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Abstract: Waning of the mumps virus (MuV)-specific humoral response after vaccination has been
suggested as a cause for recent mumps outbreaks in vaccinated young adults, although it cannot
explain all cases. Moreover, CD8+ T cells may play an important role in the response against MuV;
however, little is known about the characteristics and dynamics of the MuV-specific CD8+ T-cell re-
sponse after MuV infection. Here, we had the opportunity to follow the CD8+ T-cell response to three
recently identified HLA-A2*02:01-restricted MuV-specific epitopes from 1.5 to 36 months post-MuV
infection in five previously vaccinated and three unvaccinated individuals. The infection-induced
CD8+ T-cell response was dominated by T cells specific for the ALDQTDIRV and LLDSSTTRV
epitopes, while the response to the GLMEGQIVSV epitope was subdominant. MuV-specific CD8+

T-cell frequencies in the blood declined between 1.5 and 9 months after infection. This decline was
not explained by changes in the expression of inhibitory receptors or homing markers. Despite the
ongoing changes in the frequencies and phenotype of MuV-specific CD8+ T cells, TCRβ analyses
revealed a stable MuV-specific T-cell repertoire over time. These insights in the maintenance of
the cellular response against mumps may provide hallmarks for optimizing vaccination strategies
towards a long-term cellular memory response.

Keywords: mumps infection; T-cell immunity; MMR vaccination

1. Introduction

Mumps is a viral infectious disease typically characterized by bilateral or unilateral
swelling of the parotid glands. In some individuals, more severe complications, such
as orchitis, deafness, meningitis, and encephalitis, occur [1]. Therefore, many countries
vaccinate their population against mumps, usually as a combination vaccine together
with measles and rubella vaccine components (MMR vaccine) [2,3]. This has led to a
dramatic decrease in the incidence of mumps virus (MuV) infection [2]. However, in the
last decades, mumps outbreaks have been reported in various countries, despite high
vaccination coverage [4,5]. In the Netherlands, several mumps outbreaks occurred between
2009 and 2013, mainly among young adults, most of which did receive their two childhood
MMR vaccinations [6].
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Just as in natural infection, both humoral and cellular responses are induced after
MuV vaccination [7,8]. Humoral responses have been investigated extensively, and one
of the causes of vaccine failure in young adults is thought to be waning of antibody
levels, although it may not explain all cases [3]. Another explanation for re-emergence of
mumps could be the antigenic mismatch between the vaccine and outbreak strains [9,10].
The current Jeryl Lynn vaccine carries two viral isolates (JL-2 and JL-5) of the genotype
A, whereas genotype G is the most recently circulating infectious mumps strain in the
Netherlands [11,12]. These genotypes have a relatively large phylogenetic distance, with
known antigenic differences [13,14]. CD8+ T cells are known to play an important role
in the clearance of viruses and in disease outcome, and generally recognize the more
conserved parts of a virus. Despite some mismatch epitopes between the vaccine and
circulating MuV strains [15], many CD8+ epitopes are conserved, and may therefore play
an important role in the prevention of vaccine failure, despite antigen mismatch. However,
current insights into the MuV-specific cellular response are limited.

Studies focusing on the T-cell response against mumps have mostly investigated
the response after MuV vaccination; however, it is generally observed that vaccination-
acquired immunity is not as efficient as the long-term response induced after a natural
infection [16–18]. This is also the case for the T-cell responses to MuV vaccination and MuV
infection. Although MuV-specific T-cell proliferation and IFNγ production were detectable
up to 21 years after vaccination, these responses were less pronounced than in naturally
infected individuals [7,19,20]. It was also reported that MuV-specific CD8+ T cells after
vaccination are less polyfunctional compared to those in naturally infected individuals [21].
Together, these studies suggest that current MuV vaccination evokes a less optimal cellular
immune response compared to natural MuV infection. One way to prevent MuV vaccine
failure could be to induce a sustainable T-cell response more comparable to the response
against natural infection. To this end, more knowledge is needed about the clonal dynamics
and characteristics of the MuV-specific T cells in time after natural MuV infection.

In this study, we had the unique opportunity to investigate in great detail the MuV-
specific CD8+ T-cell response after natural MuV infection in five previously vaccinated
and three unvaccinated individuals. Our group recently identified HLA-A*02:01-restricted
MuV-specific T-cell epitopes from the recent outbreak strain (genotype G) [22]. Here, we
ex vivo analyzed MuV-specific CD8+ T cells in mumps cases after infection using recently
developed dextramers with which high frequencies of MuV-specific CD8+ T cells could
be detected. We show that relatively large MuV-specific T-cell frequencies in the blood
contracted significantly between 1.5 and 9 months after infection, to gradually further
decline to low frequencies after up to 36 months. Although we observed changes in both
PD-1 and CXCR4 expression between 1.5 and 9 months post-infection, the expression of
these T-cell inhibitory and homing markers 1.5 months post-infection did not explain the
decline in MuV-specific T-cell frequencies in the convalescence phase. The largest fraction
of cells had a central memory phenotype (CD27+, CD45RO+) that remained stable over
time, whereas a shift was found to memory precursor cells based on CD127 and KLRG-1
over time after infection. Despite the observed changes, a relatively stable T-cell receptor
(TCR) repertoire in both vaccinated and unvaccinated individuals was found, indicating a
sustainable T-cell response has been maintained in the long run.

2. Materials and Methods
2.1. Study Design

Samples were collected from mumps cases at 1.5 months, 9 months, 18 months, and
36 months after infection in two Dutch observational longitudinal studies, VAC263 [8]
and IMMfact [21]. Written informed consent was obtained from all participants. All
trial-related activities were conducted according to Good Clinical Practice, which includes
the provisions of the Declaration of Helsinki. The studies were approved by the ethical
committee METC Noord Holland and Review Board METC UMC Utrecht, respectively
(clinical study numbers NL37852.094.11 and NL4679.094.13). Eight HLA-A2-positive



Vaccines 2021, 9, 1431 3 of 17

mumps cases (21–53 years of age) were selected based on serotyping. Of these 8 subjects,
3 subjects were unvaccinated, while the other 5 had been vaccinated with two doses of the
MMR vaccine during childhood. IgG titers were adopted from the study of Kaaijk et al. [8].

2.2. PBMC Isolation

Peripheral blood mononuclear cells (PBMCs) were obtained by Lymphoprep (Progen)
density gradient centrifugation from heparinized blood, according to the manufacturer’s
instructions. PBMCs were frozen in 90% fetal calf serum and 10% dimethyl sulfoxide at
−135 ◦C until further use.

2.3. Analysis of MuV-Specific T Cells by Flow Cytometry

In the 8 HLA-A2-positive mumps cases, MuV-epitope-specific T-cell responses were
analyzed by staining 4 million PBMCs in FACS buffer (2 mM EDTA, 0.5% BSA in PBS) using
HLA class I dextramers for the epitopes ALDQTDIRV (ALD) of the M-protein (A*02:01/
ALD-FITC), GLMEGQIVSV (GLM) of the F-protein (A*02:01/ GLM-APC), and LLDSSTTRV
(LLD) of the HN-protein (A*02:01/ LLD-PE) for 20 min at room temperature. Next, surface
staining was performed in FACS buffer for 30 min at 4 ◦C, using the following monoclonal
antibody (mAb) mix: CD27(M-T271)-PerCP-Cy5.5, CD3(SK7)-APC-R700, CCR7(150503)-
BrilliantViolet711, CD45RO(UCHL1)-BrilliantUV395, CD4(SK3)-BrilliantUV737, CD183/
CXCR3(1C6)-BrilliantViolet421 (all BD), CD8a(RPA-T8)-BV510 (BioLegend), CD127(A019D5)-
BrilliantViolet650 (BioLegend), CD184/CXCR4(12G5)-BrilliantViolet786 (BD), Fixable Vi-
ability staining-780, and KLRG1(13F12F2)-PE-Cyanine7 (eBioscience). Acquisition was
performed on an LSRFortessaX20 and data analysis was performed using FlowJo (Treestar).
Populations of antigen-specific cells that were smaller than 30 events were excluded from
further analysis. The gating strategy is shown in Figure S4.

2.4. Isolation of MuV-Specific T Cells for TCRβ Analysis

For cell sorting, cells were stained using dextramers and the following mAb mix:
CD3(SK7)-APC-R700, CD4(SK3)-BriliantViolet711 (both BD), and CD8a(RPA-T8)-
BrilliantViolet510 (Biolegend). CD3+CD4-CD8+dextramer+ cells were sorted on an FAC-
SAria III directly into fetal calf serum (FCS) precoated tubes containing RNAlater (Ambion
Inc. Applied Biosystems) and stored at −80 ◦C for subsequent TCRβ clonotype analysis.
In addition, we stained with the following mAbs for further phenotypical analysis of the
dextramer+ T cells: CD152/CTLA4(BNI3)-BrilliantViolet786, Fixable Viability staining-780
(both BD), PD1(EH12.2H7)-PerCP Cy5.5, Tim3(F38-2E2)-BrilantViolet421, (both BioLe-
gend), and TIGIT(MBSA43)-PE Cyanine7 (eBioscience). Due to limited amounts of PBMCs,
the phenotypic analyses of the MuV-specific T cells were combined with cell sorting for
3 individuals (i.e., subject 12 of the vaccinated individuals and subjects 02 and 10 of the un-
vaccinated individuals). This led to a less extensive phenotyping, including CD27(M-T271)-
PerCP Cy5.5, CD3(SK7)-APC-R700, CCR7(150503)-BrilliantViolet711, CD45RO(UCHL1)-
BrilliantViolet421, CD4(SK3)-BrilliantViolet786 (SK3), and Fixable Viability staining-780
(all BD), CD8a(RPA-T8)-BrilliantViolet510, CD127(A019D5)-BrilliantViolet650 (both BioLe-
gend), and KLRG1(13F12F2)-PE-Cyanine7 (eBioscience). Again, populations of antigen-
specific cells that were smaller than 30 events were excluded from further analysis.

2.5. Preparing TCRβ cDNA Libraries for Sequencing

T-cell receptor analysis was performed as described previously [23], with minor modi-
fications. Briefly, mRNA was isolated with the RNA microkit (Qiagen) according to the
manufacturer’s protocol. Isolated mRNA was used for cDNA synthesis with 5′RACE tem-
plate switch technology to introduce universal primer binding sites, and unique molecular
identifiers (UMI’s) were added at the 5′ end of the cDNA molecules using the SMARTScribe
reverse transcriptase (TaKaRa). cDNA synthesis was followed by an AMPure XP bead-
based clean-up (Beckman Coulter). Purified cDNA molecules were amplified in two
subsequent PCR steps using the Q5® High-Fidelity DNA Polymerase (New England Bi-
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oLabs), with an AMPure XP bead-based clean-up step in between. PCR products were
size-selected on gel and purified using the Nucleospin PCR clean-up kit (Machery-Nagel).
The PCR products were sequenced via Illumina MiSeq paired-end 2 × 250 nt sequencing.

2.6. TCRβ Clonotype Analysis

The raw sequence data were processed using the 12 nt UMIs to correct for sequencing
errors and unequal PCR amplification. RTCR [24] was used to identify both the UMI
sequence and clonotype information from the reads. An additional filtering step was
performed to exclude TCR sequences that were likely due to contamination in the sequenc-
ing protocol, and to minimize biases introduced by errors in the UMI sequence. In short,
sequences were only accepted if their UMI was observed in at least 40 sequencing reads.
Sequences with identical UMIs in multiple samples were removed if they did not occur
in at least 1000 sequencing reads, and also if their absolute frequency was lower than
10% of the maximum frequency in the other sample. Within each sample, UMIs within a
Hamming distance of 3 were clustered. More detailed information about the processing
and filtering of the sequence reads is explained in Lanfermeijer et al. [25].

2.7. Alignment of MuV Peptides

Sequences for the alignment of the epitopes were obtained via uniprot.org. The
corresponding Genbank accession numbers are: AF345290 for Jeryl Lynn 2, AF338106.1
for Jeryl Lynn 5, JX287390 for Genotype G5, JX287385.1 for Genotype G06, KY969483.1 for
Genotype H, and MH892406 for Rubulavirus 2.

2.8. Statistical Analysis of Flow Cytometry Data

Differences between the groups (for example, vaccinated versus unvaccinated) were
assessed using Mann–Whitney U-tests. Paired data (differences between timepoints or dif-
ferences between epitopes) were compared using the Wilcoxon rank test (nonparametric).

Correlations were tested with Spearman’s rank correlation coefficient. For all anal-
yses, p-values < 0.05 were considered statistically significant. Data were analyzed using
GraphPad Prism 8.3 and SPSS statistics 22 for Windows (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Characteristics of Study Population

From a cohort of MuV-infected individuals, a total of eight HLA-A2-positive individ-
uals were selected for this study. Five out of these eight cases received two doses of the
MMR vaccine during childhood (at 14 months and 9 years of age), while the other three
subjects were unvaccinated. In sera of all subjects, MuV-specific IgG antibodies were found
(Table 1). The unvaccinated individuals had significantly lower IgG antibody concentra-
tions 1.5 months after infection than the vaccinated individuals (p = 0.0357) (Figure S1), but
this difference was neither present at 9 months post-infection, nor in the larger cohort [8].
There was no significant difference in severity of symptoms related to MuV infection
between vaccinated and unvaccinated individuals (Table 1).

3.2. Decrease in MuV-Specific CD8+ T-Cell Frequencies over Time after Infection

Previously, our laboratory identified several MuV-specific HLA-A*02:01-restricted
epitopes, including the matrix-protein-derived peptide ALDQTDIRV (ALD, residues 10–
116), the fusion-protein-derived peptide GLMEGQIVSV (GLM, residues 253–262), and the
hemagglutinin-derived peptide LLDSSTTRV (LLD, residues 505–513) (Table S1). These
three MuV-specific epitopes are immunogenic, as illustrated by relatively high frequencies
of specific CD8+ T cells in MuV-infected individuals [22], and are conserved between
several mumps strains, including the vaccine strains and the circulating (genotype G)
outbreak strain (Figure S2). Dextramers loaded with these MuV peptides were used to
detect MuV-specific CD8+ T cells after infection in previously vaccinated and unvaccinated
mumps cases (Figure 1A). The dextramers allowed us to analyze the MuV-specific T-
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cell response at the epitope-specific level in depth at several timepoints after infection,
starting at 1.5 months after MuV infection. Percentages of MuV-specific T cells in the blood
decreased significantly over time after infection. Between timepoints 1.5 and 9 months after
infection, the largest decrease in MuV-specific T-cell frequencies against all three epitopes
was observed (p = 0.0078) (Figure 1B). MuV-specific T-cell frequencies remained low from
9 months on, but were still detectable up to 36 months after infection. No link between
the decline in the MuV-specific T-cell response and waning of the antibody titers could be
observed, whereas age also did not influence the frequencies of MuV-specific T cells (data
not shown). No major differences in the magnitude or contraction of the MuV-specific T-cell
frequencies were observed between previously vaccinated and unvaccinated individuals.

From peptide elution experiments with HLA-A*02:01-positive antigen-presenting
cells, it is known that the abundance at which these peptides are presented by the HLA-
A*02:01 molecule differs greatly between these three epitopes [26]. While the ALD epitope
was found to be presented at the highest abundance, the GLM epitope was predicted to
have the strongest binding to the HLA-A*02:01 molecule (Table S1). We wondered whether
this would influence the immunodominance of the CD8+ T-cell response induced by these
three peptides. At 1.5 months after infection, T-cell frequencies against the LLD epitope
(HN-protein) and the ALD epitope (M-protein) were significantly higher than those against
the GLM epitope (F-protein) (Figure S3). By 9 months post-infection, these differences
between T-cell frequencies against the different epitopes had disappeared. We also plotted
the relative contribution of T-cell frequencies against the ALD, GLM, and LLD epitopes
to the “total” MuV-specific T-cell response (sum of the T-cell frequencies induced by the
three epitopes) (Figure 1C). In five out of eight mumps cases, the T-cell response against
the ALD epitope was the most dominant response, while, in the other three cases, the
response against LLD was dominant. The GLM peptide induced a subdominant response
in all MuV-infected cases. We observed no significant difference in immunodominance
between vaccinated and unvaccinated individuals and no obvious shifts in dominance
over time after infection (Figure 1C). Thus, although the MuV-specific T-cell frequencies
clearly contracted between 1.5 and 9 months after MuV infection, this did not impact the
relative dominance of the specific T-cell responses within individuals.

Table 1. Study population.

Donor Sex Age
(yrs) Time Points Vaccination

Status

IgG Concentration,
1.5 Months after

Infection (RU/mL)

IgG Concentration,
7–10 Months after
Infection (RU/mL)

Clinical Symptoms

263-05 M 21 1.5 m, 9 m, and 36 m Vaccinated 4436 3010 Parotitis, swollen neck glands,
fever, cold, cough

263-12 M 25 1.5 m and 9 m Vaccinated 7265 5928 Parotitis, swollen neck glands,
fever

263-22 M 26 1.5 m and 9 m Vaccinated 21,683 7108 Orchitis
274-66 F 30 1.5 m, 9 m, 18 m, and 36 m Vaccinated 34,843 10,579 Parotitis, swollen neck glands

274-83 F 20 1.5 m, 9 m, and 18 m Vaccinated 12,785 23,669 Parotitis, fever, permanent
unilateral deafness

263-02 F 26 1.5 m and 9 m Unvaccinated 358 1856 Parotitis, swollen neck glands,
abdominal pain, cold, otitis

263-10 M 40 1.5 m and 9 m Unvaccinated 2396 663 Orchitis, parotitis, swollen neck
glands, fever, sore throat

263-19 F 53 1.5 m and 9 m Unvaccinated 449 3704
Swollen neck glands, fever,
cough, vertigo, temporary

deafness
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Figure 1. Frequencies of the MuV-specific CD8+ T cells wane after infection. (A) Representative dextramer staining and 
quantification of the MuV-specific CD8+ T cells against ALD (left), GLM (middle), and LLD (right). (B) Percentages of the 
MuV-specific CD8+ T cells against ALD (left), GLM (middle), and LLD (right) in HLA-A2-positive individuals upon MuV 
infection. Solid circles indicate vaccinated individuals, whereas open circles indicate unvaccinated individuals. p.i., post-
infection. The percentage of dextramer+ CD8+ T cells of donor 5 have been published before in the study of de Wit et al. 
2020 [22]. (C) The relative contribution of the three MuV epitopes to the “total” (=sum of the frequencies of the three) MuV-
specific CD8+ T-cell response over time. Donor numbers are depicted above the graphs. Wilcoxon rank test was used to 
compare T-cell responses of individuals over time. 

Figure 1. Frequencies of the MuV-specific CD8+ T cells wane after infection. (A) Representative dextramer staining and
quantification of the MuV-specific CD8+ T cells against ALD (left), GLM (middle), and LLD (right). (B) Percentages of
the MuV-specific CD8+ T cells against ALD (left), GLM (middle), and LLD (right) in HLA-A2-positive individuals upon
MuV infection. Solid circles indicate vaccinated individuals, whereas open circles indicate unvaccinated individuals. p.i.,
post-infection. The percentage of dextramer+ CD8+ T cells of donor 5 have been published before in the study of de Wit
et al. 2020 [22]. (C) The relative contribution of the three MuV epitopes to the “total” (=sum of the frequencies of the three)
MuV-specific CD8+ T-cell response over time. Donor numbers are depicted above the graphs. Wilcoxon rank test was used
to compare T-cell responses of individuals over time.
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3.3. Phenotype of MuV-Specific CD8+ T Cells Shifts from Short-Lived Effector to Memory Cells

We next investigated the maintenance of the phenotype of MuV-specific memory CD8+

T cells over time. To this end, we gated the memory T-cell subsets based on the expression
of CD27 and CD45RO (gating strategy is shown in Figure S4). Every individual showed
a consistent pattern in the distribution of the subsets for the three epitopes; however, the
patterns differed between individuals (Figure S5). In general, the largest fraction of cells
had a central memory phenotype (CD27+, CD45RO+), while, for the other memory subsets,
large variations were observed between donors.

Focusing on the memory T-cell subsets based on the expression of CD127 (IL-7Ra)
and killer cell lectin-like receptor G1 (KLRG-1), showed a different pattern (Figure 2A and
Figure S6A,B). The markers CD127 and KLRG-1 distinguish between early effector cells
(EEC; CD127−, KLRG-1−), short-lived effector cells (SLEC; CD127−, KLRG-1+), double-
positive effector cells (DPEC; CD127+, KLRG-1+), and memory precursor effector cells
(MPEC; CD127+, KLRG-1−). Overall, between 1.5 and 9 months after infection, the fraction
of EEC and SLEC within the MuV-specific T cells decreased (p = 0.0267 for EEC and
p = 0.079 for SLEC), while the fraction of DPEC and MPEC increased (p = 0.0038 for DPEC
and p = 0.0017 for MPEC) (Figure 2B). The fraction of MPEC remained rather low for
all three peptides at all timepoints. For both gating strategies, we found no significant
differences in the composition of the MuV-specific T-cell pool between vaccinated and
unvaccinated, as well as no effect of age.

3.4. The Decline in MuV-Specific CD8+ T-Cell Frequencies Is Not Explained by the Expression of
Inhibitory Markers

In chronic infections, the expression of inhibitory receptors on the cell surface of virus-
specific CD8+ T cells is mostly associated with functional exhaustion, due to continuous
antigenic stimulation [27,28]. The exact role of inhibitory receptors in acute infections
remains unclear, but it has previously been suggested that these receptors regulate the
primary response [29–31] and may limit immunopathology. Especially upregulation of
PD-1 has been observed in response to activation of virus-specific T cells [32], but insight
in the expression at later timepoints after infection are missing. Here, we measured the
fraction of MuV-specific T cells expressing the inhibitory receptors PD-1, TIM3, or TIGIT,
depicted above the graphs.

Despite the large variation in the percentage of PD-1-expressing MuV-specific CD8+ T
cells between donors and between epitope specificities, the percentage of PD-1-expressing
MuV-specific T cells was relatively high at 1.5 months after MuV infection (average of
50.78%± 24.84%) (Figure S7A, gating of a representative donor is shown in Figure S7B) and
significantly lower at 9 months post-infection (average of 43.10% ± 15.76). The percentage
of both TIGIT+ and TIM3+ MuV-specific CD8+ T cells did not change significantly between
these two timepoints (Figure S7A). We observed no significant differences in the expression
of these inhibitory receptors between vaccinated and unvaccinated individuals. In line with
the study of Ahn et al. [33], the percentage of PD-1+ MuV-specific T cells was associated
with the differentiation status of the MuV-specific T cells, as we found a significant negative
correlation with the percentage of both CM (CD27+, CD45RO+) and MPEC (KLRG-1−,
CD127+) at 1.5 and 9 months post-MuV-infection (Figure S8). Furthermore, the percentage
of PD-1+ MuV-specific T cells showed a negative correlation with the TEMRA (CD27−,
CD45RO−) phenotype, whereas no correlation with the EM (CD27−, CD45RO+) phenotype
was observed.
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Figure 2. MuV-specific CD8+ T cells differentiate from effector cells towards memory cells over time after infection. (A) 
Bar graph showing the subset distribution based on CD127 and KLRG-1 expression of the MuV-specific CD8+ T cells 
against the ALD epitope. Donor numbers are depicted above the graphs. (B) Fraction of the memory subsets based on 
CD127 and KLRG-1 expression of the MuV-specific CD8+ T cells at 1.5 months and 9 months after MuV infection. The 
memory precursor cells (MPEC; CD127+, KLRG-1−), short-lived effector cells (SLEC; CD127−, KLRG-1+), double-positive 
cells (DPEC; CD127+, KLRG-1+), and the early effector cells (EEC; CD127−, KLRG-1−). CD8+ T cells specific for the ALD 
epitope are depicted in orange, for the GLM epitope in blue, and for the LLD epitope in green. Solid circles indicate vac-
cinated individuals, whereas open circles indicate unvaccinated individuals. Differences between timepoints were tested 
by Wilcoxon rank test. 

Figure 2. MuV-specific CD8+ T cells differentiate from effector cells towards memory cells over time after infection. (A) Bar
graph showing the subset distribution based on CD127 and KLRG-1 expression of the MuV-specific CD8+ T cells against the
ALD epitope. Donor numbers are depicted above the graphs. (B) Fraction of the memory subsets based on CD127 and
KLRG-1 expression of the MuV-specific CD8+ T cells at 1.5 months and 9 months after MuV infection. The memory precursor
cells (MPEC; CD127+, KLRG-1−), short-lived effector cells (SLEC; CD127−, KLRG-1+), double-positive cells (DPEC; CD127+,
KLRG-1+), and the early effector cells (EEC; CD127−, KLRG-1−). CD8+ T cells specific for the ALD epitope are depicted
in orange, for the GLM epitope in blue, and for the LLD epitope in green. Solid circles indicate vaccinated individuals,
whereas open circles indicate unvaccinated individuals. Differences between timepoints were tested by Wilcoxon rank test.
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To investigate whether there could be a role of these inhibitory receptors in restraining
the response, we studied whether the decline in MuV-specific T cells between 1.5 and
9 months post-infection, indicated by the fold change in MuV-specific T-cell frequencies,
correlated with the expression of inhibitory receptors. We hypothesized that, if inhibitory
receptors lead to stronger contraction of the immune response, the higher expression
levels of inhibitory receptors at 1.5 months post-infection should associate with a stronger
decline in T-cell frequencies. In contrast, we observed a significant positive association
between the expression of PD-1 at 1.5 months post-infection and the fold change in the
height of the T-cell response (r = 0.7273, p = 0.0096), meaning that the MuV-specific T-cell
responses with the lowest level of PD-1 expression 1.5 months after infection contracted
the most (Figure S7C). For TIGIT and TIM-3, no correlation between the expression of
the receptors at 1.5 months post-infection and the decrease in MuV-specific frequencies
was observed (data not shown). Although the expression of PD-1 decreased over time
post-MuV-infection, the role of the expression of inhibitory markers after the acute phase
of the immune response remains to be elucidated.

3.5. The Decline in MuV-Specific CD8+ T-Cell Frequencies Is Not Explained by Increased
Expression of Bone Marrow Homing Markers

It has been suggested that virus-specific memory T cells, including those against MuV,
are resting in the bone marrow for prolonged periods of time, even when their frequencies
in the blood have already declined [34]. To study the migration of the MuV-specific T
cells out of the blood towards other tissues, we measured the expression (based on mean
fluorescent intensity) of the T-cell migration-associated markers CCR7, CXCR3, and CXCR4
on MuV-specific CD8+ T cells. CCR7 drives homing of T cells towards secondary lymphoid
organs (SLO) [35], CXCR3 to the site of inflammation [36], and CXCR4 facilitates homing
to the bone marrow [37]. The expression of both CCR7 and CXCR4 increased significantly
between 1.5 and 9 months post-infection for T cells specific for all three epitopes (p = 0.0002
and p = 0.0137, respectively) (Figure 3A, left and middle panel), while the expression of
CXCR3 remained stable between these two timepoints (Figure 3A, right panel).

Next, we investigated whether there was an association between the expression of
tissue homing markers and the decline in T-cell frequencies in the blood between 1.5 and
9 months post-infection. Our hypothesis was that, if homing to the tissues would play a
role in the decline in T-cell frequencies in the blood, high expression of the homing markers
at 1.5 months post-infection would be associated with a stronger decline in MuV-specific
T-cell frequencies for that person at 9 months post-infection. Indeed, CXCR3 expression at
1.5 months post-infection did show that the higher the expression of the homing marker, the
stronger the decline in T-cell frequencies. In contrast, the lower the expression of CXCR4
at 1.5 months post-infection, the stronger the decline in MuV-specific T-cell frequencies
observed (r = 0.7273, p = 0.0144) (Figure 3B). No association between CCR7 expression at
1.5 months post-infection and the decrease in MuV-specific CD8+ T-cell frequencies was
observed. Thus, the high expression of CXCR3 and low levels of CXCR4 at 1.5 months
post-infection associate with the decrease in T-cell frequencies, which implies migration to
the inflammation site and bone marrow at 1.5 month. At 9 months, only CXCR4 expression
is enhanced, which suggests migration to the bone marrow.

3.6. MuV-Specific TCRβ Repertoire Is Maintained in the Memory Phase

To investigate how the MuV-specific T-cell repertoire evolves over time after MuV
infection, we were able to analyze the T-cell receptor (TCR) sequences of MuV-specific
T cells in the blood samples over time. By sequencing the TCRβ chain of ALD-specific,
GLM-specific, and LLD-specific T cells, we identified the variable (Vβ) and joining (Jβ)
segment and the CDR3 region of the MuV-specific T-cell receptors (all identified TCR
sequences are provided in Table S2A–C). At 1.5 months post-MuV-infection, we observed a
dominant usage of the Vβ segment 15 (TRBV15) for the LLD epitope (87.7%, combined
data of six donors) (Figure 4A, left panel). This large abundance is not only due to clonal
expansions, as a relatively high percentage (38,5%) of the different TCR sequences specific
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for LLD also contained this segment (Figure 4A right panel). The data on the V segment
usage of T cells recognizing the ALD and GLM epitopes were less conclusive, as these were
based on fewer TCR sequences.
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T cells at 1.5 months and 9 months after MuV infection. (B) Association between the expression of CCR7 (left) or CXCR4
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by Wilcoxon rank test. Associations were tested by Spearman’s correlation.

The T-cell repertoires against the three MuV-specific epitopes that we analyzed were
relatively stable between 1.5 and 9 months after MuV infection, in that the same TCRβ
sequences were found at both timepoints (Figure 4B,C, Table S2A–C). Vaccination status
did not influence this, as this was observed in both vaccinated (Figure 4B) and unvaccinated
individuals (Figure 4C). In summary, although overall MuV-specific T-cell frequencies in
the blood clearly decreased between 1.5 and 9 months post-MuV-infection, we found no
evidence that this resulted in loss of specific clones between these two timepoints.
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the MuV-specific CD8+ T-cell repertoire based on number of sequences (left panel) and based on abundance (right) at
1.5 months of all donors (Table S2A–C). (B,C) Characterization of the T-cell repertoire of MuV-specific CD8+ T cells against
ALD, GLM, and LLD, detected by PCR of vaccinated (B) and unvaccinated (C) individuals. Each pie chart depicts the
repertoire of a representative donor at a certain timepoint (1.5 months and 9 months after infection). Colors represent shared
CDR3 sequences between timepoints and donors. Grey scales depict unique CDR3 sequences. Total number below a pie
indicates the number of clones detected. p.i., post-infection.
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4. Discussion

In this study, we investigated the frequency, phenotype, and TCR repertoire of the
MuV-specific CD8+ T-cell response in the memory phase from 1.5 to 36 months after the
onset of natural MuV infection in previously vaccinated and unvaccinated adults. We
focused on the T-cell response against three recently identified HLA-A2-restricted epitopes
of mumps virus [22]. We found a significant decline in MuV-specific T-cell frequencies
against all three peptides in the blood between 1.5 and 9 months after infection, whereas the
frequencies remained stable up to 36 months. Phenotypically, changes in PD-1 expression
and in expression of memory and homing markers were observed, but none of these
changes could be linked to the decrease in T-cell frequencies, except for CXCR3.

The CXCR3 expression was found to be associated with fold change of MuV-specific T-
cell frequencies over time after infection. Despite the observed changes in T-cell frequencies
and phenotype, the characteristics of the MuV-specific CD8+ T-cell response remained
relatively stable at the TCRβ repertoire level.

We observed no obvious differences between childhood vaccinated and unvaccinated
individuals in terms of T-cell frequencies, phenotype, and stability at the clonal level
after MuV infection. Although T-cell responses have been observed up to 21 years after
vaccination [19], the frequency and polyfunctionality of the CD8+ T-cell response against
mumps has previously been described to be suboptimal after vaccination, as compared
to the response after MuV infection [21]. Since we could not determine MuV-specific
T-cell frequencies and characteristics prior to infection, we can only speculate about the
presence of vaccine-induced memory T-cell immunity before infection in the vaccinated
cases. Although the number of mumps cases analyzed in this study is small, the data
suggest that the course of the CD8+ T-cell response after MuV infection is similar in
unvaccinated and childhood vaccinated adults. In addition, there was also no age-related
correlation found in the data.

The three MuV-specific epitopes used in this study are derived from different MuV-
proteins. Nevertheless, the dynamics and characteristics of the T-cell responses against
these three epitopes were comparable. There was only a difference in immunodominance,
as we consistently found higher LLD-specific compared to GLM-specific CD8+ T-cell
frequencies, both 1.5 months and 9 months post-MuV infection. T-cell dominance did not
seem to be influenced by the binding strength of the peptides to the HLA-A2:01 molecule
(which was highest for the GLM peptide) or the abundance of the peptide (which was
highest for the ALD peptide), as the response against the LLD epitope was the most
dominant response (Table S1).

The decrease in MuV-specific T-cell frequencies that we observed between 1.5 and
9 months after MuV infection was similar for vaccinated and unvaccinated, and occurred
at a relatively later stage of the contraction phase. The peak of expansion and subsequent
start of the contraction most likely took place at an earlier timepoint after infection [38,39].
It is generally assumed that T-cell frequencies after acute infection stabilize within 30 days
post-infection [40]. However, the later phase of the T-cell response after acute infection
has not frequently been explored and the exact length of the contraction phase remains to
be elucidated. Therefore, it remains unknown whether the observed contraction is part
of the end of the classical contraction phase, or whether the decline after 1.5 months post-
infection is specific for MuV infection and delayed compared to the contraction of the T-cell
response after other acute infections. Studies comparing the expansion and contraction
phase of primary and secondary responses against acute infections actually showed that
the secondary T-cell response consisted of a prolonged contraction phase compared to
the primary response [40,41]. A prolonged contraction phase may, thus, even result from
involvement of the memory response. Based on the timepoints in this study this could,
unfortunately, not be investigated. We also found no link between the contraction of the
CD8+ T-cell response and waning of the antibodies after infection.

Although we did observe a decrease in the expression of the inhibitory marker PD-1
and an increase in the expression of the homing markers CXCR4 and CCR7 on MuV-specific
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CD8+ T cells over time, it is difficult to interpret the exact role of these markers in the
memory phase after an acute infection. For PD-1, the observed decrease in expression
could be a late effect of its early upregulation, which is often observed upon activation of T
cells at the start of the response [32]. In case of the homing markers, we were surprised
to find an upregulation of CCR7 between 1.5 and 9 months post-infection. We expected
this marker to play a more dominant role during the acute phase of infection, as CCR7 is
related to homing to secondary lymphoid organs, which most likely plays a role during
T-cell priming [42,43].

We were interested in the expression of CXCR4, as previous studies have suggested
that the bone marrow contains large fractions of memory T cells, including MuV-specific T
cells [34,44–46]. These antigen-specific memory T cells in the bone marrow were shown
to be resting and to be maintained for long periods of time, probably for decades, even
when they were no longer detectable in the blood [34]. Surprisingly, we found that higher
expression of CXCR4 at 1.5 months post-infection was associated with a lower decrease
in MuV-specific T-cell frequencies in the blood. We cannot exclude the possibility that, in
individuals with MuV-specific T cells with a relatively high level of CXCR4 expression,
MuV-specific T cells were already migrating to the bone marrow before our first timepoint.
Alternatively, homing of MuV-specific T cells to the bone marrow may have occurred
between the two timepoints at 1.5 and 9 months post-infection, which would also explain
the increased levels of CXCR4 expression at 9 months post-infection. As the time interval
between the two timepoints is relatively large, more samples between 1.5 and 9 months
would be needed to follow the dynamics of the expression of CXCR4 in relation to the
decrease in MuV-specific frequencies.

Although no significant change in CXCR3 expression was observed between 1.5 and
9 months post-infection, we did find an association between the level of CXCR3 expression
at 1.5 months post-infection and the fold decline in MuV-specific T-cell frequencies. CXCR3
expression is known to be associated with migration to the site of inflammation [47]. We
may speculate that the T cells at 1.5 months still need to be present at the site of inflamma-
tion, whereas homing to the bone marrow probably takes place at a later timepoint.

The overall decrease in MuV-specific T-cell frequencies between 1.5 and 9 months
fits well with the observed decrease in the EEC and SLEC fraction of the MuV-specific T
cells over time, as these two populations play a role early after infection and, subsequently,
contract [48]. However, it can be noted that the population of MuV-specific EECs and
SLECs remains rather high at 9 months post-MuV infection. The relatively high frequency
of short-lived and early effector cells seems a bit counterintuitive 9 months post-infection.
The presence of high percentages of KLRG-1+, CD127− (SLEC) in the memory phase has
been described in chronic infection, but not for acute infections [48]. In mice, Renkema
et al. showed that the KLRG-1+, CD127− population did not contract after infection, and
are actually long-lived effector cells (LLECs). This population was further characterized by
lack of expression of CD62L, CD27, and CCR7 [49]. Analysis of KLRG-1+ MuV-specific T
cells at 9 months indeed showed that part of the response lacks CD27 or CCR7 (data not
shown). MPECs, on the other hand, have an increased propensity to persist in the memory
phase. Indeed, MuV-specific T cells showed an increase in the fraction of MPECs over time,
suggesting that these cells contribute to the MuV-specific long-term memory response.
Therefore, the MuV-specific T cells at 9 months post-infection may be considered to have
a more prominent memory and long-lived effector phenotype, rather than short-lived
effector cells.

Despite the strong decrease in MuV-specific T-cell frequencies in the memory phase
of the response to MuV infection, the MuV-specific TCR repertoire remained relatively
stable between 1.5 and 9 months post-MuV-infection. Longitudinal data on the diversity
and stability of TCR repertoire usage of virus-specific T cells after acute infection are
limited. Vaccination with live-attenuated yellow fever virus (YFV) is often used as a model
for acute infection, as it induces a strong T-cell response, which can be detected in the
blood even decades after infection [50,51]. In a study focusing on the antigen-specific
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T-cell repertoire after YFV vaccination, it was shown in one donor that the yellow-fever-
virus-specific T-cell receptor sequences observed 45 days after primary vaccination were
comparable to those observed after secondary vaccination 18 months later, suggesting
that practically all clones were maintained in the memory pool and responded during
secondary vaccination [52]. Similar results have been observed after chronic infection
with Epstein Barr virus (EBV). It was shown that a stable EBV-specific TCR repertoire was
established after infection, as reflected by similar Vβ segment usage and recurrence of
the same dominant T-cell clonotypes at different timepoints after the acute phase of the
infection [53–55]. As EBV-specific T-cell frequencies remain relatively high during life, for
EBV, it could be shown that the responding TCR repertoire remained stable for at least
3 years after infection [50–52]. Our data are in line with these studies and suggest that, after
acute infection, the MuV-specific TCR repertoire is also stable for at least a few months
after infection and during contraction.

As we observed a stable T-cell response against MuV, which was still detectable up to
36 months after infection, the question remains to what extent the induced MuV-specific
CD8+ T cells after infection will contribute to protection against MuV infection in the long
term. Due to the low number of MuV-specific T cells, we were unable to measure functional
responses, which will be of great value for further studies. Another question that remains
unanswered based on this data is why the vaccinated individuals in this cohort were
infected and developed mumps disease. One possibility would be that the T-cell response
induced by the MuV vaccine is not as stable as the response induced by MuV infection.
Our earlier findings suggest that the relatively reduced magnitude and polyfunctionality
of the MuV-vaccine-induced CD8+ T-cell response could play a role [21]. Insight into the
pre-existing MuV-specific T cell response in vaccinated individuals would have been very
informative. Unfortunately, in this study, we cannot assess the pre-existence of childhood
MuV-vaccination-induced memory T cells, as pre-infection samples were not available.

Taken together, our data on the characterization of the T-cell responses of MuV-infected
individuals suggest the development of a sustainable T-cell memory population. However,
most of our adult mumps cases were childhood vaccinated. This raises the question of
whether the vaccine-induced CD8+ T-cell response was still present in these individuals,
as we found no clear differences in the response between vaccinated and unvaccinated
individuals after MuV infection. Future studies should highlight how we could enhance
the effectivity and longevity of the CD8+ T-cell response after MuV vaccination. The results
of this study add to the body of knowledge on effectivity and longevity of CD8+ T-cell
responses induced by natural infection, and may be helpful in optimizing vaccination
strategies aimed at obtaining long-term cellular memory.
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.3390/vaccines9121431/s1, Figure S1: Unvaccinated MuV-infected individuals have lower IgG levels
1.5 months after infection compared to vaccinated individuals. Figure S2: The MuV-specific CD8+
epitopes are conserved within various mumps strains. Figure S3: Height of the CD8+ T-cell response
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of the MuV-specific CD8+ T cells decreases over time after infection. Figure S8: PD-1 expression is
associated with the memory phenotype of the MuV-specific CD8+ T cells. Table S1: Characteristics
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sequences, Table S2C: LLD-specific TCR sequences.
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