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Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS)

has been substantiated by epidemiological, psychophysiological, and endocrinological

studies. This review discusses recent advances in the understanding of causative

roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary

adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes

in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and

neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly

in MetS-like conditions. The review identifies candidate risk genes from factors shown

critical for the functioning of each of these neuroendocrine signaling cascades. In

its meta-analytic part, recent studies in epigenetic modification (histone methylation,

acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by

microRNAs are evaluated. Several studies suggest modification mechanisms of early life

stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions

with populations of POMC-expressing neurons. Epigenetic modifications were found in

cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes.

With respect to adiposity genes, epigenetic modifications were documented for fat mass

gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory,

immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes

expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic

lipoproteins were documented for epigenetic modifications.

Keywords: metabolic syndrome, sympathetic autonomic nervous system, stress neuropsychobiology,

hypothalamic-pituitary adrenocortical axis, epigenetic programming, gene regulation, microRNA,

pathophysiology

CAUSATIVE PROBLEMS IN THE METABOLIC SYNDROME

Metabolic Syndrome is a consensus construct with wide acceptance based on its clinical usefulness
and growing epidemiologic importance. It is currently defined by concurrent appearance of
risk ranges in lipid traits, progredient prediabetes, pronounced adiposity with emphasis on
abdominal obesity, and subclinical cardiovascular conditions. The concept implicitly assumes that
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a malignantly degrading spiral increases the probability of a co-
existence of pathophysiologically relevant risk ranges, mainly
resulting in organ damage resulting from type 2 diabetes
mellitus (T2DM), hepatosteatosis, and cardiovascular incidences.
Because, in comparison, single MetS components tend to rarely
incur alone, plausibility justifies in summary the employment of
the MetS construct. It has in the meantime also become clear that
the number of metabolic abnormalities is correlated with overall
MetS risk, so emphasizing meaningfulness of its usage.

Acceleration in Incidences
In the last decade, several researchers have alarmed the public
of an international epidemic of MetS (Zimmet et al., 2001; Ford
et al., 2002; Caballero, 2007; Capoulade et al., 2012), which has
its greatest acceleration rates in threshold and emerging market
countries. MetS is present in only 12.5% of patients with normal
glucose tolerance, in 55% of those with impaired fasting glucose,
and in 81% of those with T2DM (Ginsberg and Stalenhoef, 2003).
The presence of MetS increased the risk of T2DM manifestation
24-fold during a 5-year period (Sattar et al., 2003). Furthermore,
CVD risk climbed toward 20% once T2DM had developed in
MetS patients (Girman et al., 2004). MetS risk increases with
aging, being 44% in the seventh decade of life having the MetS
compared to 7% prevalence in the third decade (Ford et al.,
2002). There are further implications of MetS for aging biology
because of associations of MetS components with oxidative stress
(Moreira et al., 2015), DNA damage (Chen et al., 2015), telomere
attrition (Révész et al., 2015), and mitochondrial damage due to
sirtuin depletion (Guarente, 2006).

Obesity as a Central Precondition for MetS
The overall rising incidence of MetS is to a certain degree a
consequence of the obesity epidemic in developed and threshold
populations. Although obesity figures in the U.S. were historically
reported to be on a rise since the first decades of the twentieth
century, dramatic accelerations worldwide have been described
for the past four decades (Zimmet et al., 2001; Caballero, 2007).
According to newest figures announced on 12 October 2015
from the World Obesity Federation, it is suggested that, if
current trends continue, 2.7 billion adults worldwide will be
overweight by 2025. This is a 35% increase from 2.0 billion in
2014. The developmental precursor of adulthood MetS is seen in
childhood ectopic lipid storage interfering with hepatic insulin
signal transduction (Nelson and Bremer, 2010; Melka et al., 2013)
with similar acceleration rates, and presumably resulting from
epigenetic modifications and regulatory programming of obesity
genes, and likely induced by nutrition-caused alterations of the
gut microbiome (Remely et al., 2014b; Chang and Neu, 2015).

Brief History: Syndrome X to MetS
Over the last 12 years, MetS criteria have seen five major
revisions in details; however, all operationalized definitions
address specific metabolic abnormalities, hypertension and
obesity (Eckel et al., 2010). An early conceptualization of MetS
is contained in the Observationes Medicae (1641; book II, section
46 on diabetes) of the Amsterdam anatomist Nicolaes Tulp
(1593–1674). In the context of gout as diabetic complication

spoke French rheumatologist Jean Pierre Camus 1966 of a
“metabolic trisyndrome” with hyperlipidaemia. In 1975, Hans
Haller of the Dresden Academy of Medicine Carl Gustav
Carus, coined the term “metabolic syndrome,” unbeknownst
to the West, to support his observation of a coincidence of
obesity, dyslipidaemia, hepatosteatosis, and disturbed glucose
metabolism above chance level (Haller and Hanefeld, 1975;
Haller and Leonhardt, 1981). The first description of resistance
against insulin-dependent glucose uptake was proclaimed by
Gerald Reaven (Reaven, 1988), then named “syndrome X.”
Reaven built on clinical observations in the 1920s, of the
Swede Eskil Kylin (Kylin, 1921, 1923), the Spaniard Gregorio
Marañón (Maranon, 1922), and the American Elliot Joslin
(Joslin, 1921). These clinicians had postulated a syndromal
cohesion of hypertension with hyperglycaemia in prediabetes,
although currently hypertension is no longer seen as a necessary
prerequisite for MetS. But the terminology “syndrome X”
was soon abandoned, as there were also terms circulating
such as cardiac X syndrome and fragile X syndrome. In
efforts for clarification, the term was henceforth specified to
metabolic syndrome X, and then eventually shortened to the
Metabolic Syndrome; a current synonym is Reaven-syndrome
in commemoration of its modern re-inceptor. The World
Health Organization (WHO) defined MetS as a group of risk
factors for CVD and T2DM (Alberti and Zimmet, 1998):
renaming into MetS was promoted by Eckel et al. (2005);
Grundy et al. (2005a,b); Turek et al. (2005), with new guidelines
2005 and 2006 of the American Heart Association and the
International Diabetes Federation, respectively, representing
current standards.

The Quest for Causation
Abnormalities in the anterior pituitary gland and other
hypothalamic structures regulating hunger-satiety homeostasis
through the polypeptides leptin and ghrelin (Turek et al., 2005),
and the melanocortins MSH and ACTH (Iwen et al., 2008),
are considered responsible for MetS. These lead to defects
in the hypothalamic-pituitary-adrenal axis (HPA), which may
progress to the onset of T2DM. Recent evidence suggests
that imbalanced autonomic nervous system output causes the
simultaneous occurrence of T2DM, dyslipidaemia, hypertension,
and visceral obesity: MC4R neurons in amygdala, arcuate
nucleus, paraventricular nucleus, nucleus suprachiasmaticus,
and anterior pituitary regulate food intake (Turek et al.,
2005; Buijs and Kreier, 2006), energy expenditure (Balthasar
et al., 2005) or influence vasoconstriction via angiotensin
mediated activity of the sympathetic nervous system (Greenfield
et al., 2009). There is also evidence that hepatic cholesterol
reuptake is steered through parasympathetic pathways byMC4R-
expressing neurons (Perez-Tilve et al., 2010; Krashes et al.,
2016). Of endocrinologic factors, elevated cortisol levels are
suspected to contribute to insulin resistance (Lewis et al.,
2010). Such associations between sympathetic hyperexcitability,
HPA axis hyperactivation, and decreased vagally mediated
(anti-)inflammatory reflex (Figure 1), and MetS features were
found in T2DM sufferers, where elevated plasma cortisol predicts
greater prevalence of CVD (Reynolds et al., 2010).
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FIGURE 1 | Sympathetic and parasympathetic innervation of the coeliac and superior mesenteric plexus ganglia, and immune and cytokine

mechanisms in cholinergic anti-inflammatory pathway. The acetylcholinergic anti-inflammatory pathway, the efferent arc of the inflammatory reflex (Section

Inflammation and Arterial Rigidity; Tracey, 2002) converging in the spleen, has been discussed under the aspect of being a target for possible interventions

counteracting autonomic imbalance in the metabolic syndrome related to chronic inflammation. Schematically depicted are innervations from the sympathetic and

parasympathetic branches of the ANS, with their transmitters, into organ systems relevant for MetS. Left part panel (A): efferent fibers in the sympathetic branch with

adrenoceptor type. Middle part panel (B): mixed sympathetic and vagal fiber connections into the coeliac and the superior mesenteric plexus ganglia innervating liver,

pancreas and spleen. Right part panel (C): efferent fibers in the parasympathetic branch of the ANS. The insert panel (D) to the outer right hand side illustrates

schematically the role of vagus stimulation-derived, yet noradrenergic transmission into liver and spleen, and the acetylcholinergic transmission between CD4+ T

helper cells and macrophages in the spleen. Vagus departs the brainstem as its cranial nerve X, and vagal efferent outflow regulates visceral organs by

counterbalancing sympathoexcitation, inhibiting cytokine release, and safeguarding against inflammatory damage to liver, pancreas, spleen, lungs, or kidneys in

endotoxaemic states. The outflow of the vagus nerve triggers adrenergic neurons in the coeliac ganglion innervating the spleen further to liver and pancreas. Vagal

influence to spleen T lymphocytes stimulates the release of the neurotransmitter acetylcholine (ACh), and activation of the α7 subunit of the nicotinic ACh receptor (α7
nAChR; Section Inflammation and Arterial Rigidity) expressed on cell membranes of splenic macrophages and other cytokine secreting cells. Vagal tone attenuates

here production of the inflammatory response cytokine tumor necrosis factor alpha (TNFα) reciprocally related to sympathoexcitation (Zhang et al., 2003; Kisiswa

et al., 2013). In the liver, noradrenergic innervation signals hepatic innate natural killer T cells (iNKT) (Van Kaer et al., 2013) to exert systemic immunosuppression.

Increasing the vagal tone there induces a shift from pro-inflammatory T helper cell type 1 (TH1) cytokines such as interferon-γ (IFN-γ) to anti-inflammatory TH2-type

cytokines, such as interleukin-10 (IL-10) (Tracey, 2007, 2009; Rosas-Ballina et al., 2008, 2011; Trakhtenberg and Goldberg, 2011). PVNH hypothalamic insulin

promoter expressing neurons downregulate postprandial inflammation through cholinergic signaling in the spleen mediated by vagal outflow to the spleen, whereas

vagotomy results in T2DM (Carvalheira et al., 2014; Wang L. et al., 2014). Vagus stimulation approaches for increasing vagal tone would therefore aim to

counterbalance prolonged sympathoexcitation in MetS by supporting parasympathetic output. These could comprise, but are not limited to, device-based,

pharmacological, and/or psychotherapeutic intervention approaches. With the advent of wearable transcutaneous stimulation devices, vagus nerve stimulation has

become a convenient neuropsychological intervention method (Van Leusden et al., 2015). Drug discovery is still required to identify non-steroidal anti-inflammatory

substances targeting the cholinergic pathway either peripherally (such as nicotinic α7 nAChR agonist applications) and/or centrally (such as CNI-1493), or existing

TNFα antagonists such as infliximab or etanercept. Possible behavioral interventions: Guided physical activity trainings, mindfulness-based psychotherapies,

psychosomatic body-relaxation and/or balancing techniques, biofeedback training. Other: immunotherapy yet to be developed (Van Kaer et al., 2013). Medical

illustrations by Corinna Naujok, Charité Media Centre Berlin, Virchow Campus.

TRADITIONAL HYPOTHESES ON
AETIOPATHOLOGY

Malnutritional Factors
Because genetic susceptibility varies strongly amongst
different ethnicities, and because the overall gene pool did
not substantially change over the last decades, the obesity

and diabetes epidemic was assumed resulting mainly from
detrimental environment factors, such as food availabilities, diet
habits, or sedentary lifestyles.

Carbohydrate Nutritional Factors
Several studies have described a nutritional dependence of MetS
features such as hypertriglyceridaemia and other lipid traits
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(primarily low-density lipoprotein, LDL), and insulin secretion
(Lofgren et al., 2005; Volek and Feinman, 2005; Volek et al.,
2005; Forsythe et al., 2008). Caloric restriction exerted by means
of very low carbohydrate diets also reduces a range of pro-
inflammatory markers when a reduction in adipose tissue can
be reached. In reverse direction, high-calorie diet is inductive
of obesity within a one-week span, and also correlated with
elevated sympathetic activity (da Silva et al., 2014). It has,
from this perspective, been argued that MetS manifestation is
a consequence of high carbohydrate intake, as it attenuates
high fasting glucose levels, triggers insulin secretion, contributes
to high plasma triglycerides, attenuates the HDL proportion
and supports high blood pressure (Volek and Feinman, 2005;
Westman et al., 2007). A further transitional state toward MetS
is seen in the development of a fatty liver disease (NAFLD),
including dyslipidaemia, associated with sedentary life style and
lack of physical exercise (Pinto et al., 2015). High carbohydrate
intake is typically associated with microbiotic fermentation of
nondigestible polysaccharides, which are transformed into better
manageable short chain fatty acids (SFCAs, acetate, propionate,
and butyrate) that, however, increase reactive oxygen species
(ROS), pro-inflammatory cytokines, decrease gut membrane
integrity, and induce epigenetic modifications via inhibition of
histone deacetylases, thus reducing respective gene expression
(Tan et al., 2014).

Fatty Diet Consumption and Fat Uptake
Another theoretical approach assigns priority to evidence stating
fatty diet in first place rather than carbohydrates, although
there is on-going controversy as to which of the two is
more detrimental. Animal evidence suggests that consumption
of saturated fat and high-cholesterol diet resembling animal
fats is able to induce NAFLD, consistent with hepatic fat
accumulation and inflammation (non-alcoholic steatohepatitis,
NASH) as manifestation of MetS (Pavlov and Tracey, 2012;
Mells et al., 2015). Experimental results suggest that cholesterol
is correlated with leptin, interleukin-6 (IL-6), liver weight and
liver weight/body weight ratio, fibrosis and α-smooth muscle
actin (α-SMA) (a marker of myofibroblast formation) in the
liver. The alternative view (Mells et al., 2015) argues that a lower
carbohydrate and higher fat diet is more favorable in terms of
reduction of abdominal and intramuscular fat deposition and the
prevention of T2DM. Intervention studies relate this to more
favorable fasting insulin and glucose levels, as well as activation
of pancreatic β-cells.

According to novel theoretical accounts and findings (Parekh
et al., 2014; Grundy, 2015), play SFCAs fat metabolites (SFCAs,
short chain fatty acids, acetate, propionate, and butyrate)
produced by the gut microbiota a key role in arriving at insulin
resistance and obesity. These SFCAs may better serve increase
in energy expenditure, but at the cost of greater lipid storage.
SFCAs affect satiety sensing, and contribute to downregulating
neuropeptide Y and the glucagon-like peptides with the
consequence of hyperphagia. According to this theorizing enter
SFCAs more easily colonic epithelium, interact with high caloric
nutrients with the consequence of epigenetic programming.
Furthermore, this may lead to a bias of the immune system

by activation of T cells in the gastrointestinal tract, their
migration into adipose tissue, and to maintenance of low-level
inflammation (Chang and Neu, 2015). The evaluation of existing
research findings also suggests that dysbiosis due to high-fat diet
and reduction of gut biodiversity increases permeability of the
intestine (Winer et al., 2016), with the consequences of systemic
circulation of gut hormones and pro-inflammatory cytokines,
and of reduction of proper functioning of mesenteric lymph
nodes.

Sodium and Natriuresis
Salt sensitive regulation of blood pressure is documented
in animal and human studies (He et al., 2013), and more
pronounced in specific populations in accordance with genotype
and environmental interactions (Sanders, 2009). Specifically,
genes regulating renal function toward sodium excretion with the
cytochrome enzyme class P450 (CYP11B2, CYP4A11, CYP3A5,
see also Section Obesity: Lipid Transport and Storage) via
aldosterone synthesis, and dopamine-receptor-1-mediated salt
excretion, have been associated to blood pressure lowering
in hypertensive rodents. Salt consumption and sodium levels
related to essential hypertension have been substantiated for
several decades (Svetkey et al., 1987; Deter et al., 1996, 2002,
2007a,b; Buchholz et al., 1999), and been found to be influenced
by emotional arousal (anger, anxiety) involving sympathetic
outflow. A recent epidemiological study quantified the explained
variance for trait anxiety upon high blood pressure to 6%
(Lemche et al., 2016) in MetS. Analyses of population study
databases (Oh et al., 2015) confirmed a linear dependence of
sodium excretion, blood pressure measures, glucose and insulin
levels, lipid traits, and several fat mass measures in MetS patients,
even in the absence of clinical hypertension, thus making it
a new nutritional risk factor of MetS. High sodium intake
showed positive linear association with glucocorticoid secretion
and metabolites, insulin resistance, and inverse association with
adiponectin (Baudrand et al., 2014).

Whereas, nutrition-related risk factors are critical for all the
metabolic causations (Szczepanska-Sadowska et al., 2010; Thorp
and Schlaich, 2015) nominated for MetS in recent theoretical
concepts on MetS, namely (a) overeating, (b) insulin resistance,
(c) visceral adiposity, (d) arterial stiffness, for the one non-
metabolic, namely (e) chronic stress, mechanisms are located in
central and autonomic nervous systems.

Stress-Related Factors
Although stress has been implicated in the pathophysiology of
MetS for decades (Brindley, 1995; Peeke and Chrousos, 1995),
the best-regarded epidemiological evidence on this risk factor
is commonly attributed to the Whitehall II study. Whitehall II
is a prospective cohort study of >10 k British civil servants,
which are being investigated stratified for employment grade
and including diurnal cortisol probes. The overall finding from
the stratified results Brunner et al. (2002); Chandola et al.
(2006, 2008) is that psychological stress measures accounted for
37% explained variance of the correlation between MetS and
normetanephrine, heart-rate variability, cortisol and interleukin-
6, whereas health behaviors explained 18% in neuroendocrine
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responses. Cross-sectionally, there was a relation of work stress
to cortisol secretion, and longitudinally, a dose-response relation
between chronic stress and MetS.

The first reports on MetS as long-term sequela of
posttraumatic stress disorder (PTSD) appeared in context
of paediatrics and childcare. Reports investigating drug abuse in
veterans stated strong obesity figures, hypertension, T2DM and
dyslipidaemia, which were not attributable to drug consumption.
Three recent meta-analyses (Edmondson et al., 2012; Bartoli
et al., 2013; Rosenbaum et al., 2015) confirmed an increased
risk (ORs 1.6–2.0) for MetS and CVD in PTSD sufferers, with
35–50% prevalence of single MetS components (whereby only
20% expectable). The occurrence of MetS was further related to
accelerate T2DM with accelerated age-related cognitive decline
in veterans suffering from PTSD (Green E. et al., 2015).

Vagal-Sympathetic Imbalance
There is increasing evidence for autonomic imbalance in MetS,
the exact nature of this sympathetic hyperexcitability appearing
to have primarily consequences for the development of obesity
and insulin resistance. Known are age differences in the balance
of vagal and sympathetic cardiac and vasomotor regulation (Hart
et al., 2014), resulting in lesser sympathetic activity in elderly,
which would thence bias toward prediabetes by increasing age.
Blunting of SNS outflow toward glucose intake is a characteristic
response of diabetic MetS sufferers (Straznicky et al., 2009). On
the other hand, it is a replicated finding that the “vagal brake,”
namely heart rate recovery after arousal, is absent in MetS, and
that this prolonged sympathoexcitation is also associated with
single MetS components (Deniz et al., 2007; Kim et al., 2009).
Evidence for chronic sympathoexcitation in MetS consists in (a)
elevated urinary and plasma noradrenaline levels, (b) enhanced
efferent muscle nerve activity, but not necessarily essential
hypertension (Thorp and Schlaich, 2015). SNS hyperreactivity
decreases muscular blood flow and glucose uptake thus leading
into insulin resistance. Heightened sympathetic outflow further
acts toward β-adrenoceptor sensitization. Microneurography
of postganglionic sympathetic responses in firing bursts is
here the best feasible measurement. Consistently replicated
evidence shows that peripheral sympathetic muscular firing
rates in MetS are related to its obesity component (Grassi
et al., 2005; Straznicky et al., 2008). Efferent sympathetic traffic
correlated with abdominal obesity and was inversely correlated
with baroreflex functioning. SNS muscular neurography rates
covaried with plasma noradrenalin; this is in contrast to cardiac
sympathetic components (Mancia et al., 1998), which are less so.
However, it has been shown that high levels of fasting insulin,
an index of insulin resistance, were positively associated with the
low-to-high frequency (LF/HF) ratio of the heart rate variability
(HRV)—an index of the sympathovagal balance at the heart level
(Emdin et al., 2001). Recent experimentation has demonstrated
that simple vagotomy leads quickly into insulin insensitivity
and T2DM (Wang L. et al., 2014). Insulin promoter neurons
in the paraventricular, arcuate, dorsomedial, ventromedial, and
lateral hypothalamic nuclei signal to the phosphoinositide 3-
kinase (PI3K)/mTOR pathway (Richard, 2015) critical for cell
survival to exert control upon the vagus through efferent neurons

in the nucleus tractus solitarius and dorsal motor root nucleus of
vagus, ultimately terminating in the spleen (Wang L. et al., 2014).

Effects of Sympathetic Outflow
In the meantime have a number of studies also suggested that
development of insulin resistancemay be induced by sympathetic
activity (Masuo et al., 1997; Julius et al., 2000; Esler et al., 2006;
Rafiq et al., 2015) based on associated TNFα contribution (Pavlov
and Tracey, 2012). However, a correlation between insulin
secretion and peripheral sympathetic activity is not generally
present (Masuo et al., 1997; Curry et al., 2014), specifically not
in young healthy individuals. It may thus be concluded that
additional factors, such as nutritional state and/or age range (see
above), may be required to develop insulin resistance. It is also
possible that insulin resistance and hyperinsulinaemia develop
as consequence of an obesity-SNS interaction that then triggers
elevated adipokine levels (Thorp and Schlaich, 2015) inducing
T2DM (see Section Melanocortin Receptors and Binding Sites).

Current models of sympathetic effects on renal functions
assume (Rafiq et al., 2015) that SNS hyperarousal leads to elevated
plasma noradrenalin release levels and renal upregulation of
glucose transporters (which then trigger insulin secretion from
pancreatic β-cells). When tissue, skeletal, and hepatic glucose
uptake decreases, blood glucose level and plasma insulin increase,
and result in insulin resistance. In this model, SNS induces
T2DM by hypertension, but it may therefore not suffice for
hyperinsulinaemia in MetS. Essential hypertension may simply
be a consequence of preferential fat mass accumulation around
kidneys, thus physically interrupting normal functioning of
the renin-angiotensin-aldosterone system (RAAS) (da Silva
et al., 2014), with the consequence of diminished renal-pressure
natriuresis. Typically, however, there is a certain interrelation
between obesity and hypertension (da Silva et al., 2014), although
in MetS, hypertension may be absent, and vice versa. Also,
in many instances, obesity, and hypertension present as non-
covarying, thus suggesting partly distinct pathophysiological
mechanisms. Repeatedly have physiological parameters obesity
and hypertension (Lemche et al., 2016) in MetS samples formed
distinct latent factor-analytical clusters. Not peripheral SNS
activation leading to general vasoconstriction, but specific renal-
sympathetic effects on the RAAS involving sodium retention is
experimentally documented to result in essential hypertension
(da Silva et al., 2014).

Catecholamine System-Related
In 1986, Landsberg (Kaufman et al., 1986; Landsberg, 1986;
Landsberg and Young, 1986) first described an association of
sympathetic outflow and noradrenaline levels, and carbohydrate
(but not protein) intake (Kaufman et al., 1986; Landsberg,
1986; Landsberg and Young, 1986), with subsequent insulin
action and thermogenesis, finally resulting in hypertension. With
respect to hypertension, angiotensin II release was found related
to noradrenergic function (Taddei and Grassi, 2005). Because
catecholamine release is directly related to SNS hyperreactivity
(Section Malnutritional Factors), these two factors are usually
considered as one system, primarily mediating short-term stress
response [also termed sympathomedullo-adrenal (SMA) axis].
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Glucocorticoid System Related
Cortisol secretion, in contrast, is a physiological response to
cope with repeated anxiety triggers as a result of chronic
stress (Brown et al., 1982; Fisher et al., 1982; Rivier et al.,
1982). Because of striking metabolic parallelisms of MetS
and Cushing’s Syndrome, the latter is generally considered a
clinical model disease for MetS (Anagnostis et al., 2009). While
hypercortisolism was early suspected to be causative for MetS
(Brindley, 1995; Peeke and Chrousos, 1995), first diachronic
evidence that chronic stress is largest cause of MetS via HPA
and glucagon upregulation (Brunner et al., 2002; Wang, 2005)
was documented in the Whitehall II sample of middle aged
(Anagnostis et al., 2009). In higher ages, then, there is direct
synchronic association between cortisol levels and MetS criteria
(Vogelzangs et al., 2007; Almadi et al., 2013). Whilst attempts
to linking MetS components with diurnal cortisol secretion were
not always successful (Abraham et al., 2013) (for methodological
or endocrine reasons), controversies have finally been resolved
by the corroboration that the extent of hair cortisone deposition
is related to abdominal obesity and other MetS components
(Stalder et al., 2013; Kuehl et al., 2015).

Inflammation and Arterial Rigidity
Originally, adiposity was assumed to be the mere cause of MetS
(and hence MetS but the exaggeration of obesity), but it is
a relatively novel notion (Grundy, 2015) that it is rather the
array of agents secreted by white adipose tissue, amongst them
adipokines and cytokines, inducing chronic latent inflammation
in MetS and obesity (Tilg and Moschen, 2006; Pavlov and
Tracey, 2012). Adipokines consisting of leptin, adiponectin and
others, pro-inflammatory cytokines (ILs1∼18, tumor-necrosis
factor-α TNFα), metabolic factors (resistin, visfatin, adipocyte
fatty acid binding protein 1, apolipoprotein E), acute phase
and immune proteins (CD40, CD40L, C-reactive protein CRP,
serum amyloid A3, plasminogen activator inhibitor-1 PAI-
1, macrophage migration inhibitory protein 1 MIP1), several
angiogenic and endothelial growth factors, and angiotensinogen
(Ali et al., 2013). Adipokines influence satiety sensation and
pancreatic insulin responses, while cytokines introduce a pro-
inflammatory, and pro-thrombotic state with elevated levels of
CRP, TNFα, and IL-6 regulated by immune transcription protein
NF-κB activation (Jimenez-Gomez et al., 2013) of dependent
cytokine gene loci. Nuclear factor NF-κB also is, along with
other factors (IL-6, cytokine signaling suppressor proteins, and
endoplasmic reticular oxidative stress) (Tilg and Moschen,
2006), implicated in inflammation-induced T2DM (Cyphert
et al., 2015), however, its own two gene loci (NFKB1 4q24
and NFKB2 10q24) have not been found associated with MetS
themselves. NF-κB activation is though indirectly crucial for
mediation of leptin and insulin effects on hypothalamic POMC
expression (Plagemann et al., 2009). Postprandial inflammatory
and immune responses (particularly pronounced toward high-
fat and sucrose diets) are currently seen as a normal transitional
state during digestion, and hence the Metabolic Syndrome as
an exaggerated and enduring postprandial inflammation state
(Pavlov and Tracey, 2012). Clinical evidence suggests that
increased inflammationmarkers couldmore closely be associated

with MetS components (as seen in atypically depressed) than
with dysregulated HPA axis and higher cortisol levels (as seen
in melancholy) (Lamers et al., 2013). Pro-inflammatory markers
CRP and IL-6 are associated with total bodily fat mass impairing
physical performance in higher ages (Beavers et al., 2013).
Inflammation marker CRP is also the mediatory variable linking
MetS with later age-related reduction of cognitive capacities (Dik
et al., 2007).

Excitation of Inflammatory Response
The exact mechanism of chronic low-level inflammation induced
by action of adipose tissue is based on T-cell and macrophage
accumulation (with expression of key adipogenic factors,
PPARγ, CCAA-enhancer-binding protein C/ebpβ, insulin-like
growth factor IGF, and toll-like receptors 2 and 4 TLR2/4s)
in adipocytes (Sun et al., 2012; Ali et al., 2013; Lefterova
et al., 2014), and a lack of vagally mediated downregulation
of the “inflammatory response” in MetS (Pavlov and Tracey,
2012; Figure 1). Hepatic afferent stimulation of the vagus
nerve via the nucleus tractus solitarius excites efferent vagal
outflow counteracting excessive cytokine production and thus
ameliorating inflammatory responses. This limiting mechanism
to the inflammatory response, the (anti-)“inflammatory reflex,”
requires the expression of α7 nicotinic acetylcholine receptors (α7
nAChR), a ligand-gated ion channel expressed on macrophages,
lymphocytes, and neurons, in the cholinergic signaling pathway
(Olofsson et al., 2012). Obesity is further characterized by
decreased energy expenditure, and heightened food intake,
while high levels of leptin are released (Barnes and McDougal,
2014). In this context, also SNS activation is involved: Adipose
tissue is only innervated by sympathetic nerves (Thorp and
Schlaich, 2015), and lipid storage (uptake of fatty acids as
triacylglycerides) is also dependent of binding of catecholamines
and the pancreatic hormone glucagon to β-adrenoceptors on
the surface of adipocytes, thereby activating adenylate cyclase
(resulting in cAMP intracellular signaling; Ali et al., 2013).
Accumulation of white adipose tissue in obesity is accompanied
with indicators of inflammation IL-6 and CRP, but recent
evidence suggests that (a) muscle sympathetic activity, and (b)
vasomotor activity influencing hypertension are independent of
tissue inflammation (Barnes et al., 2014). However, there seems
to be a specific interaction of pro-inflammatory cytokine CRP
and cortisol in MetS, leading to inhibition of lipoprotein lipase
activity and concentration of nonesterified fatty acids (NEFAs)
(Perry et al., 2001) in adipose tissue.

Inhibition of Inflammatory Response: The

Anti-Inflammatory Reflex
It has been found that agouti-related protein (AgRP, Section
Neuropeptide Y and Agouti-Related Hormone Receptors and
Binding Sites) stimulates the HPA axis to release ACTH, cortisol,
and ACTH in response to IL-1β in adipose tissue (Xiao et al.,
2003), suggesting that elevated cortisol secretion in MetS could
be inhibitive to adipose tissue inflammation. It is yet unclear,
however, whether this is a mechanism that could replace or
override the vagally mediated cholinergic signaling as part of
the efferent branch of the anti-inflammatory reflex arc (Figure 1
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and above). This would then be a reinforcing effect of plasma
cortisol as part of the inflammatory response, in which TNFα and
sympathoexcitation are reciprocal (Zhang et al., 2003). However,
there is novel evidence also suggesting a secondary CRH system
outside the HPA in adipose tissue (Section Adiponectin and
Genomic Bases) (Seres et al., 2004; Fahlbusch et al., 2012;
Subbannayya et al., 2013; Dermitzaki et al., 2014).

Inflammatory and Oxidative Stress Related to CVD
Increased inflammatory markers are also a concomitant of
insulin resistance onset (Moreira et al., 2015) induced with
adiponectin, resistin, and TNFα. Leptin also induces the
production of nitric-oxide synthase 2 (NOS2) and, thereby,
ROS. Angiotensin II (see below) and superoxide or ROS are
amongst the main endothelium-derived constriction factors
(Kang, 2014; Young and Davisson, 2015). It is hereby assumed
that hyperoxigenation of LDL is the source of endothelial
plaque genesis. ROS generation is assumed being caused
by excess nutrient processing in mitochondria, triggering
even further ROS accumulation, and impairing endoplasmic
reticulum (ER) function in protein folding (Hotamisligil,
2010a,b; Hummasti and Hotamisligil, 2010). Vagally induced
relaxation of endothelium occurs by acetylcholine signaling
(Figure 1) and is critical for release of the endothelium-derived
hyperpolarizing factor (EDHF). Normal regulation of vascular
tone is increasingly impaired by reduction of EDHFs leading
to endothelial dysfunction associated with CVD (Young et al.,
2015).

Endothelial Dysfunction and Angiotensin II Release
In addition to the immunological and inflammatory factors
detailed above, adipose tissue produces also the peptide
angiotensin II, a regulator of hydrolysis in the RAAS via
hypothalamic AT1-receptors. In blood vessels, AT1-receptors
induce vasoconstriction, and thus may promote thrombosis
and vascular injury (Perry et al., 2001). Increasing imbalance
between vasoconstrictors and vasodilators or relaxants (Moreira
et al., 2015) then causes impairment of baroreflex functioning
through atherosclerosis. Impairment of baroreflex functioning is
considered being a main cause of MetS, although hypertension is
not essentially necessary for MetS. Hypothalamic arcuate nucleus
is the regulatory site for insulin and lumbar baroreflex action
(Cassaglia et al., 2011), and efferents via the paraventricular
nucleus pathway.

GENOMIC FOUNDATION OF BASIC
REGULATORY MECHANISMS IN METS

Obesity: Lipid Transport and Storage
With both obesity and hyperlipidaemia are two MetS features
related to deposition and metabolism of lipids. There is
accumulating evidence (Farmer et al., 2008; Rivera et al., 2012;
Cole et al., 2014) that genetic and epigenomic mechanisms
steering lipid transport, uptake, and catalysis are central to MetS
pathophysiology. In this general context, mediation of SNS for
lipid transport and storage is present, as α2-adrenoceptors inhibit
lipolysis, and β2/3-adrenoceptors trigger lipolysis in adipose

tissue, in addition to regulatory functions for glucagon, insulin,
renin, and ghrelin secretion.

Genomic Loci of Plasma Lipid Traits
Plasma lipid traits are regulated by genomic loci interacting.
One hundred and eighty five common variants were described
in two large-scale studies of the Global Lipids Consortium
(Teslovich et al., 2010; Do et al., 2013), amongst them APOA1,
APOB, APOE, and TRIB1. Many SNPs are in close vicinity to
those 18 loci known to cause Mendelian lipid disorders, such
as the TRIBAL locus downstream from TRIB1, and exhibiting
reciprocal regulatory expression (Proudfoot, 2011; Douvris et al.,
2014). Within these apolipoprotein genes, specific genetic factors
for MetS (i.e., SNPs relevant for MetS risk) became evident
in the Diabetic Heart Study (Adams et al., 2014), and others
(Crosby et al., 2014; Gaio et al., 2014): rs3135506 (Ser19Trp,
APOA5), rs651821 (5′UTR, APOA5), rs13832449 (splice donor,
APOC3) (Crosby et al., 2014). The APOA5 on locus 11q23,
has binding affinity with LDL-Receptor gene (Nilsson et al.,
2008), and the APOA5-related HTG specifically risky for CHD
(Zhou et al., 2013). APOA5, APOC3, APOA1, and APOA4 loci
are closely clustered in 11q23 (Nilsson et al., 2008), with SNPs
rs2972146 near IRS1 locus shown associated with increased risk
of T2DM, insulin resistance and hyperinsulinaemia (Teslovich
et al., 2010); rs1042034 of APOB related to HTG as main
lipoprotein of chylomicrons and lipid-rich particles (Teslovich
et al., 2010), located on chromosome 2. APOC3 is related
to VLDL, and affects lipid levels by postponing triglyceride
catabolism (Russo et al., 2001). In reverse: a missense mutation
lowers plasma triglycerides and CVD risk (Crosby et al., 2014).
APOA-V suppresses exuberance of triacylglycerides (Pennacchio
et al., 2001) by creating a feedback-loop for downregulation of
apolipoprotein A5 (Caussy et al., 2014).

Genomic Loci for Fat Mass Accumulation
The European multicentre study of Aulchenko had shown
that further to cholesterol/lipoprotein metabolism also lipid
transport/obesity is a second cluster in CVD risks. The major
locus amongst lipolysis genes is the LIPE (19q13.2) gene encoding
lipase, where carriers of the D-allele show distortion in lipid
metabolism and insulin sensitivity (Albert et al., 2014), also
in CYP2C19, a monooxydase protein of the cytochrome P450
family, involved in catalysis of lipids, cholesterol and other
steroid hormones such as cortisol (Gaio et al., 2014). It is possible
that, in the MetS constellation, additional risk genes are relevant,
such as CYP2C19 (10q24) (Gaio et al., 2014). The major lipid
storage genes are those for the peroxisome proliferator-activated
receptor γ (PPARG 3p25) mainly found in adipose tissue (Gu
et al., 2014), and furthermore the obesity-related FTO (16q12.2)
(Yang et al., 2014). A common variant of the latter rs9939609
has been found relevant for MetS components, hypertension,
dyslipidaemia and CVD (He et al., 2014; Liguori et al., 2014).
Common and rare variants in themelanocortin-4 receptorMC4R
locus 18q21.32 (rs74861148, rs483125, and rs11872992) or its
promoter region were associated with triglycerides, obesity and
T2DM (Bazzi et al., 2014; Katsuura-Kamano et al., 2014; Muller
et al., 2014).
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T2DM: Melanocortins and Insulin
Resistance
Two hundred and twenty one million individuals were suffering
from T2DM in 2010 worldwide, and expected are 300 million
sufferers by the year 2025 (Zimmet et al., 2001). Regarding
the heritability of T2DM, it is currently conceived that
gene polymorphisms pertaining to obesity, insulin resistance,
dyslipidaemia, glucose uptake and pancreatic β–cell dysfunction
coact in a way that ultimately results in T2DM (Ridderstråle and
Groop, 2009). Genetic susceptibility is a necessary prerequisite to
develop T2DM: in monozygotic twins there is 70% concordance,
and in parent-offspring there is a risk of more than 40%
probability (Lyssenko et al., 2005). T2DM is both a monogenic
and a polygenic condition with a multitude of genes involved
(Stumvoll et al., 2005). Eighteen T2DM gene loci have been
isolated in genome wide scans (GWAS), the best replicated
of which are melanocortin receptor-4 (MC4R), T-cell factor 7-
like 2 (TCF7L2), and peroxisome proliferator-activated receptor
gamma (PPARG) (Stumvoll et al., 2005; Ridderstråle and Groop,
2009) genes, but each gene with relatively small effect size (ORs
0.8–1.3).

Characterization of Functions
In several populations has the TCF7L2 (10q25.3) locus shown
association with T2DM (Assmann et al., 2014; Ouhaibi-Djellouli
et al., 2014). This locus encodes a transcription factor implicated
in blood glucose homeostasis. It also regulates total cholesterol,
LDL and HDL, and was found contributing to MetS in the
context of increased CHD mortality (Khoroshinina et al., 2014).
Peroxisomes are normally small cytoplasmic vesicles oxidizing
by their enzymes fatty acids, and are also related to glucose
metabolism. The PPAR nuclear receptors, which include PPARα,
PPARδ, but particularly PPARγ, are transcription factors that
mediate effects of fatty acids and their derivatives on gene
expression, are, together with the mutually co-expressed C/ebpβ,
the “master regulators” of adipogenesis (Lefterova et al., 2014).
The protein encoded by PPARG (3p25) regulates adipocyte
differentiation (Ali et al., 2013). All three PPARs, but especially
PPARγ, are expressed in macrophages and modulate adipose
tissue inflammation. PPARG was associated with T2DM in
several populations (Black et al., 2015; Katome et al., 2015).
Specifically the MC4R, less so MC3R, is expressed in the
CNS widely (Millington, 2007) and related to feeding (and
other) behaviors. Defects in the MC4R (18q22) lead to infantile
hyperphagia, childhood obesity, elevated plasma insulin levels,
and growth acceleration. TheMC4Rwas alone or in combination
with the FTO gene related to T2DM and food intake (Huang
et al., 2011; Statsenko et al., 2013), and CVD. As the MC4R
is capable to bind to a larger array of melanocyte stimulating
hormones (MSHs), or melanotropins, specific mechanisms
of action lie in the different ligands and probably cerebral
locations. MSHs are a group of peptide hormones synthesized
in hypothalamus and pituitary, binding to the same group
of melanocortin receptors (MC1-5Rs). Melanotropins modulate
central energy expenditure and regulate hunger feelings. From
the proprotein pro-opio-melanocortin (POMC), α-MSH, β-
MSH, and two γ-MSH isoforms are derived by cleavage. In the

group of melanocortins is also adrenocorticotropin (ACTH), a
derivate of POMC. Another polypeptide (derived with ACTH
from POMC) is lipotropin (β and γ), which has central functions
in lipolysis, lipid transport, and in steroid genesis. Yet another
group of fragments are the endorphins, with proenkephalins A
and B, and met-enkephalin. MC3Rs and MC4Rs and POMC
neuron activations, further to leptin receptors, have evolved as
key components with triggering cardiovascular consequences in
MetS (da Silva et al., 2014; Section Melanocortin Receptors and
Binding Sites).

Catecholamine Genomic Bases and
Regulation
Stress has long been implicated as a non-metabolic causation
in the pathogenesis of MetS (Hjemdahl, 2002), and theoretical
accounts of MetS pathophysiology list endocrine factors of
stress regulation in reciprocity with factors of cardiovascular
regulation, metabolic regulation, and inflammatory regulation
(Szczepanska-Sadowska et al., 2010). Short-term stress
is mediated in the autonomic nervous system directly
by its sympathetic branch, and through transmission by
catecholamines, specifically neurotransmitter noradrenaline,
under regulation by the catechol-o-methyltransferase (COMT
22q11.2) gene (Kopin et al., 1978).

Catechol-o-methyltransferase
COMT has been considered repeatedly when investigating the
frequent comorbidity of major psychiatric disorders and MetS.
The microdeletion syndrome at locus 22q11.2 interrupts COMT
expression, resulting into a neurodevelopmental schizophrenia
phenotype (Napoli et al., 2015), in which increased glycolysis and
higher plasma cholesterol and triglyceride concentrations were
found. The low-activity allele COMT Val158Met polymorphism
is related to a subclinical MetS-phenotype involving elevated
heart rates, blood pressure, abdominal obesity (Annerbrink
et al., 2008). During normal aging, COMT and brain-derived
neurotrophic factor (BDNF) showed additive effects on decline
in executive functioning in interaction with apolipoprotein E
metabolism (Sapkota et al., 2015).

Noradrenaline Signaling
The SNS is triggered from the amygdala (central and basolateral
nuclei) in the presence of stress signals, as human effective
connectivity studies have indicated (Lemche et al., 2006). In
the brainstem, the main synthesis site in the rostral pons for
noradrenaline is the locus coeruleus, besides the adrenal medulla.
The projections to the major midbrain and cortical regions are
exerted by noradrenergic neurons. We therefore move the focus
upon noradrenaline, as the principle neurotransmitter of the
SNS. Experimental physiological evidence isolated sympathetic
activity and noradrenaline action explaining blood pressure
variance (Fossum et al., 2004) during acute stress, thereby
potentiating hypertensive action is in MetS (Huggett et al.,
2004; Grassi et al., 2007). The adrenoceptor types α1 and
α2 are employed in noradrenaline uptake and signaling,
thereby inducing vasoconstriction, and relaxation, respectively,
in smooth muscles. Adrenoceptors β1−3 are more specifically
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involved in metabolic processes, binding triggers intracellular
concentrations of cAMP as second messenger. Cardiac output,
renin, ghrelin (β1), and lipolysis, insulin secretion, glycogenolysis
(β2,3), are mediated by this receptor class, making them relevant
for MetS.

Adrenoceptor Gene Loci
In their genomic bases, ADRB1 (10q25.3) releases heterodimers
that influence BMI, body weight regulation, blood pressure,
and basic metabolic rate. GWAS have revealed that heart
rhythm problems, failure, and blood pressure dysregulation are
correlated with this locus (Gao et al., 2014), and its Arg389Gly
polymorphism with obesity (Dudchenko et al., 2014). Different
polymorphic forms, other variants, and epigenetic modification
of the ADRB2 (5q31-32) gene have been correlated with obesity
and T2DM, hyperinsulinaemia, NAFLD, and hyperleptinaemia
(Bulatova et al., 2015). These are related to its mediation of
hepatic blood flow with glycogenolysis and gluconeogenesis, and
insulin secretion from pancreas. ADRB3 (8p11.23) is mainly
expressed in brown and white adipose tissue, and becomes
activated in energy expenditure, thermogenesis and lipolysis.
Diseases associated with ADRB3 include obesity based on
MC4R deficiency. In addition, the gene is also expressed in the
vascular endothelium where it is involved in lipolysis, glucose
uptake, cardio-inhibition and relaxation. Hypermethylation of
the ADRB3 gene promoter in blood and visceral tissue is
associated with metabolic disturbances (Guay et al., 2014), such
as dyslipidaemia. Polymorphisms in the β3-adrenoceptor gene
were observed with insulin resistance and high lipid profiles
related to T2DM and MetS (Burguete-Garcia et al., 2014).

Noradrenaline Transporter Gene
The noradrenaline transporter gene SLC6A2 (NET 16q12.2) is
central to noradrenaline homeostasis and presynaptic reuptake.
Its SNP rs2242446 has been correlated to anxious arousal
and PTSD (Pietrzak et al., 2015). SLC6A2 expression is
restricted to noradrenergic neurons that innervate the adrenal
medulla. Further links to MetS are in its involvement in
cardiovascular regulation, obesity/weight regulation hepatic
regulation, which though has not been systematically investigated
yet. There is evidence that a SNP (Ala457Pro) in the NET
gene (SLC6A2) may be underlying orthostatic autonomic
dysregulation (Tellioglu and Robertson, 2001). An epigenetic
mechanism (hypermethylation of CpG islands in the NET
gene promoter region) that results in reduced expression
of noradrenaline has also been described for orthostatic
tachycardiac dysregulation, but not been replicated for panic
disorder (Bayles et al., 2013).

Glucocorticoid and 11β-HSD-1 Genomic
Bases and Regulation
Two stress pathways, including both the hypothalamic–
pituitary–adrenal axis (HPA), and the noradrenergic sympathetic
nervous system, have been considered relevant to MetS (Lambert
et al., 2010). Long-lasting stress, in specific, is believed being
maintained by enduring imbalance of theHPA, through secretion
of the corticotropin-releasing hormone (CRH) resulting in

hypercortisolism. Short-term sympathetic-noradrenergic action
has been linked to state anxiety (Ziegler et al., 2012), whereas
trait anxiety and “anxious temperament” (AT; both terms are
used interchangeably in neuroscience) is located in hyperactive
anxiety midbrain circuits: Anterior hippocampus, amygdala,
and ventral striatum have been found to elevate cortisol levels
through HPA axis hyperreactivity (Oler et al., 2010; Dinel et al.,
2011; Rogers et al., 2013).

Corticotropin-Releasing Hormone Gene
Synthesized in the hypothalamic paraventricular nucleus, CRH
release is also triggered by TNFα and IL-6 resulting from
inflammatory states in order to dampen the immune response,
and to adjust endogenous cortisol release controlling the
inflammatory response. The expression of CRH1 (8q13.1) has
been related to hypoglycaemia (Nussey et al., 1993), and its
activation has been found central to fetal programming of later
obesity (Stout et al., 2015). In contrast to SMA activation,
cortisol release in response to repeated stress habituates
more quickly (Schommer et al., 2003), but leads eventually
into immunodeficiency by impairing CD19-promoted B-cell
generation (McGregor et al., 2015). Furthermore, a second
adipose glucocorticoid system has been described besides to the
CNSHPA signaling pathway recently. Here it has been found that
also adipose tissue expresses the neuropeptide CRH as part of
the inflammatory response (Section Inflammation and Arterial
Rigidity), together with in the immune system toll-like receptor-
4 (TLR4), the production of inflammatory cytokines IL-6,
TNFα and IL-1β, chemokine IL-8, monocyte attractant protein-1
(MCP-1), and of the adipokines adiponectin, resistin, and leptin
(Dermitzaki et al., 2014). A second vertebrate corticotropin-
releasing hormone gene CRH2 has recently been discovered but
there is still a lacuna in human research (Grone and Maruska,
2015). In humans, the glucocorticoid receptor protein is encoded
by NR3C1 gene, which is located on chromosome 5 (5q31).
NR3C1 mediates the regulatory response to glucocorticoid
response elements in the promoters of glucocorticoid responsive
genes to activate their transcription, and as a regulator of other
transcription factors. It has been found linked to MetS through
mechanisms of epigenetic modification by histonemethylation in
response to early life trauma (Martin-Blanco et al., 2014; Palma-
Gudiel et al., 2015) in e.g., personality and eating disorders.

Corticotropin Receptors and ACTH signaling
There are two subtypes of CRH receptors, both of which express
ACTH, when bound by CRH. Corticotropinergic neurons are
mainly located in the anterior pituitary, also in amygdala,
hippocampus and locus coeruleus. The HPA signaling pathway is
mainly dependent on corticotropin-releasing hormone receptor
type 1 (CRH1) polymorphism on exon 6 of CRHR1 (locus 17q12-
q22 in humans) (Rogers et al., 2013). Within the hippocampus,
the CRHR1s are most abundant, but also present in liver tissue.
Both CRHR1 and CRHR2 genes are strongly expressed in adipose
tissue. CRHR1 (17q21.31) association is frequent in depression,
and thus relevant to MetS, since depression is a frequent MetS-
comorbidity. The CRHR2 (7p14.3) gene has been described
involved in cardiovascular homeostasis, PTSD, and thus general
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susceptibility toward stress (Wolf et al., 2013). Their activation
product, ACTH, is synthesized in basophile neurons of the
anterior pituitary under regulation by CRH from its precursor
POMC. ACTH, in turn binds to melanocortin receptors (Section
T2DM: Melanocortins and Insulin Resistance).

Regulation of Cortisol Biosynthesis
Cortisol biosynthesis needs as a coenzyme the heme-containing
cytochrome P450, secreted after oxidation from cholesterol in
adrenal mitochondria in the zona fasciculata to pregnenolon, and
also co-regulated by ACTH. The final stage of cortisol synthesis is
reached by 11β-monooxygenases (2 isoforms, both CYP11B1 and
CYP11B2 are on 8q21-q22), adrenal members of the cytochrom-
P450 family, and their malfunction will result in missing
feedback signaling to ACTH. The gene locus P450 (cytochrome)
oxidoreductase (POR 7q11.2) encodes the endoplasmic reticulum
membrane oxidoreductase, involved in steroidogenesis as well.
As the gene product of POR is required for the activation of
the microsomal P450-enzymes, several hepatic CYP-enzymes are
hampered in their activity through mutations pertaining to these
functions. Under the aspect of steroidogenesis, are impaired
acyl-carbon bond cleaving cytochrome enzymes CYP17A1,
CYP21A2, and CYP19A1. Respective mutations in their gene
loci were observed relevant to the regulation of lipid traits, in
specific hypercholesterolaemia, and blood pressure (Lu et al.,
2015).

Cortisone-Cortisol Interconversion
11β-dehydroxysteroid dehydrogenase (HSD-11β) is a catalytic
enzyme and a membrane protein of the endoplasmic reticulum
converting free cortisol to inactive cortisone (and in type 1
isozyme, also vice versa through 11-oxidoreductase activity), in
two isoforms 1 and 2, and eight known structures. As mentioned,
isoform 1 also performs the reduction of cortisone to active
cortisol in CNS, liver and adipose tissue, and, as has been
suspected, thereby amplifying cortisol action (Seckl and Walker,
2001).

Isoform 2 oxidizes free cortisol to cortisone, a process seen
in placenta, testes, lungs, or kidneys. For this reason 11β-HSD-2
has been implicated in neurodevelopmental susceptibility for the
programming of diathesis toward chronic stress (Sousa, 2016).
By this conversion it is prevented that the abundant ligand
cortisol binds to the mineralcorticoid receptor (MR) in addition
to the glucocorticoid receptor, thus securing only aldosterone
being able binding to MR. The HSD-11β conversion activity
is mainly a process in adipose tissue, with its distinct CRH-
system described above, but exerting feedback effects upon the
CNS HPA axis. It has therefore been proposed counteracting
HSD-11β in adipose tissue as a treatment for MetS by both
pharmacological and psychological interventions on central HPA
and peripheral cortisol systems (Anagnostis et al., 2009). Green
tea has shown potency to prevent hepatic cortisol activation
by type 1 isozyme HSD-11β (Hintzpeter et al., 2014). Because
of its amplificatory action of active glucocorticoids, isoform 1
HSD-11β, has been assumed be a pathogenic factor in MetS,
T2DM, and age-related cognitive decline (Seckl and Walker,
2001).

HSD-11β Gene Loci
The protein encoded by the HSD11B1 (1q32-q41) gene is a
microsomal enzyme that catalyses the conversion of the stress
hormone cortisol to the inactive metabolite cortisone and reverse
(see above). Too much cortisol can lead to central obesity,
and several variations (rs10082248, rs2298930, and rs4545339)
in this gene have been associated with obesity and insulin
resistance in children (Ruan et al., 2014). Cortisol interconversion
is mainly relevant at the visceral tissue level (Kilgour et al.,
2015). There is initial evidence thatHSD11B1 expression predicts
insulin resistance (Koska et al., 2006; Gyllenhammer et al.,
2014), and also a linear relationship between BMI and 11β-
HSD1 has been observed when pooling across samples (Wake
and Walker, 2006). Initial evidence also suggests that HSD11B1
expression is likely to be regulated in a tissue-specific manner
(Wake and Walker, 2006; Wake et al., 2006), i.e., present in
different levels in adipose tissue and mainly liver (Stimson and
Walker, 2013). The regulation of both 11β-HSD isoform-genes
is dependent on NF-κB (Lee et al., 2013) in adipose tissue.
Both isoforms have been found relevant to childhood obesity
(Ruan et al., 2014), the antecedent of MetS. In interaction with
adiponectin, HSD11B1 determines the metabolic rate already
in utero and postnatal development (Muramatsu-Kato et al.,
2014), in a form of ontogenetic programming.HSD11B2 (16q22)
protects cells from the growth-inhibiting and/or pro-apoptotic
effects of cortisol, particularly during embryonic development.
Mutations in this latter locus cause the syndrome of apparent
mineralocorticoid excess and hypertension. Polymorphisms can
regulate maternal cortisol levels in utero and regulate postnatal
weight gain (Rogers et al., 2014). Replicated in association studies
were polymorphisms for salt sensitivity, RAAS, and essential
hypertension. Negative findings were yielded for HSD11B2 SNPs
with adolescent obesity (Ruan et al., 2014); similarly, gene
regulation studies identified only microRNA relevant to renal
functioning (Rezaei et al., 2014). However, the polymorphic
CA-repeat polymorphism in the first intron of HSD11B2
was significantly related to insulin insensitivity (Mune et al.,
2013).

Adiponectin and Genomic Bases
Adiponectin is a regulatory peptide hormone secreted by
adipocytes (but also by myocytes)—less when emptied,
more when filled with lipids—relevant to glucose flux
and lipid catabolism. A low adiponectin level in obese
persons attenuates insulin action in tissue by induction of
insensitivity via modification of its uptake by adipocytes
(Ali et al., 2013). Such a condition is therefore conducive
to insulin resistance and T2DM, but at the same time
protective for endothelial tissue (Fortuño et al., 2003).
High adiponectin levels, in contrast, are known for insulin
sensitization and anti-inflammatory reflexes, whereas low
levels have, however, been shown to be an independent
risk factor for Alzheimer’s and other dementias (van
Himbergen et al., 2012). In addition, inverse relations
between adiponectin and cortisol secretion have been
described, whilst plasma cortisol being the best predictor
of insulin resistance (Lehrke et al., 2008), however, the
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precise physiological mechanism of this antagonism remains
unclear.

Release of Adiponectin
The adiponectin gene is known being expressed only in
adipose tissue: ADIPOQ (3q27) with five exons expresses
collagen-like proteins and co-factors. It has been associated with
rapid excessive weight gain, obesity, low-frequency heart rate
variability and cardiac mortality (Alehagen et al., 2015; Riestra
et al., 2015), and negatively with risk for T2DM and CVD
incidences (Lindberg et al., 2015). Complementary functions
with leptin (see Section Leptin and Ghrelin Receptors and
Binding Sites) were described for vascular injury (Fortuño et al.,
2003). Low level of adiponectin is demonstrated being a singular
independent risk factor for developing MetS (Díez and Iglesias,
2003; Renaldi et al., 2009). Direct interactions of adiponectin have
presently been documented mainly with the other adipokines
(Raucci et al., 2013; Sitticharoon et al., 2014), but first of
all leptin (Section Leptin and Ghrelin Receptors and Binding
Sites).

Adiponectin Receptors
Adponectin binds to three receptor types receptors (AdipoR1,
AdipoR2, T-cadherin CHD13), which activate the hepatic and
pancreatic enzyme 5′ AMP-activated protein kinase, p38-MAPK,
a mitogen-activated protein kinase sensitive to stress, to pro-
inflammatory cytokines, hepatic PPARα related to triglycerides,
and to NF-κB transcription factor related to stress and
inflammatory response (Thundyil et al., 2012). It has recently
been described that adiponectin and its receptors modulate
analgesic effects in the central nervous system further to
its anti-inflammatory properties (Iannitti et al., 2015). The
adiponectin receptors are ubiquitous in the cerebrum, but
more densely expressed in pituitary, hypothalamus, brainstem,
cortical neurons and endothelial cells. Recent findings suggest
that adiponectin has neuroprotective properties and counteracts
cerebral apoptosis (Song J. et al., 2015). Adiponectin receptors
and binding (Tilg and Moschen, 2006) differ between receptor
types: whereas ADIPOR1 is expressed ubiquitously in muscular
tissue, ADIPOR2 is restricted to hepatic tissue. The binding is
dependent on molecular-weight homomultimer forms of the
specific molecule. Both receptors are known to mediate fatty-
acid oxidation and glucose uptake (Yamauchi et al., 2003).
ADIPOR1 (1q32.1) was associated with insulin resistance, T2DM,
and CAD, specified to different susceptibility SNPs (Jin et al.,
2014). ADIPOR2 (12p13.31) exhibited correlations with CAD,
stroke, and T2DM (Yuan and Teng, 2014). The CHD13 (16q23.3)
protein regulates axon growth during neural differentiation
and vascular endothelial cells from apoptosis due to oxidative
stress, and is associated with resistance against atherosclerosis.
The interaction of its SNPs and methylation has not yet been
fully understood, but relations were found to diastolic blood
pressure andHDL levels (Putku et al., 2015). Besides adiponectin,
at least 15 other substances are subsumed to the category
adipokines (Raucci et al., 2013), but outside the scope of this
treatise.

BRAIN REGIONS OF METS
NEUROENDOCRINE SIGNALING SYSTEMS

Leptin and Ghrelin Receptors and Binding
Sites
White adipose tissue regulates sympathetic output through
release of peptides such as the proteohormone leptin, which have
the ability to cross blood brain barrier and bind to receptors
in higher ANS regions (Thorp and Schlaich, 2015). Leptin is
a peptide hormone produced by adipose tissue in proportion
to fat mass. The physiological function of leptin release is (a)
to promote food intake, and (b) to increase energy expenditure
(Barnes and McDougal, 2014). In obesity, leptin is assumed to
drive sympathetic activity and to contribute to hypertension
(Hall et al., 2010). Its central function is the maintenance of
homeostasis in fat depot metabolism. Leptin functioning is,
however, also dependent on the brain melanocortin system (da
Silva et al., 2014; Bassi et al., 2015b). Leptin inhibits hunger
sensations, and therefore, a lack of satiation feelings is induced by
deficient cerebral leptin feedback signaling (Moreira et al., 2015).
Such anorexigenic signals are mediated by leptin and insulin via
hypothalamic POMC neurons activating MC4Rs. Leptin induced
obesity states are linked to ROS increase in oxidative stress
(Section Inflammation and Arterial Rigidity). A counterintuitive
effect of leptin is present in its reinforcement of sympathetic
action on the adrenocortical system, but an important link
to hypertension. This accounts for its interrelations with the
cardiovascular system, the sympathetic ANS branch, metabolism,
and obesity, and with chemoreceptors in the carotid bodies
(Bassi et al., 2015a; Zeng et al., 2015). Leptin depletion in both
animals and humans results in a quasi-MetS condition, but
lacking essential hypertension and sympathetic hyperexcitability.
It is concluded from these depletion states in leptin levels
that insulin resistance and hyperinsulinaemia, hyperglycaemia,
dyslipidaemia and visceral adiposity could also be related to
leptin action (Bassi et al., 2015a). As mentioned, this requires
the POMC and MC4R neurons to be activated: Mice with MC4R
deficiency are (a) unresponsive to leptin, and (b) also develop
artificial MetS symptoms analogous to those in leptin depletion,
despite high leptin levels (Kooijman et al., 2014). Adiponectin
and leptin levels are typically positively associated (Singh et al.,
2016), but this correlation is absent in obese persons: Adipose
tissue from obese subjects has impaired leptin signaling, which
probably prevents increases in adiponectin levels in obese.

Leptin Biosynthesis
The protein leptin is a synthesis product of white adipocytes,
expressed by the LEP (7q31.3) gene, active in haematopoiesis,
angiogenesis, healing processes, immune, and inflammatory
responses. To the degree that lipolysis is exerted in fat
depots, plasma concentration of leptin diminishes, thus raising
appetite. Besides in adipocytes, leptin is also produced by
neurons in hypothalamus and pituitary (Morash et al., 1999).
Leptin deficiency caused by null mutations (Mark, 2013)
induces components of MetS such as hyperinsulinaemia and
hyperlipidaemia, but sympathetic hypoactivation. In contrast,
chronic leptin infusion leads to elevated blood pressure,
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under engagement of adrenoceptor activity. It is likely that
leptin upregulation is a biomarker for chronic obesity-related
inflammation from childhood onward (Reyes et al., 2015).
Association of the LEP gene with severe obesity and T2DM have
been reported, also case studies in LEP gene malfunction leading
to binding-inactive leptin with infantile hyperphagia (Wabitsch
et al., 2015).

Leptin Receptors
The leptin receptor gene LEPR (also LPR, OB-R, or CD295
1p31.3) is crucial for the satiation signaling pathway (Clément
et al., 1998; Rolland et al., 1998), and null mutations lead to
early onset childhood obesity, disturbance of the somatotropic
axis and loss of puberty. Leptin receptors were identified in
distinct neuron populations of the arcuate and paraventricular
nuclei of the hypothalamus. The first group produce the
AgRP and neuropeptide Y, inhibited by leptin. The second
group produce α-MSH, and are activated by leptin, which
is alike inhibitive of appetite. Leptin receptors, which are in
regulation of blood pressure, have also been discovered in
the rostroventral lateral medulla (RVLM). Recent experiments
demonstrate that specifically adrenal sympathetic activity was
steered by RVLM through leptinergic neuronal projections into
the kidneys (Barnes and McDougal, 2014), further to regulating
general mean arterial pressure. It is possible that, in obesity
and T2DM, a deficiency in leptin uptake and binding is present
due to high levels of triglycerides then suppressing leptin action
(Oswal and Yeo, 2010). Of the leptin-receptor polymorphisms
(Gln223Arg, Lys656Asn, and Lys109Arg), the presence of the
Arg223 homozygous or the Asn656 allele was associated with
elevated plasma leptin, BMI, waist circumference, and waist-
to-hip ratio, but less catecholamine presence and dampened
sympathetic activity (Masuo et al., 2008). Other mutations
in LEPR have been identified causative for childhood obesity
(Huvenne et al., 2015). Loci coupled to LEPR are LEPROT
(1p31.3) and LEPROTL1 (8p12), modifying leptin receptor
signaling and triggering expression of hepatic growth hormone
receptors (Touvier et al., 2009). Copy number variations in these
loci are as well associated with obesity, T2DM, and metabolic
rates (Couturier et al., 2007; Jeon et al., 2010).

Ghrelin Physiological Functions and Binding
Ghrelin is growth hormone release inducing, as it
activates the growth hormone secretagogue receptor in the
hypothalamus, which results in the secretion of growth hormone
(somatotropin). Further to leptin, ghrelin is involved with
hunger-satiation-regulation in the hypothalamic nucleus
arcuatus. Ghrelin is the “hunger hormone” and in many ways
antagonistic to leptin action. Orexigenic signals are mediated by
ghrelin via NPY receptors, inhibiting MC4Rs. It is released from
ghrelinergic cells in the gastric mucosa, ε-cells of the pancreas,
and the hypothalamus and anterior pituitary. The peptide
hormone ghrelin is derived from posttranslational modification
by cleavage from its precursor obestatin (Zhang et al., 2005), a
peptide with opposing effects. Hunger states or sleep deprivation
increase ghrelin levels, which would decline postprandially.

Ghrelin stimulates NPY and agouti-related hormone (AgRP)
action in the arcuate nucleus.

The ghrelin/obestatin gene GHRL (3p26-p25) produces these
two products. Ghrelin is involved in energy homeostasis, and
hereby regulates pancreatic glucose-stimulated insulin secretion.
Obestatin also has multiple metabolic functions, but is regulative
for adipocyte and glucose metabolisms. Low ghrelin level confers
CVD and other risks, whereas high plasma ghrelin levels
have vasoproctective effects (Laurila et al., 2014). The ghrelin
receptor (GHSR 3q26.31 producing two transcripts, of which
only type 1a is a receptor for ligand ghrelin) is found on
the same cells in the brain as the leptin receptor. It activates
hedonic dopaminergic neurons in the mesolimbic cholinergic–
dopaminergic pathway that processes reward-related activation
between ventral tegmental area and nucleus accumbens; possibly
intragastric metabolic nutrient-sensing signals toward dorsal
striatum (Stuber and Wise, 2016). It is primarily involved in
the modulation of glucose and lipid metabolism, digestion,
neuroprotection, and regulation of immune functions. Ghrelin
receptors have high density in the hypothalamus and pituitary,
and on the vagus nerve (on both afferent cell bodies and afferent
nerve endings) and throughout the gastrointestinal tract. Meta-
analytic analyses on the polymorphisms in GHSR indicated that
these are in regulation of blood glucose (Pabalan et al., 2014).
The gene for the obestatin receptor GPR39 (2q21-q22) may have
functions in repair and wound healing, and is upregulated by
antidepressants (Mlyniec et al., 2015).

Melanocortin Receptors and Binding Sites
Two types of melanocortin receptors have increasingly been
placed central to MetS pathophysiological understanding, but in
specific the MC4R (Section T2DM: Melanocortins and Insulin
Resistance). The reason for that is due to their capability to
bind also other ligands: POMC andMC4R neurons are necessary
for leptin signaling, on the one hand, and on the other hand
suppresses AgRP as ligand in MC4Rs their respective activation.
The brain melanocortin system is embedded in leptin, ghrelin,
and agouti-related energy and feeding homeostatic systems, as
well as glutamatergic eating-reward behavior circuitry between
lateral hypothalamic area, amygdala and VTA (Stuber and Wise,
2016). Leptin binds to leptin receptors (LEPRs) on AgRP-
secreting neurons and POMC-secreting neurons in the arcuate
nucleus of the hypothalamus. Leptin binding suppresses AgRP
synthesis and triggers the production of POMC, which is the
precursor for α-, β-, and γ-MSH: AgRP is the main antagonist
of MC4R (Fani et al., 2014). Accordingly were cardiovascular
and metabolic actions of leptin abolished in obese and non-
obese MC4R deficient mice (Tallam et al., 2006). Stimulation
of the MC4R causes a decrease in appetite and an increase
in metabolism of fat and lean body mass: According to
current account are ARC POMC and PVNH MC4R, and LPBN
neuron populations responsible for nutrient chemosensation and
relay of satiety evaluations to visceroceptive forebrain regions
(Krashes et al., 2016). Functionality of MR4R is also necessary
to induce blood pressure changes and metabolic alterations
(Tallam et al., 2005; da Silva et al., 2006). Morbid obesity is
associated with silencing of MC4R activation. In contrast to
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AgRP-related blockade of MC4R activation, stimulates α-MSH
binding MC4R activation toward steering food intake via BDNF
signaling to higher cerebral centers (Walley et al., 2009). Input
to POMC neurons to trigger the brain melanocortin system
requires (a) afferent vagal input of hunger signals via its dorsal
motor root nucleus and NTS (Krashes et al., 2016), (b) leptin
adipostatic signals crossing the blood-brain barrier, and (c)
gut-released peptides cholecystokinin, ghrelin and PYY uptake
(Cone, 2005; Ellacott et al., 2006). Its telencephalic network has
not yet been exactly mapped, but is quite likely to comprise
dysgranular cortices in visceroceptive insula, operculum, and in
the caudolateral orbital frontal regions (Batterham et al., 2007).

Hypothalamic and Brainstem Nuclei
Distributions of MC3Rs and MC4Rs are widespread, and in
relation to energy homeostasis, but specifically MC4Rs in
paraventricular hypothalamic nucleus (PVNH) and amygdala
are related to food intake behaviors (Balthasar, 2006). Basically,
there are three main melanocortin circuits with (a) hypothalamic
POMC neurons in the arcuate nucleus, in relation with the
agouti-related neuropeptide and neuropeptide Y expressing
neuron populations, (b) brainstem POMC neuron population
in the commissural nucleus of the tractus solitarius, and (c)
the telencephalic target system of MC3R and MC4Rs. Driving
of sympathetic output is exerted mainly by allostatic excitatory
neurons in the subfornical organ (SFO) (Wei et al., 2013;
Young et al., 2013; Oka et al., 2015), and by the caudal
vasomotor brainstem through leptin receptors. Leptin receptors
are there expressed by adrenergic/noradrenergic C1/A1 cells,
which overlap in the rostral ventrolateral medulla (RVLM) with
melanocortin neurons (Grassi et al., 1998).

MSH Signaling
α-, β-, and γ-MSH bind to the MC4R receptor, a G-coupled
transmembrane receptor, and this activates the brain melatonin
system (da Silva et al., 2014). MC3R and MC4R are widespread
over the brain, but only MR4R blockade results in hyperphagia
causing obesity, and MC4R binding triggers energy expenditure
while diminishing appetite (Tallam et al., 2005). Other proteins
activating the MC4R are ACTH and POMC. However, MC2R
(18p11.2) is also target of ACTH, and related to familial
glucocorticoid deficiency, and/or blunted cortisol responding.
MC3R (20q13.2-q13.3) increased fat mass despite decreased
food intake, energy homeostasis, and also binds MSH and
ACTH. Defects in MC4R (18q22) lead into an ontogenetic
obesity phenotype with autosomal dominant obesity (Farooqi
et al., 2003a,b). In childhood obesity, significant SNPs were
its Val95Ile, Val166Ile, and Val179Ala mutations, which were
primarily related to plasma lipid levels (Song et al., 2015). With
regards to MetS, MC4R is the largest known single risk factor
for combined obesity and T2DM manifestation, as replicated by
several GWAS studies (Chambers et al., 2008; Loos et al., 2008;
Thorleifsson et al., 2009; Willer et al., 2009). However, until 2014
more than 80 distinct mutations in its locus have been described
(Fani et al., 2014). This finding is distinct from those in non-
syndromal obesity (Walley et al., 2009), where FTO and the
ghrelin receptor GHSR exhibited the largest odds ratios.

Expression of Melanocortin Receptors
Brain regions with highest levels of MC3R (Begriche et al.,
2011) are the midbrain structures. MC3Rs are densely expressed
in hypothalamic and limbic regions of the brain and in
peripheral tissues. The ventromedial hypothalamus (VMH), a
critical node in the neural circuits regulating feeding-related
behaviors and metabolic homeostasis, exhibits dense MC3R
expression. MC3R has been related to increased fat mass,
and accelerated diet-induced obesity (DIO). MC3R causes
in accordance with biorhythmic cycling hyperinsulinaemia,
glucose intolerance, increased expression of lipogenic genes,
and increased ketogenesis. Rhythmic expression of MC3R
transcription factors was found regulating liver clock activity
(Sutton et al., 2010). The brain regions with highest levels of
MC4R (Rossi et al., 2011) are brainstem neurons including
those in the dorsal motor nucleus of the vagus, paraventricular
nucleus of the hypothalamus (PVNH), the amygdala, nucleus
tractus solitarius, intermediolateral medulla (IML) (Krashes
et al., 2016). Brain regions critically subserving the hunger-
satiation regulation were described to consist in MC4R neuron
populations in the PVNH toward the lateral parabrachial
nucleus (LPBN) pathway (Garfield et al., 2015). A distinct
interaction between MC4Rs in the PVNH and amygdala
has been found sufficient to control food intake behaviors
(Balthasar, 2006). The central MC4R pathway is also crucial
for control of cholesterol metabolism by the liver, specifically
in determining the HDL/LDL ratio (Perez-Tilve et al., 2010), a
process decisive for the MetS constellation and CVD, if derailed.
Regarding energy expenditure, a crucial role has been assigned
to the circumventricular structure organum vasculosum laminae
terminalis lacking the blood-brain barrier (Oka et al., 2015).
This structure adjacent to cerebral ventricles receives input by
IL-1β signaling and triggers TNFα synthesis. It has anatomical
connections with the hypothalamic nucleus praeopticus (Oka
et al., 2015), which relays output to the periaquaeductal gray
(PAG) and Raphe nuclei, all related to thermogenesis (Cone,
2005).

Neuropeptide Y and Agouti-Related
Hormone Receptors and Binding Sites
The likely neurophysiological linkages between sympathetic
stress reactivity, the glucocorticoid system, and the melanocortin
system are the neuropeptide Y (NPY) and the AgRP systems.
These hormones are the major orexigenic signals in the
hypothalamus. Both sympathetic nerves and immune cells are
capable to produce NPY, which has a protective buffering
function against the immune challenges exerted by low-level
inflammation (Farzi et al., 2015), and contributes to resilience
against environmental, inflammatory, and oxidative stress.

Physiological Function of Neuropeptide Y
The prevalence of NPY is abundant in the cerebrum, but major
sites of action are the hippocampal formation, the amygdala
and septum (Thorsell, 2010), with highest prevalence rates in
cortices, limbic system, and hypothalamus. Its effects are to
increase cortical excitability, while alerting with cardiovascular
responsiveness, to raise intracellular calcium levels, and thus
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activating potassium channels. These latter processes exert
vasoconstriction, while at the same time lowering blood pressure.
However, a somatotropic function of NPY is in promoting
growth of adipose tissue (Kuo et al., 2007). In addition, it has
been shown that NPY modulates neurogenesis. Interestingly,
these latter effects are similar to those elicited by neurotrophins
(Angelucci et al., 2014). In sum, the activity effects of NPY are in
alertness, anxiolysis, analgesia, fat deposition, and orexigenesis.
Obesity states are characterized by increases in NPY mRNA and
NPY release (Dryden et al., 1995).

Release of NPY in the PVNH triggers CRH, as there is
also a negative feedback loop of CRH on NPY synthesis and
release. In this reciprocal circuit mechanism, NPY action is
a direct stimulation of synthesis and release of CRH and
vice versa. This reciprocal interaction of CRH-NPY with a
tension-vs-anxiolysis effect was concluded to be an internuclear
interaction mechanism within the amygdala, specifically the
basolateral amygdalar nucleus (BLA) (Thorsell, 2010), which is
known to trigger anxiety responses, and perhaps the central
amygdaloid nucleus (CeA). Furthermore, NPY concentrations
were significantly higher in the medial praeoptic area (MPO),
paraventricular (PVNH), ventromedial (VMN), and dorsomedial
(DMN) nuclei of the hypothalamus. It is therefore likely that NPY
synthesis and release participates in the emergence of T2DM.
High levels of glucocorticosteroids stimulate gluconeogenesis,
which increases blood glucose, triggers release of insulin. Insulin
action is to reuptake and store glucose as glycogen, while insulin
resistance finally results in T2DM.

Biosynthesis and Gene
In general, neuropeptide Y is essential in controlling cortical
electrophysiological excitation, and thus in suppressing epileptic
processes. Its intranasal application reduces PTSD symptoms
pharmacologically. The NPY gene (7p15.1) has just one
documented SNP, the Leu7Pro7 mutation, associated with
elevated cholesterol, so conferring specific risks for MetS
and CVD. In that polymorphism, specifically, abdominal fat
deposition correlated with the rs16147 C and T alleles (Lin
et al., 2015). The NPY is expressed by SNS neurons as
an ubiquitous cerebral neurotransmitter that is not at all
restricted to hypothalamus. However, neuropeptide Y (NPY)
is in particular synthesized in arcuate (ARC) neurons, which
then project principally to the paraventricular nucleus (PVNH).
Axon terminals in PVNH also contained the highest levels of
NPY immunoreactivity, together with the arcuate nucleus. NPY
directly injected into the PVNH caused hyperphagia, reduced
energy expenditure, and eventually produced obesity.

Receptor Subtypes and their Genomic Associations
There are up to six subtypes of NPY receptors currently known,
but only four of which are known to mediate neuroendocrine
responses: NPY1R, NPY2R, NPY4R, and NPY5R (Thorsell,
2010), regulation of food intake is mediated only by NPY1R
and NPY5R receptors. The NPY1R (4q32.2) exerts anxiolytic
activation (Olesen et al., 2012b), triggers mobilization of
intracellular calcium and inhibition of adenylate cyclase activity.
Variants in NPY1R were found related to heritable autonomic

traits in circulation, baroreflex functioning, and pressor response
to environmental stress (Wang et al., 2009). Expression ofNPY1R
in adipose tissue was observed relating to the MetS components
weight and insulin resistance (Sitticharoon et al., 2013). NPY2R
(4q31) participates inmodification of cardiometabolic traits (Wei
et al., 2013), with its 21 known SNPs. Haplotypes of the proximal
promoter variants G-1606A, C-599T, and A-224G disrupted
predicted dependent genes, influenced the transcription of the
interferon regulation factor related to IL-6, and the hepatocyte
nuclear factor. NPY4R (10q11.2) gene products are the targets of
the pancreatic polypeptide, which, in the adrenal medulla, locally
enhances the secretion of catecholamines (Cavadas et al., 2001).
NPY5R (4q32.2) activation results in behavioral hyperactivity
(Olesen et al., 2012a), in epilepsy suppression (Gøtzsche et al.,
2012), and in regulating food intake, while defects in this gene
being associated with eating disorders and BMI (Li et al., 2014).

Rodent studies have identified the NPY2R activation as
critical for an animal model of MetS. In this context it was
possible to show that stress consisting of environmental or
social stressors trigger NPY release from sympathetic nerves,
which in turn sensitizes its NPY2Rs for glucocorticoid-dependent
action in the abdominal fat depot (Kuo et al., 2007). Visceral
fat accumulation is thus a consequence of NPY2R activation,
which incites proliferation of adipocytes, triggers angiogenesis
in adipose tissue, and promotes migration of macrophages
into adipose tissue (Ali et al., 2013). In this accumulation of
visceral fat were glucocorticoids described as central in stress-
mediated exacerbation of DIO. Respective results suggested that
glucocorticoids become modulators of NPY-NPY2R signaling.
In the presence of high-calorie nutrition, plasma corticosterone
levels, a precursor of aldosterone, raise, and in such a
constellation, sympathetic excitation increases the conversion of
the inactive steroid precursor to active cortisol by upregulating
11β-HSD-1 activity, specifically in the abdominal fat (Kuo et al.,
2007).

The catecholamine hormone adrenaline has been shown to
upregulate NPY and NPY2R expression in utero (Han et al.,
2012) in dependence of the glucocorticoid system. Prenatal stress
accelerates adipogenic programming of embryonic stem cells
with adrenaline during their adipogenic differentiation.

Agouti-Related Neuropeptide
Agouti-related neuropeptide (AgRP) is only synthesized in
neurons, which also contain NPY (Bäckberg et al., 2004; Krashes
et al., 2016), mainly in the arcuate nucleus, but also PVNH, of the
hypothalamus, and which also contain ghrelin receptors. Its main
expression sites are, besides the hypothalamus, the subthalamic
nucleus, and the adrenal medulla. Starvation sensations have
been shown to be dependent on the output of AgRP populations
in ARC toward PVNH pathway (Atasoy et al., 2012), which
are abrogated by food stimuli in interplay of AgRP and SFO
neurons (Betley et al., 2015). The AgRP neuron population, in
turn, is inhibited by MC4R neurons in the PVNH, mediated
by a circuit between PVNH and lateral zone LPNH (Garfield
et al., 2015). AgRP also stimulates the HPA to release ACTH,
cortisol and so counteracts pro-inflammatory cytokine IL-1β
(Xiao et al., 2003). The expression of AGRP (16q22) in the
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adrenal gland blocks α-MSH-induced secretion of corticosterone
(Dhillo et al., 2003). Acute stress response, in turn, downregulates
AGRP expression as measured by its mRNA. High plasma AgRP
levels are a further correlate of obesity. The main physiological
function of AgRP is in the hypothalamic control of food intake
by means of intracellular calcium levels. AgRP and NPY are
secreted to increase appetite, triggered by pro-inflammatory
cytokines to decrease metabolism and energy expenditure. It
also enhances the ACTH response toward IL-1β, suggesting it
may play a role in the modulation of neuroendocrine response
against inflammation. It also serves as endogenous antagonist
of the MC3Rs and MC4Rs, which blocks binding of α-MSH
presumably through competitive ligand binding. An enduring
AgRP-induced blockade of MC4R leads to hyperphagia and
obesity. Polymorphisms in the AGRP (16q22) locus have been
linked with anorexia nervosa (Vink et al., 2001), furthermore
in cognitive functioning there, and to late onset obesity in its
rs11575892 T allele (Kalnina et al., 2009). The polymorphism
Ala67Thr is, however, protective against this obesity risk (Sözen
et al., 2007).

FINDINGS ON EPIGENETIC MODIFICATION
AND GENE REGULATION IN METS

The past decade has seen the conduction of studies elucidating
the posttranscriptional and posttranslational activity of genes
presumably involved in MetS, as specified in the preceding
sections. Specific new evidence accumulated in the context of
studies in “programming” of these genes in effect of interaction
with environmental processes, early or later in life.

Epigenetic Modifications
The risk gene loci for the development of MetS identified in
the previous parts were entered to a meta-analytic evaluation.
Table 1 lists the findings describing epigenetic processes histone
methylation, lysine acetylation, serine phosphorylation, and
ubiquitination. As can be seen, most results are currently
pertaining to POMC neurons in the hypothalamus. In summary,
it can be said that several studies support the presence of early life
stress (ELS) and DIO programming in this convergence region.
Furthermore, the results suggest tissue-specific modification
of risk gene expression in the midbrain, liver, and adipose
tissue. With regards to neuroendocrine systems, epigenetic
modifications were found in cortisol-related (here HSD11B1
expression), melanocortin, leptin, NPY, and adiponectin genes.
With respect to adiposity genes, epigenetic modifications were
documented for fat mass gene cluster APOA1/C3/A4/A5, and the
lipolysis gene LIPE. With regard to inflammatory, immune and
subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and
those genes expressing members of the cytochrome P450 family
that are involved in steroidogenesis and in relation to hepatic
lipoproteins. These results on MetS are more consistent than
those previously published on obesity (van Dijk et al., 2015).
Studies directly pertaining to core HPA axis are very few up to
present, with <10 entries in PubMed: In this context, existing
studies addressed the NR3C1 and CRH1 loci, with one study

(Bockmühl et al., 2015) related to MetS. In sum, there is a lacuna
of research in this area.

Gene Regulation
Further on were the results of microRNA studies in relation to
MetS relevant processes evaluated. MicroRNAs are small non-
coding RNA protein pieces that function as post-transcriptional
gene regulators. Although transcription factors work both
as activators and repressors, however, all currently known
microRNAs solely work as repressors (Chen and Rajewsky, 2007)
to protein translation.

To date, about 40 microRNAs have been identified pertaining
to MetS (Dehwah et al., 2012) and in lipoprotein metabolism,
specifically in glucose uptake, insulin secretion and adipogenesis.
It is assumed that these play central roles in diabetic
complications and progression to chronic diabetes (Wegner et al.,
2014). Here, miR-495, miR-432, and miR-376a at chromosome
14q32 expression were found critical for survival of islets in
pancreatic ß-cells in T2DM sufferers (Kameswaran et al., 2014).
Best studied are hitherto microRNAs during adipogenesis and
obesity, where miR-146b regulates the proliferation of visceral
pre-adipocytes and promote their differentiation, a target of
Krüppel-like transcription factor KLF7 (Chen et al., 2014).
MiR-27a and miR-27b abundance decreased PPARγ during
adipogenesis of human pluripotent adipose-derived stem cells,
thus counteracting PPARγ (Karbiener et al., 2009; Kim et al.,
2010). MiR-122 decrease was described central in hepatic fatty-
acid and cholesterol synthesis rate, by reducing hepatosteatosis
(Esau et al., 2006), together with miR-223 in obesity (Kilic
et al., 2015), also with miR-425, miR-126, miR-16, miR-
634 (Li et al., 2015), miR-519d, miR-27 and miR-519d for
target PPARγ (McGregor and Choi, 2011), miR-26 triglyceride
accumulation (Song et al., 2014). MiR-370, miR-22, miR-758
also engaged in liver-adipocyte interaction (Flowers et al., 2013),
furthermore miR-10b, miR-302a, miR-378, miR-613, miR-224
(Peng et al., 2013, 2014). Regarding to epigenetic effects, MiR-
21, miR-17, miR-200, miR-221/222, miR-203 have been found
altered by glucose, or polysaturated fatty acid diets (Palmer
et al., 2014), hence suggesting programming effects across
the life-span.

Much less well studied have been the three key
neuroendocrine systems leptin, melanocortin, and NPY.
Leptin uptake and insulin secretion were found controlled
by miR-200a, miR-200b, and miR-429, which are related to
obesity. Leptin treatment downregulating these miRNAs in
hypothalamus increased leptin receptor and insulin receptor
expression, also inducing weight loss and improving hepatic
insulin responsiveness (Crépin et al., 2014). Leptin upregulation
by miR-383, miR-384-3p, and miR-488 provided proper
functioning of activity of pro-opiomelanocortin (POMC)
neurons (Derghal et al., 2015). Then, inhibition of miR-375 in
the intermediate lobe of the pituitary gland increased POMC
secretion, whereas miR-375 overexpression down-regulated
ACTH secretion stimulated by CRH (Zhang et al., 2013).
Deletion of the microRNA-processing enzyme Dicer, modulated
by nutrient availability in the hypothalamus, defective glucose
metabolism, and alterations in the pituitary-adrenocortical
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TABLE 1 | Risk genes and findings on epigenetic modification in the metabolic syndrome.

Gene

name

Gene locus Type of modification References Text

section

ADIPOQ 3q27 Subcutaneous and visceral adipose tissue CpG islands associated with LEP and ADIPOQ gene

expression

Houde et al., 2014 3.5

ADIPOR1 1q32.1 Methylation changes after exercise in T2DM relatives Nitert et al., 2012 3.5

ADIPOR2 12p13.31 Negative 3.5

ADRB1 10q25.3 Negative 3.3

ADRB2 5q31-q32 ADRB2, ADRB3 expression significantly lower in visceral adipose tissue Kurylowicz et al., 2015 3.3

ADRB3 8p11.23 ADRB2, ADRB3 significantly lower in visceral adipose tissue. ADRB3 DNA methylation levels

significantly associated with LDL and higher BP

Guay et al., 2014; Kurylowicz

et al., 2015

3.3

AGRP 16q22 Reduction of AgRP and α-MSH-fibers in the paraventricular nucleus with protein restriction in

utero

Coupé et al., 2010 4.3

APOA1 11q23-q24 DNA methylation profiles in APOA1/C3/A4/A5 gene cluster interrelated Guardiola et al., 2014 3.1

APOA4 11q23 DNA methylation profiles in APOA1/C3/A4/A5 gene cluster interrelated Guardiola et al., 2014 3.1

APOA5 11q23 DNA methylation profiles in APOA1/C3/A4/A5 gene cluster interrelated Guardiola et al., 2014 3.1

APOB 2p24-p23 Promoter hypomethylation of APOB for pro-inflammatory M1-macrophage, and

hypermethylation of anti-inflammatory, pro-angiogenic M2-macrophage genes in

hyperlipidaemia and T2DM

Babu et al., 2015 3.1

APOC3 11q23.3 DNA methylation profiles in APOA1/C3/A4/A5 gene cluster interrelated Guardiola et al., 2014 3.1

APOE 19q13.2 APOE (
−/− ) mice: mechanosensitive genes suppressed by disturbed flow by hypermethylation in

their promoter region

Dunn et al., 2015 3.1

CHD13 16q23.3 Negative 3.5

COMT 22q11.21 Negative 3.3

CRH1 8q13 Negative 3.4

CRHR1 17q21.31 Negative 3.4

CRHR2 7p14.3 Negative 3.4

CYP11B2 8q21-q22 Negative 3.1

CYP11B2 8q21-q22 Negative 3.1

CYP17A1 10q24.3 Genes involved in liver metabolism CYP3A5 and steroidogenesis CYP17A1 and CYP19A1

affected by methylation/deacetylation

Dannenberg and Edenberg,

2006

3.1

CYP19A1 15q21.1 Genes involved in liver metabolism CYP3A5 and steroidogenesis CYP17A1 and CYP19A1

affected by methylation/deacetylation

Dannenberg and Edenberg,

2006

3.1

CYP21A2 6p21.3 Negative 3.1

CYP2C19 10q24 Negative 3.1

CYP3A5 7q21.1 Genes involved in liver metabolism CYP3A5 and steroidogenesis CYP17A1 and CYP19A1

affected by methylation/deacetylation

Dannenberg and Edenberg,

2006

3.1

CYP4A11 1p33 Negative 3.1

FTO 16q12.2 FTO both DNA methylation and expression correlated with BMI. DNA hypomethylation of CpG

site located in intronic region within FTO is associated with impaired glucose metabolism and

T2DM. CpG sites of TCF7L2, FTO with differential DNA methylation in T2DM islets

Bell et al., 2010; Almén et al.,

2014; Dayeh et al., 2014;

Rönn et al., 2015; Toperoff

et al., 2015

3.1

GHRL 3p26-p25 Negative 4.1

GHSR 3q26.31 Negative 4.2

HSD11B1 1q32-q41 HSD11B1 promoter hypomethylation in liver varied according to diet in ontogeny.

Hypomethylation in HSD11B1. P1 promoter in association with increased 11β-HSD-1

oxidoreductase activity in T2DM

Inder et al., 2012; Takaya

et al., 2013

3.4

HSD11B2 16q22 Relation of CpG islands with fetal growth and greater birth weight, with maternal stress,

indicating that greater stress is related to gene activity. Similarly, prenatal maternal strain

associated with less methylation to provide greater postnatal gene expression, with sex-specific

transcriptional regulation. Hypermethylation in HSD11B2 promoter is related to hypertension

and atherosclerosis

Friso et al., 2008; Appleton

et al., 2013; Green B. B. et al.,

2015;

3.4

IL1B 2q14 Negative 2.3

IL6 7p21 Negative 2.1

IL6R 1q21 Negative 2.1

LEP 7q31.3 Subcutaneous and visceral adipose tissue CpGs associated with LEP and ADIPOQ gene

expression in adipose tissues. Maternal fasting glucose associated with LEP CpG and

hypomethylation determinative of umbilical cord blood leptin levels

Houde et al., 2014; Allard

et al., 2015

4.1

(Continued)
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TABLE 1 | Continued

Gene

name

Gene locus Type of modification References Text

section

LEPR 1p31 Negative 4.1

LIPE 19q13.2 Adipose tissue DNA methylation in LIPE gene associated with adiposity subtypes Agha et al., 2015 3.1

MC3R 20q13.2-3 Negative 4.2

MC4R 18q22 Negative 4.2

NFKB1 4q24 Nutrient supplementation altered NFKB1 expression in liver cells during ontogeny. Maternal

increased methylation at NFKB1 CpGs determinative for offspring cord blood DNA

Morales et al., 2014; Osorio

et al., 2014

2.3

NPY 7p15.1 Altered methylation of specific CpG NPY in hypothalamus according to diet in ontogeny.

Selective downregulation after high-fat diet in ontogeny in hypothalamus

Mahmood et al., 2013; Cifani

et al., 2015

4.3

NPY2R 4q31 Negative 4.3

NR3C1 5q31.3 Early life stress programs the expression NR3C1 by site-specific hypermethylation at the CpG

island shore in CRH producing hypothalamic neurons

Bockmühl et al., 2015 3.4

POMC 2p23.3 High-fat high-sucrose diet in ontogeny associated with POMC promoter hypomethylation in

POMC neurons in hypothalamus, and glucose response. Decreased acetylation of specific CpG

POMC in hypothalamus according to diet in ontogeny. Selective downregulation after high-fat

diet in ontogeny in hypothalamus. Neonatal overfeeding led to MetS phenotype,

hypermethylation of hypothalamic POMC promoter, and childhood obesity. Early life stress

produces hypomethylation and deacetylation of hypothalamic POMC neurons. Neonatal

hypermethylation of hypothalamic POMC neurons anteceded adult insulin resistance.

Hypermethylation of the POMC promoter leading to obesity with leptin resistance

Plagemann et al., 2009;

Kuehnen et al., 2012;

Mahmood et al., 2013; Wang

et al., 2014; Wu et al., 2014;

Zhang et al., 2014; Cifani

et al., 2015; Voisin et al.,

2015; Zheng et al., 2015

4.2

POR 7q11.2 Negative 3.4

PPARG 3p25 PPARG-CG1 methylation was significantly higher in individuals with higher visceral fat mass.

Selective downregulation after high-fat diet in ontogeny. Hepatic expression of PPARG

correlated to changes in promoter methylation, and to plasma leptin and ghrelin levels.

Heterozygosity differences in PPARG methylation in adipose tissue

Fujiki et al., 2009; Schwenk

et al., 2013; Nilsson et al.,

2014; Wang et al., 2014;

Cifani et al., 2015; Drogan

et al., 2015

3.1

SLC6A2 16q12.2 Negative 3.3

TCF7L2 10q25.3 CpG sites of TCF7L2, FTO with differential DNA methylation in T2DM islets. Heterozygosity

differences in TCF7L2 methylation in adipose tissue. Changes in TCF7L2 methylation after

palmitate diet

Dayeh et al., 2014; Hall et al.,

2014; Nilsson et al., 2014

3.2

TLR4 9q33.1 Hypomethylation of four CpGs in TLR4 first exon in obese, methylation levels correlated with BMI Remely et al., 2014a 2.3

TNFA 6p21.3 Association observed between TNFA methylation and LDL/HDL ratio Bollati et al., 2014 2.3

TRIB1 8q24.13 Methylation changes in TRIB1 after exercise in T2DM relatives Nitert et al., 2012 3.1

Description of meta-analytic method: To search for empirical studies in PubMed, gene locus, and keywords “methylation (hyper-, hypo-, de-),” “acetylation,” “phosphorylation,”

“ubiquitination” and “epigenetics” and “metabolic syndrome” were entered. Included are only positive, but not negative results published until December 2015. “Negative” means

that no specific research results pertaining to the metabolic syndrome were available.

axis, resulted in neurodegeneration of POMC-expressing
neurons in early ontogeny (Schneeberger et al., 2012). Further
to that, it was found that loss of miR-103 due to Dicer knock-
out triggered activation of mammalian target of rapamycin
(mTOR) pathway in the arcuate nucleus leading to imbalance
in the levels of neuropeptide Y, will be resulting in severe
hyperphagia (Vinnikov et al., 2014). MiR-7a expression was
particularly prominent in the SFO, a circumventricular organ
with ependymal bridges of the blood-brain barrier, as well as
the suprachiasmatic, paraventricular, periventricular, supraoptic,
dorsomedial and arcuate hypothalamic nuclei and constrained
to neuropeptide Y/AgRP-containing-neurons located in the
ventromedial aspect of the arcuate nucleus (Herzer et al.,
2012).

SUMMARY AND CONCLUSION

Research in the past decade has considerably sharpened
previous concepts on aetiopathology of the constellation of

MetS. It has now become possible to encircle and narrow in
key pathophysiological processes. At the level of causation,
three domains, namely nutritional factors, environmental and
psychological stress factors, and chronic low-grade inflammatory
processes in visceral adipose tissue can be focussed on.
Nutrient-induced enforcement of oxidative stress in subcellular
organelles, mitochondria and endoplasmic reticula are likely to
bias steroidogenesis and to cascade from oxidative stress to
impaired glucose uptake and insulin resistance. The current
state of findings also justifies the assumption that stress
susceptibility mainly in the central HPA may be reinforced
by 11β-HSD-1 action in visceral adipose and hepatic
tissues.

Main findings of the present meta-analytic investigation
on the effects of posttranslational modifications in specific
risk gene loci support the notion that psychological stress and
nutrient impact lead to genotype-environmental interactions
that shape the MetS phenotype. Recent evidence derived from
studies of DNA methylation, histone acetylation, and other
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epigenetic processes have been able to support the central role
of POMC neuron population in the hypothalamus (mostly
in the arcuate nucleus). Summarising the convergent brain
structures involved in the stress physiology of MetS, presently
available evidence suggests that the processing of environmental
stress is performed by basolateral amygdaloid and possibly
central amygdaloid nuclei, which trigger sympathoexcitation.
Central regulation of hunger-satiation homeostasis can,
according to studies evaluated, be assigned to the interplay
of arcuate and paraventricular nuclei. Less well investigated
are the roles of circumventricular and SFOs in biasing the
sympathetic output in interplay with leptin, MC4R, and
NPY systems.

Novel aetiopathological and treatment concepts could arise
from the fact that HPA dysfunction in MetS could be originated
at the synthesis of glucocorticoids in a second peripheral CRH
system that may be active in adipose tissue and liver thus
biasing the stress susceptibility of the central hypothalamic-
pituitary regulation. Future research should further investigate
interactions of risk genotypes, environmental factors, and
epigenetic programming in the pathophysiology of MetS.
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