine learning investigation
for this study were exploratory to determine the most
appropriate techniques. The high inter-individual variability
of the normal ECG and the numerous factors that
are known to impact its appearance (16) suggest that
differences will be subtle and that we need to build up a
model from relatively weak predictors. Using this and our
previous experience in machine learning on the attractor
(11, 12, 27), we started by applying a k-nearest neighbors
(k-NN) algorithm to provide a classification of sex for each
measure set (r density, θ density, attractor outline r) for
each attractor.

Our preliminary results indicated that the use of a stacked
model (28), whereby the outcome of separate classifications
were then combined in a second classifier for either the
lead or the subject was the most successful (when measured

by the accuracy of classification). We also determined that
the use of the posterior probability scores of each separate
classification provided amore useful input to the second classifier
than a binary Female / Male label. At different stages of
the preliminary investigation, we considered different machine
learning algorithms as both the first or second classifier, including
support vector machines (SVM), random forest and long short-
term memory (LSTM) neural networks (on a basis of spatial
rather than temporal relationships). However, the original choice
of a k-NN algorithm appeared to be the most successful (as
measured by accuracy of classification), as well as one of the
simpler and quicker methods. Similarly, a neural network with
numeric feature input performed most successfully overall as a
second classifier.

Thus the first step of our final model was the application of a
k-nearest neighbors (k-NN) algorithm to provide a classification
of sex for each measure set (r density, θ density, attractor outline
r) for each attractor. We then applied a stacked approach (28),
taking the posterior probability scores from the measure set
classifiers as the feature input to a neural network to perform a
classification of sex at a lead level and at a subject level using
data from all the 12 leads. Figure 3 provides an overview of
this process with further details about the k-NN and neural
network parameters. The parameters and hyperparameters of the
final model were determined by prior experience of our work in
this space, grid searches and Bayesian optimization techniques.
Figure 4 provides the final parameters selected and the range of
options considered in the optimization process.

A detailed explanation (29) of the decisions made in
defining the machine learning process is provided in the
Supplementary Material.
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FIGURE 4 | Detail of the machine learning model development and validation. The machine learning model parameters and hyperparameters are set to those given,

with the values in brackets being the ranges/options considered during optimization of the model.
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FIGURE 5 | θ density profiles from 3-point attractors by lead for Dataset 1 (A) with a focus on the lead V3 profiles (B). (A) The appearance of the profile over all

subjects is shown in gray and appears relatively homogeneous for a given lead. The shaded gray bands provide the centiles on data, with the darkest being 25th –

75th centile, extending to all the data with the lightest band. However, when the median profile is split between female (red solid line) and male (blue dotted line)

subjects, differences between the sexes can be seen. A simple quantification of the difference can be provided by considering the Euclidean distance between the

female and male median lines, and is given by the bracketed number in each plot title. These distance values are greatest for leads V2 through V4 (0.071, 0.069,

0.063, respectively), supporting our visual interpretation of the plots as being where the largest sex differences occur. Similar observations can be made on the r, θ and

attractor outline r profiles for the other N-point attractors, especially regarding differences in the mid-precordial leads. (B) For lead V3, we can clearly observe different

appearances if we separate the profiles by sex. Female attractors appear to have lower θ density peaks and a more general spread of density across the attractor,

compared with the higher θ density peaks of males contrasting with areas of very low density.

Application of the Machine Learning Model
As described above, we applied ten-fold cross validation within
Dataset 2, and reported the cross-validated accuracy. A master
model was then generated using all the data in Dataset 2 (n =

8,904). Dataset 1 (n= 104) was then used as an unseen test set on
this final model.

We chose to present our classification results by accuracy
and receiver operating characteristic (ROC) area under the curve
(AUC) to allow comparison with other recent results in this space

(17, 18). Whilst simple accuracy is not an appropriate metric
when the prevalence of classes differs significantly, it is suitable
and easily understood in the case of sex.

RESULTS

The first part of our study investigated the smaller, well
characterized Dataset 1, and identified key attractor difference
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FIGURE 6 | Scatterplots of maximum attractor measures and interval measures for Dataset 1 (n = 104, female in red, male in blue.) (A) The maximum value of each

the r density and attractor outline profiles of lead V4 for 3-point attractors. (B) The maximum value of the θ density profiles of lead V4 for a 9-point and a 13-point

attractor. (C) Standard intervals QTc and QRS. (D) Nuanced interval metrics JTpeakc and TpeakTend which segment the T wave. Whilst the interval metric scatterplots

indicate differences between the sexes, the visual distinction is not as clear as in the scatterplots using SPAR metrics.

between sexes. We then determined SPAR’s accuracy in
discriminating between two biologically distinct groups in
Dataset 2, which allowed us to demonstrate the application of
SPAR with a much larger sample size.

Attractor Appearance for Typical Female
and Male Subjects From Dataset 1
In many cases, visual differences could be seen between female
and male attractors for a given lead. Figures 2A,B shows the
typical appearance of a female and male 3-point attractor from
lead II signals. Whilst subtle differences can be seen in the
two original signals, particularly in the ST segment, they would

be difficult to quantify directly from the signal. However, the
attractor amplifies small changes, making them easier to visualize
and quantify. The overall appearance of the female attractor is
one of a more dispersed distribution with wider arms, whereas
the male attractor shows higher density, narrow arms. More
subtle aspects of the signals are also reflected and these are more
readily observed in differences between the measure profile plots,
as shown in Figure 2C.

It is also noticeable on Figures 2A,B that the upper arm of
both attractors is more variable than the other two arms. For both
subjects, this is the result of the beat-to-beat variation in the T to
P (interbeat) interval.
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Visualizing Attractor Differences by Sex
Across All Dataset 1 Subjects
Although the primary use of the measure set profiles is to
quantify an individual attractor image for an individual subject,
they can be extended to visualize the profiles for a number of
subjects together. This complementary presentation allows us to
identify potential similarities and differences in the attractors of
a population.

In illustration of this, Figure 5A shows the combined θ density
profile plots of the 104 Dataset 1 subjects across all 12 leads.
The appearance of the profile as shown in gray is relatively
homogeneous within a given lead. However, when the median
profile is split between female and male subjects, clear differences
between the sexes can be seen. A simple quantification of the
difference can be provided by considering the Euclidean distance
between the female and male median plot lines. These distance
values, as shown in Figure 5A, are greatest for leads V2 through
V4, supporting our visual interpretation of the plots as being
where the largest sex differences occur. Similar observations can
be made on the r, θ and attractor outline r profiles for the
other N-point attractors, especially regarding differences in the
mid-precordial leads.

Figure 5B shows the 3-point attractor θ density profile for lead
V3 in more detail. Whilst the 104 subjects of Dataset 1 present a
reasonably homogeneous appearance of θ density in Figure 5A,
separating this by sex, showed that the female attractors appear to
have lower θ density peaks and a more general spread of density
across the attractor, compared with the higher θ density peaks of
males contrasting with areas of very low density.

A final visualization of the method in this part of the study
involved taking only the maximum value of each measure profile
for each subject. This gave three basic metrics, one from each
of the r density, θ density and attractor outline r measures
of the attractor image. Scatterplots using these just these basic
metrics as shown in Figures 6A,B indicated a reasonably clear
separation by sex and suggested that all three metrics (r, θ

and outline r) and multiple N-attractors contributed to this
distinction. Although the simple plots in Figures 6A,B utilized
just three metrics (the maximum values) from the measure
profiles, the shape of the whole profile (as in Figure 5) conveys
more nuanced information, so we used the complete profile in
our subsequent analysis.

Whilst the primary purpose of this study was not a direct
comparison with interval measures, we did review these in
Dataset 1, since well validated metrics were provided. Differences
in certain interval measures between the sexes have been well
documented (16, 30). We therefore briefly considered how
they compared to our visual attractor analysis of the ECG.
Additional details about the determination and distribution
of interval measures in Dataset 1 can be found in the
Supplementary Material.

A scatterplot of the standard intervals QTc (by Friderica’s
correction) against QRS is shown in Figure 6C. Whilst the plot
suggested that many females have a higher QTc and lower QRS
(as we would expect), the visual distinction between the sexes
was not as clear as in the scatterplots of SPAR metrics. We then
considered more nuanced T wave metrics, JTpeakc (where JTpeakc

TABLE 1 | Accuracy of classification of sex by lead and subject.

Lead Dataset 2

(n = 8,903)

Cross-validation

Dataset 1

(n = 104)

Unseen test

Acc AUC Acc AUC

I 70.8% 0.78 76.9% 0.86

II 69.3% 0.76 80.8% 0.87

III 61.5% 0.65 78.8% 0.84

aVR 71.0% 0.78 77.9% 0.90

aVL 66.4% 0.72 66.3% 0.72

aVF 65.5% 0.71 74.0% 0.82

V1 70.8% 0.78 74.0% 0.84

V2 77.0% 0.85 89.4% 0.94

V3 79.1% 0.87 79.8% 0.92

V4 79.8% 0.88 80.8% 0.91

V5 76.3% 0.83 77.9% 0.86

V6 73.4% 0.80 77.9% 0.84

Subject 86.3% 0.93 91.3% 0.97

Classification accuracy and AUC value for the cross-validation (Dataset 2) and the unseen

test (Dataset 1) on the final model generated from Dataset 2. The classification accuracy

differed across the leads of the ECG, with the mid-precordial leads providing the highest

accuracy. The overall classification of a subject exceeded any result from a single lead,

indicating that information from multiple leads was required, and the best classification

was achieved from all 12 leads.

= JTpeak /RR0.58 with RR in seconds) and TpeakTend, as shown
in Figure 6D. We observed that females tended to have a higher
JTpeakc, but, once again, the visual distinction between the sexes
was less clear than in the SPAR metric scatterplots.

Dataset 2: Classification of Sex Differences
in a Larger Population
We then tested the attractor’s ability to discriminate between
female and male ECGs in Dataset 2 (8,903 subjects.)
Classification accuracies by lead and subject are shown in
Table 1. The cross-validated classification model achieved a
classification accuracy of 86.3% (AUC 0.93), with a sensitivity of
86.9% and specificity of 85.5% (with respect to the female sex.)
The classification accuracy differed across the leads of the ECG,
with the mid-precordial leads providing the highest accuracy.
The overall classification of a subject exceeded any result from a
single lead, indicating that information from multiple leads was
required, and we found that the best classification was achieved
from all 12 leads. Breaking down the classification result by age,
as illustrated in Figure 7, showed that accuracy is highest for
young adults through to 60 years old. In particular, young adult
males were classified most accurately. The accuracy for children
and older adults is lower, particularly falling for males over
70 years.

Dataset 2: Machine Learning Classification
Score and Confidence in the Classification
Whilst our results give a binary classification of sex, the basis
of this is a score of between 0 and 1 (<0.5 male, >0.5
female) for each subject. We considered whether this score could
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FIGURE 7 | Classification accuracy by sex and age group for Dataset 2. Breaking down the classification result by age showed that accuracy is highest for young

adults through to 60 years old. In particular, young adult males were classified most accurately. The accuracy for children and older adults is lower, particularly falling

for males over 70 years.

indicate confidence in the classification outcome and defined
the categories: strong female (score >0.9), mid female (0.65-
0.9), indeterminate (0.35–0.65), mid male (0.1 to 0.35), strong
male (<0.1). Figure 8 shows how the results are distributed
across these categories by age. There were 60.3% of subjects that
were classified as either “strongly male” or “strongly female”,
and, within this group, the accuracy of classification was 95.9%.
Furthermore, subjects were more likely to be classified as
‘indeterminate’ than to have a “mid” or “strong” score of the
opposite sex (other than for the oldest male category), which
supported that the score can be related to confidence in the
classification. We also observed that the proportion of “strong
male” classifications peaked in young adults and then declined,
whereas the proportion of “strong female” classifications did not
begin to decline until around 50 years.

The attractor measure profile plots provided further insight
into our categories of classification confidence. We selected the
attractors of 50 females and 50 males randomly from each of

the categories (strong female, mid female, indeterminate, mid
male, strong male). On reviewing the measure profile plots for
each category, we observed that the greatest visual similarity was
between subjects of the same confidence category, irrespective
of their actual sex. Figure 9 shows the θ density profile for a 3-
point attractor on lead V3 split into “strong female” and “strong
male” categories. The appearance of the profile for these two
categories was very different; the “strong male” profile showed
sharp density peaks, whereas the “strong female” indicated a
more even density distribution across the attractor. Thus the
profile for a category appeared consistent, and was independent
of the sex of the underlying subjects.

Testing New Data on the Machine Learning
Model
As a concluding test of our classification, we created a master
machine learning model from all the Dataset 2 data and took
the 104 subjects of Dataset 1 as an unseen test set. From the
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FIGURE 8 | Prevalence of classification category by sex and age group. The classification category is defined by the classification score for a subject, as indicated in

the legend. The number of female / male subjects in each category is shown in the table. The proportion of “strong male” classifications peaked in young adults and

then declined, whereas the proportion of “strong female” classification did not begin to decline until around 50 years. Subjects were more likely to be classified as

“indeterminate” than to have a “mid” or “strong” score of the opposite sex (other than for the oldest male category), which supported that the score can be related to

our confidence in classification.

age profile of these subjects, our cross-validation indicated an
expected accuracy of 89.6%. The actual classification slightly
improved on this with an accuracy of 91.3% (AUC 0.97).
Figure 10 shows how each subject was classified across the
strong female, mid female, indeterminate, mid male and strong
male categories defined above. Nine records (three female) were

classified incorrectly.Whilst we observe that incorrectly classified
records present attractors that are consistent with the attractor
profiles for their category (so the machine learning classification
is as we would expect), the number of records involved is
too low to comment further on specific characteristics of
these subjects.
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FIGURE 9 | θ density profiles for a 3-point attractor from lead V3 split by sex and classification category. Each plot comprises 50 subjects selected at random from

Dataset 2 in the categories of “strong male” and ‘strong female’ respectively. The median of the profiles is shown as the line plot, the first surrounding darker band is

the 25th to 75th centiles and then extending out with further bands to cover all the data. The appearance of the profile for the two categories was very different; the

“strong male” profile showed sharp density peaks, whereas the “strong female” indicated a more even density distribution across the attractor. We observed that the

greatest visual similarity was between subjects of the same category, irrespective of their actual sex.

DISCUSSION

Our primary motivation was to demonstrate the accuracy of the
SPARmethod in discriminating between two biologically distinct
groups. In this proof-of-concept study, we have successfully
demonstrated the utility of SPAR in distinguishing sex differences
from normal sinus rhythm ECGs. Whilst sex was used as an
arbitrary classifier, our results support the wider clinical value of
SPAR and also highlight the importance of acknowledging sex
differences during clinical ECG interpretation.

The SPAR method takes a holistic approach to signal analysis,
and provides an innovative visual representation by transforming
an approximately periodic waveform into a two-dimensional
image called an ‘attractor’. Utilizing the whole ECG signal
in this way would make better use of data that is already
available and would not require a change in signal acquisition
protocol. Importantly, we recognize that to support clinical
uptake, a method must be intuitive, time efficient and not
necessitate complex pre-processing which can introduce bias.

As SPAR has been developed to provide a visual image of
signal morphology and can be generated in real time on the
output from existing devices, we believe that SPAR addresses
these common issues which may otherwise lead to resistance in
clinical implementation.

The ECG signals used in this study were obtained from
publicly available data and no further pre-processing was applied
to them. Whilst ECG signals are susceptible to corruption by
noise and other artifacts, the 10 second ECG recordings we
applied here had been considered sufficient for research or
diagnostic purposes (as dependent on the database), supporting
our decision to not filter or otherwise process them additionally.
Furthermore, the SPAR method has been shown to act as a high-
pass filter to the lowest frequencies (8) (also, Lyle JV, Aston PJ,
submitted) and so baseline wander is naturally attenuated by the
method. It is beyond the scope of this study to make a formal
assessment of the impact of noise on classification since the
data applied here has been determined to be adequate clinically.
However, we have utilized the SPARmethod in a consideration of
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FIGURE 10 | Classification of unseen records in Dataset 2 by sex and classification category. The plot shows the classification of each of the 104 subjects of Dataset

2. The majority of subjects (39/42 females in the red bars and 56/65 male subjects in the blue bars) are classified correctly. Furthermore, the majority (65/95) of these

correct classifications are made with a “strong” confidence.

noise robustness in deep learning (31) and look to extend this in
future studies. In the real-world application of the SPARmethod,
existing signal quality algorithms (32) can be applied to longer
signals to extract sufficiently clean data, as would be undertaken
routinely for the extraction of diagnostic ECG from such signals.

We observed that the SPAR attractor amplified subtle details
from the ECG waveform, and we saw clear visual differences
between female and male ECG signals. Attractors from Dataset
1 subjects (n = 104) were visualized together using the measure
profile plots. Many of the differences observed in these plots
could be explained by sex when considered at a group level. We
extended this basic analysis with machine learning techniques to
successfully classify subjects by sex from the much larger Dataset
2 (n= 8,903), and found that interpretation through the attractor
measure profiles provided visual insight into these results.

Within our review of Dataset 1, we observed that although
the standard interval and more specific repolarization metrics
(JTpeakc, TpeakTend) presented some visual difference by sex,
these differences weremore pronounced inmeasures drawn from
the attractor. Furthermore, using the attractor has an operational
advantage over interval measures. Beyond a determination of the

RR interval [for which numerous robust algorithms are available
(33, 34)], an accurate detection of other fiducial points, such as
the J point and end of the T wave, remains compromised (35).
Conversely, the SPAR method is motivated by the qualitative
assessment that a clinician will make on the morphology of
the whole waveform, information that is discarded when only
intervals and amplitudes are assessed. The SPARmethod removes
the need tomake assumptions about a signal. It can be considered
an averaging of the cycle characteristics before quantifying them,
which makes it more robust when signals are noisy and limits the
introduction of bias arising from manual intervention.

The QT interval is known to show a significant difference
between the sexes, with the ST segment and start of the T wave
providing the biggest contribution to the longer QT interval
observed in females (36). In support of this, we consistently
made observations during this study that indicated the sex
differences we saw in the attractor were related to aspects of the
repolarization features of the ECG. The major 3-point attractor
differences of wider arms observed in Figure 2 resulted from
a higher QT:RR ratio in the female signal. Furthermore, the
greatest sex differences in the measure profile plots for multiple
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subjects and the highest individual lead machine learning
classification accuracies were seen in the mid-precordial leads,
which typically present the highest amplitude T waves in an adult
ECG recording (37).

Whilst the mid-precordial leads provided the highest
individual lead accuracy, we found that the best overall machine
learning classification accuracy was obtained using all 12 leads of
the ECG, which suggested that subtle differences in the overall
pattern of presentation contributed to the classification and that
features from across the whole waveform were involved. This
finding is supported by two recent deep learning classifications
of sex in the ECG (17, 18), both of which reported results
based on the input of a 12-lead ECG, rather than separate
leads. Additionally, Attia et al. also considered a classification on
separate parts of the waveform, which gave an inferior result to
utilizing the whole signal (17).

The need for the supplementary information from all 12 leads
for the most successful classification suggests that single lead
recordings may have some limitations when assessing the ECG
waveform. In our future work on the SPAR method, we will
focus on its application to single lead ECGs in support of patient
stratification and indication for referral in primary care. We have
previously had some success working with just lead II signals
in subjects under pharmacological challenge (24) and look to
extend this.

The machine learning cross-validation accuracy we reported
in this study approached the classification accuracy of recent
much larger studies (17, 18), and our unseen test accuracy
compared favorably with these results. We focused on non-
pathological ECG presentation to allow us to understand
more about the attractor representation of the signal without
confounding disease states, but this constrained our data
size when compared with the larger studies, and we aim to
extend our classification to broader ECG presentations. Our
classification accuracy may have been limited by the relatively
small number of records in the child and over 70 age groups,
and the greater number of females in these groups. However,
we achieved a promising result with around 1% of the data
used by Attia et al, which supports the use of the attractor
for work on smaller datasets where a full deep learning
solution would not be applicable due to an insufficient quantity
of data.

Our cross-validation and unseen test results showed good
agreement with the literature on classification accuracy by age
group. Whilst we had only a small number of child ECGs,
we classified them with an accuracy of 82.4%, although we
were more successful with female classification than male. Most
observable sex differences are believed to occur from adolescence,
and the difference in the QT interval is thought to result
from a shortening of the interval in males (38), supporting
that we would be more likely to misclassify male children
as female. The most clear sex differences in the ECG are
observable in younger adults and tend to decline from 50 years
(7, 39), and we saw a similar pattern to this with our highest
classification accuracy in young adults and a decline of accuracy
as age increased.

A key aspect of the attractor is its independence from the
heart rate, since the spacing of the points used to generate
the attractor is determined from each signal’s cycle length.
Although healthy subjects demonstrate a higher mean resting
heart rate in females than males (40), including this additional
information with the attractor measures in the machine
learning model resulted in a slightly lower sex classification
accuracy. As the heart rate has a complex non-linear effect
on the ECG morphology (35, 41) and the attractor reflects
the morphology of the waveform, this may suggest that the
sex differences observed in heart rate are captured implicitly
in the attractor and that more subtle aspects of the signal
are more useful for the classification of sex than the explicit
heart rate.

The classification scores from our machine learning model
were used to further categorize our binary classification of
sex. Our observations on the “strong female” and “strong
male” category for subjects aged 17–50 years (see Figure 8)
had similarity to the prevalence of sex-specific patterns of
repolarization identified by Surawicz and Parikh through a
manual review of leads V1-V4 (42), with the ‘strong male’
declining in prevalence, whilst the “strong female” category
prevalence remains more consistent. For older adults, we
observed that our “strong” categories decline whilst “mid”
categories become more prevalent. However, we did not
observe the steep drop in male pattern prevalence seen
by Surawicz and Parikh. One explanation for this is that
the specific features focused on by Surawicz and Parikh
(the J point and the T upslope angle) are significant for
determining sex differences in younger adults, but that
differences in other parts of the signal have importance
in older adults (especially male) and the SPAR method
quantifies these by capturing the whole waveform and not just
the repolarization.

Our findings using the score categories indicated that a
simple binary classification is not always sufficient to capture
the subtleties of a subject’s ECG. By using the attractor measure
profiles to visualize multiple attractors together, we saw that
for some subjects, the appearance of their attractor may be
more closely matched to a typical one of the opposite sex
(see Figure 9). For example, we observe that male ECGs
that were classified incorrectly as “strongly female” have an
attractor that is consistent with those of female ECGs (and
vice versa, whereby incorrectly classified female ECGs have
attractors that visually resemble male ECG attractors). In terms
of the classification problem, this observation suggests that
misclassification of a subject’s sex may be due to this biological
effect rather than failure of the machine learning algorithms,
and so a significant improvement in classification performance
may not be possible. The consistency between our results and
those of recent studies (17, 18) indicates that the limit of
performance for this simple binary problem may have been
reached and that different algorithms would perform similarly.
In terms of future work, this natural clustering of the data to
attractor appearance rather than a subject’s sex suggests that a
more refined, personalized stratification based on a pattern of
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presentation is more appropriate rather than just considering an
individual’s sex alone.

CONCLUSION

In this study, we used the recently developed SPAR method to
investigate the non-pathological ECG signal in the context of
sex differences. The SPAR approach uses the whole waveform,
rather than drawing individual features from different parts of
the ECG, and this allowed us to discriminate sex differences. Our
observations of how these differences presented in the attractor
corresponded to the existing literature for characteristics of
female and male ECG signals. However, using the attractor
provides a simple and robust means of quantifying the
morphology underlying these differences.

The extension of our work into a machine learning
classification of sex demonstrated that the SPAR method could
be successfully applied across a larger dataset. Furthermore, the
attractor profiles can be used as a visual tool to provide an
understanding of why a specific classification was given. Whilst
this does not wholly overcome the “black box” nature of machine
learning techniques, it can provide complementary information.

Prior studies classifying sex from the ECG present a
classification only using all 12 leads combined. We considered
the classification for each lead separately and in differing
combinations, but concluded that the best classification was
achieved using all 12 leads. Although this was in the context of the
specific problem of sex classification, it indicates that single lead
recordings may have some limitations when assessing the ECG
waveform and that this should be considered in future work.

We appreciate that the simple classification of sex is not
directly a clinical question, and nor would it be practical to limit
the application of the SPAR method to non-pathological signals
only. However, this proof-of-concept study showed that subtle
differences in the ECG can be amplified by the attractor. The
detection and quantification of more nuanced ECG differences
in this way could support management of clinically significant
issues, such as patient stratification for drug induced risk of
arrhythmic events (43, 44). Our findings also emphasize the
importance of considering sex and age differences in determining
reference ranges and clinical management protocols.

We acknowledge that morphological ECG appraisal is already
undertaken by experienced clinicians and electrophysiologists,
and introduce SPAR as a means of automating this process.
Although the attractor provides a unique visualization of a signal,
it is not necessary for a clinician to learn to interpret the image
itself. We can apply various techniques, such as the measure
profile plots and machine learning, which could be coupled to
an alert or simple metric, to present a clinically meaningful

output to the end user. For example, in this study, we utilized
the classification score to provide a measure of confidence in
our output. In a clinical setting, this approach would allow
for greater manual effort to be directed at those results that
are deemed ‘indeterminate’. Additionally, SPAR could be used
to supplement conventional fiducial point analysis, and may
enhance the sensitivity of identifying patients requiring referral
or review.

The SPAR method was developed in response to the
challenge of making better use of high fidelity physiological
waveform data that is already recorded, and its simple
implementation overcomes many of the traditional barriers
to clinical uptake. Our successful discrimination of sex
by SPAR demonstrated the accuracy of the method in
two biological distinct groups and supports the further
development of SPAR in the areas of patient stratification and
risk management.
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