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Objective. Anti-Ro autoantibodies are among the most frequently detected extractable nuclear antigen autoanti-
bodies, mainly associated with primary Sjögren’s syndrome (SS), systemic lupus erythematosus (SLE), and undifferen-
tiated connective tissue disease (UCTD). This study was undertaken to determine if there is a common signature for all
patients expressing anti–Ro 60 autoantibodies regardless of their disease phenotype.

Methods. Using high-throughput multiomics data collected from the cross-sectional cohort in the PRECISE Sys-
temic Autoimmune Diseases (PRECISESADS) study Innovative Medicines Initiative (IMI) project (genetic, epigenomic,
and transcriptomic data, combined with flow cytometry data, multiplexed cytokines, classic serology, and clinical
data), we used machine learning to assess the integrated molecular profiling of 520 anti–Ro 60+ patients compared
to 511 anti–Ro 60– patients with primary SS, patients with SLE, and patients with UCTD, and 279 healthy controls.

Results. The selected clinical features for RNA-Seq, DNA methylation, and genome-wide association study data
allowed for a clear distinction between anti–Ro 60+ and anti–Ro 60– patients. The different features selected using
machine learning from the anti–Ro 60+ patients constituted specific signatures when compared to anti–Ro 60– patients
and healthy controls. Remarkably, the transcript Z score of 3 genes (ATP10A, MX1, and PARP14), presenting with over-
expression associated with hypomethylation and genetic variation and independently identified using the Boruta algo-
rithm, was clearly higher in anti–Ro 60+ patients compared to anti–Ro 60– patients regardless of disease type. Our
findings demonstrated that these signatures, enriched in interferon-stimulated genes, were also found in anti–Ro 60+
patients with rheumatoid arthritis and those with systemic sclerosis and remained stable over time and were not affected
by treatment.

Conclusion. Anti–Ro 60+ patients present with a specific inflammatory signature regardless of their disease type,
suggesting that a dual therapeutic approach targeting both Ro-associated RNAs and anti–Ro 60 autoantibodies
should be considered.

INTRODUCTION

Anti-Ro autoantibodies are among the most frequently detected

extractable nuclear antigen (ENA) autoantibodies and aremainly asso-

ciated with primary Sjögren’s syndrome (SS). These autoantibodies

are also frequently observed in systemic lupus erythematosus (SLE)

and undifferentiated connective tissue disease (UCTD) (1,2). Addition-

ally, anti-Ro autoantibodies have been reported in other autoimmune

diseases such as systemic sclerosis (SSc), mixed connective tissue

disease (MCTD), rheumatoid arthritis (RA), and myositis (3).
Anti-Ro autoantibodies include reactivity against 2 autoanti-

gens (Ro 52 and Ro 60) encoded by separate genes and are
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found in distinct cellular compartments (4). Ro 52 is a type I inter-
feron (IFN)– and type II IFN–inducible protein (5,6) and is a nega-
tive regulator of proinflammatory cytokine production (7).
Ro 60 antigen binds to ~100 nucleotide noncoding RNAs called
human Y RNA (8) and acts as a quality checkpoint for RNA mis-
folding with molecular chaperones for defective RNA (9).

Findings from previous studies have shown variation in clini-
cal manifestations or outcomes according to the presence or
absence of anti-Ro autoantibodies. Thus, SLE subjects with
anti–Ro 60 antibodies have an increased prevalence of skin
disease, photosensitivity, and nephritis, along with elevated
expression of IFN-inducible genes in immune cells and tissue
samples (10). In primary SS, patients with both anti–Ro 60 and
Ro 52 antibodies were distinguished by a higher prevalence of
markers of B cell hyperactivity and glandular inflammation (11).
Those patients also had earlier disease onset and presented with
more systemic extraglandular manifestations, such as leukope-
nia, hypergammaglobulinemia, and major salivary gland swelling
(12). Recently, 2 subgroups of patients with primary SS were
defined according to HLA association, Ro 60/SSB antibodies,
and clinical manifestations. The Ro 60/SSB antibody–positive
subgroup was younger at disease onset and diagnosis and more
frequently presented with anemia, leukopenia, hypergammaglob-
ulinemia, purpura, major salivary gland swelling, lymphadenopa-
thy, and lymphoma. These results confirmed an overall more
severe disease phenotype in patients who were Ro 60/SSB
antibody–positive compared to patients negative for both anti–
Ro 60 and anti-SSB antibodies (13). Anti–Ro 60 reactivity alone
strongly correlated with oral ulcers, a characteristic manifestation
of SLE, while the combination of anti–Ro 60 and anti–Ro 52 was
significantly more prevalent in patients with interstitial kidney
disease and sicca syndrome symptoms (14).

Due to the presence of anti–Ro 60 antibodies in different
autoimmune diseases and the reported clinical manifestations
that characterize this expression, the question remains of if there
is a common signature for all patients expressing anti–Ro 60 auto-
antibodies that would allow physicians to consider a suitable ther-
apy regardless of disease phenotype.

Using algorithms derived from machine learning, the present
study was undertaken to determine the precise signature of anti–
Ro 60+ patients in diseases where this autoantibody is the most
frequently observed (primary SS, SLE, and UCTD) using high-
throughput multiomics data collected in the PRECISE Systemic
Autoimmune Diseases (PRECISESADS) study Innovative Medi-
cines Initiative Joint Undertaking project (genetic, epigenomic,
and transcriptomic data, combined with flow cytometry data,
multiplexed cytokines, classic serology, and clinical data). In this
study, we performed integrated molecular profiling of 520 anti–
Ro 60+ patients compared to 511 anti–Ro 60– patients and
279 healthy controls. We then observed whether this signature
was also present in the 41 of 725 anti–Ro 60+ patients with other
autoimmune diseases such as MCTD, RA, and SSc, all from the

same PRECISESADS cohort. See Appendix A for a list of mem-
bers of the PRECISESADS Clinical Consortium and members of
the PRECISESADS Flow Cytometry Consortium.

PATIENTS AND METHODS

Patient population. The present study was conducted in
1,755 patients (367 with primary SS, 508 with SLE, 156 with
UCTD, 307 with RA, 327 with SSc, and 90 with MCTD) and
279 healthy controls included in the European multicenter cross-
sectional study of the PRECISESADS IMI consortium (15). Classi-
fication criteria were the 2010 American College of Rheumatology
(ACR)/European Alliance of Associations for Rheumatology
(EULAR) RA classification criteria (16), the 1997 update of 1982
ACR SLE criteria (17), 2013 ACR/EULAR SSc classification cri-
teria (18), or the American–European Consensus Group primary
SS classification criteria (19) with at least the presence of anti-Ro
and/or a positive focus score on minor salivary gland biopsy,
MCTD using the Alarcon-Segovia criteria (20), and UCTD in
patients with clinical features of systemic autoimmune diseases
that did not fulfill any of the above criteria or any other systemic
autoimmune disease criteria for at least 2 years (with the presence
of nonspecific antibodies, antinuclear antibodies [ANAs] ≥1:160).
Patients fulfilling 3 of 4 SLE classification criteria and patients with
early SSc (21) were not classified as having UCTD. Recruitment
occurred between December 2014 and October 2017 involving
19 institutions in 9 countries (Austria, Belgium, France, Germany,
Hungary, Italy, Portugal, Spain, and Switzerland).

The PRECISESADS study adhered to the standards set by
International Council for Harmonisation Guidelines for Good
Clinical Practice and the ethics principles that have their origin in
the 2013 Declaration of Helsinki. Informed consent was obtained
from each patient prior to inclusion in the study. This study proto-
col was approved the Ethics ReviewBoards of the 19 participating
institutions. Protection of the confidentiality of records that could
identify included subjects was ensured as defined according to
the European Union Directive 2001/20/EC and the applicable
national and international requirements relating to data protection
in each participating country. The cross-sectional cohort study
and inception cohort study are registered on ClinicalTrials.gov
(clinicalTrials.gov identifiers: NCT02890121 and NCT02890134,
respectively). The anti–Ro 60+ signature identified using machine
learning was validated using the transcriptome of 106 patients in
the PRECISESADS inception study (ClinicalTrials.gov identifier:
NCT02890134), who were followed up and had samples col-
lected at the time of recruitment and at 6 and/or 14 months. Of
note, patients in the inception cohort were diagnosed within less
than a year and had not received high doses of immunosuppres-
sants, cyclophosphamide, or belimumab at least 3 months prior
to recruitment. For time points 6 and 14 months, patients
could receive any standard of care therapy prescribed by
their physician. Healthy controls were individuals not receiving
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Table 1. Demographic and clinical characteristics of the healthy controls, patients with primary SS, those with SLE, and those with UCTD
according to anti–Ro 60 expression (anti–Ro 60+ patients compared to anti–Ro 60– patients)*

Characteristic Value

Healthy controls
No. of patients 279
Age, mean ± SD years 52 ± 9
Sex, female 262 (94)
Sex, male 17 (6.1)
Ethnicity
American Indian/Alaska Native 0 (0)
Asian 2 (0.7)
Black/African American 0 (0)
Caucasian/White 277 (99)
Native Hawaiian/Other Pacific Islander 0 (0)
Other 0 (0)

Obesity† 16 (5.8)
Smoking‡ 38 (14)

Primary SS
No. of patients 367
Anti–Ro 60– 61
Anti–Ro 60+ 306

Age, mean ± SD years
Anti–Ro 60– 59 ± 13
Anti–Ro 60+ 57 ± 13
P§ 0.3

Sex, female
Anti–Ro 60– 57 (93)
Anti–Ro 60+ 293 (96)

Sex, male
Anti–Ro 60– 4 (6.6)
Anti–Ro 60+ 13 (4.2)
P 0.5

Ethnicity
American Indian/Alaska Native
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 0 (0)

Asian
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 2 (0.7)

Black/African American
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 1 (0.3)

Caucasian/White
Anti–Ro 60– 61 (100)
Anti–Ro 60+ 299 (98)

Native Hawaiian/Other Pacific Islander
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 0 (0)

Other
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 4 (1.3)
P >0.9

Obesity§
Anti–Ro 60– 7 (12)
Anti–Ro 60+ 37 (12)
P >0.9

Smoking¶
Anti–Ro 60– 7 (12)
Anti–Ro 60+ 29 (10.0)
P 0.6

Disease duration, mean ± SD years#
Anti–Ro 60– 9 ± 8
Anti–Ro 60+ 10 ± 8
P 0.2

Steroid usage
No
Anti–Ro 60– 45 (74)
Anti–Ro 60+ 244 (80)

Characteristic Value

Steroid usage (cont’d).
Yes
Anti–Ro 60– 16 (26)
Anti–Ro 60+ 62 (20)
P 0.3

Antimalarials
No
Anti–Ro 60– 37 (61)
Anti–Ro 60+ 194 (63)

Yes
Anti–Ro 60– 24 (39)
Anti–Ro 60+ 112 (37)
P 0.7

Immunosuppressants
No
Anti–Ro 60– 47 (77)
Anti–Ro 60+ 264 (86)

Yes
Anti–Ro 60– 14 (23)
Anti–Ro 60+ 42 (14)
P 0.067

Biologics**
No
Anti–Ro 60– 10 (100)
Anti–Ro 60+ 29 (100)

Yes
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 0 (0)
P >0.9

PhGA, mean ± SD score††
Anti–Ro 60– 30 ± 18
Anti–Ro 60+ 24 ± 19
P 0.007

ESSDAI, mean ± SD score‡‡
Anti–Ro 60– 4 ± 6
Anti–Ro 60+ 5 ± 5
P 0.11

ESSPRI, mean ± SD score§§
Anti–Ro 60– 5.59 ± 2.29
Anti–Ro 60+ 4.71 ± 2.33
P 0.029

SLE
No. of patients 508
Anti–Ro 60– 333
Anti–Ro 60+ 175

Age, mean ± SD years
Anti–Ro 60– 46 ± 14
Anti–Ro 60+ 45 ± 13
P 0.6

Sex, female
Anti–Ro 60– 302 (91)
Anti–Ro 60+ 163 (93)

Sex, male
Anti–Ro 60– 31 (9.3)
Anti–Ro 60+ 12 (6.9)
P 0.3

Ethnicity
American Indian/Alaska Native
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 0 (0)

Asian
Anti–Ro 60– 3 (0.9)
Anti–Ro 60+ 1 (0.6)

(Continued)
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Table 1. (Cont’d)

Characteristic Value

Ethnicity (cont’d).
Black/African American

Anti–Ro 60– 3/333 (0.9)
Anti–Ro 60+ 9/175 (5.1)

Caucasian/White
Anti–Ro 60– 318 (95)
Anti–Ro 60+ 162 (93)

Native Hawaiian/Other Pacific Islander
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 1 (0.6)

Other
Anti–Ro 60– 9 (2.7)
Anti–Ro 60+ 2 (1.1)
P 0.010

Obesity¶¶
Anti–Ro 60– 23 (7.2)
Anti–Ro 60+ 15 (8.8)
P 0.5

Smoking##
Anti–Ro 60– 60 (19)
Anti–Ro 60+ 30 (18)
P 0.8

Disease duration, mean ± SD years
Anti–Ro 60– 14 ± 10
Anti–Ro 60+ 12 ± 9
P 0.079

Steroid usage
No
Anti–Ro 60– 179 (54)
Anti–Ro 60+ 77 (44)

Yes
Anti–Ro 60– 154 (46)
Anti–Ro 60+ 98 (56)
P 0.037

Antimalarials
No
Anti–Ro 60– 112 (34)
Anti–Ro 60+ 45 (26)

Yes
Anti–Ro 60– 221 (66)
Anti–Ro 60+ 130 (74)
P 0.066

Immunosuppressants
No
Anti–Ro 60– 234 (70)
Anti–Ro 60+ 111 (63)

Yes
Anti–Ro 60– 99 (30)
Anti–Ro 60+ 64 (37)
P 0.12

Biologics***
No
Anti–Ro 60– 27 (100)
Anti–Ro 60+ 17 (100)

Yes
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 0 (0)
P >0.9

PhGA, mean ± SD score†††
Anti–Ro 60– 19 ± 18
Anti–Ro 60+ 21 ± 17
P 0.067

SLEDAI, mean ± SD score‡‡‡
Anti–Ro 60– 4 ± 6
Anti–Ro 60+ 5 ± 5
P 0.2

Characteristic Value

UCTD
No. of patients 156
Anti–Ro 60– 117
Anti–Ro 60+ 39

Age, mean ± SD years
Anti–Ro 60– 47 ± 12
Anti–Ro 60+ 46 ± 12
P 0.6

Sex, female
Anti–Ro 60– 108 (92)
Anti–Ro 60+ 36 (92)

Sex, male
Anti–Ro 60– 9 (7.7)
Anti–Ro 60+ 3 (7.7)
P >0.9

Ethnicity
American Indian/Alaska Native
Anti–Ro 60– 1 (0.9)
Anti–Ro 60+ 0 (0)

Asian
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 1 (2.6)

Black/African American
Anti–Ro 60– 1 (0.9)
Anti–Ro 60+ 0 (0)

Caucasian/White
Anti–Ro 60– 113 (97)
Anti–Ro 60+ 38 (97)

Native Hawaiian/Other Pacific Islander
Anti–Ro 60– 0 (0)
Anti–Ro 60+ 0 (0)

Other
Anti–Ro 60– 2 (1.7)
Anti–Ro 60+ 0 (0)
P 0.6

Obesity#
Anti–Ro 60– 17 (15)
Anti–Ro 60+ 6 (15)
P >0.9

Smoking§§§
Anti–Ro 60– 17 (15)
Anti–Ro 60+ 6 (15)
P >0.9

Disease duration, mean ± SD years¶¶¶
Anti–Ro 60– 6 ± 6
Anti–Ro 60+ 7 ± 8
P >0.9

Steroid usage
No
Anti–Ro 60– 78 (67)
Anti–Ro 60+ 38 (97)

Yes
Anti–Ro 60– 39 (33)
Anti–Ro 60+ 1 (2.6)
P <0.001

Antimalarials
No
Anti–Ro 60– 62 (53)
Anti–Ro 60+ 23 (59)

Yes
Anti–Ro 60– 55 (47)
Anti–Ro 60+ 16 (41)
P 0.5

(Continued)
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long-term medication, without any inflammatory autoimmune,
allergic, or infectious condition, and without a history of autoim-
mune disease, particularly thyroid disease or other diseases that
may modify cellular profiles in blood.

Determination of autoantibodies, ANAs, free light
chains, and complement fractions. For all samples
collected between March 2016 and June 2019, all autoantibodies
were determined at a single center (University Hospital of Brest).
Anti-ENA (comprising Sm, U1 RNP, Scl-70, Ro 52, Ro 60, and
SSB) and specific autoantibodies anti–Ro 52 and anti–Ro 60, anti–
cyclic citrullinated peptide 2 (anti-CCP2), IgG and IgM anti-β2GPI,
IgG, and IgM anticardiolipin [aCL], anti–double-stranded DNA
(anti-dsDNA), and anticentromere autoantibody levels were deter-
mined using a chemiluminescent IDS-iSYS immunoanalyser
(Immunodiagnostic Systems). Rheumatoid factor (RF) was deter-
mined regardless of the isotypes measured by turbidimetry using
SPAPLUS (Binding Site), as well as C3 and C4 complement fractions
and kappa and lamba free light chains. Samples from all patients
and healthy controls were tested. See Supplementary
Methods for more details regarding sample and data collec-
tion (available on the Arthritis & Rheumatology website at
http://onlinelibrary.wiley.com/doi/10.1002/art.42243). Auto-
antibodies and RF distribution were described according to

concentration level (negative, low, medium, or elevated/high),
and the proportion and the concentration across anti–Ro 60+
patients and anti–Ro 60– patients in each disease were com-
pared using Fisher’s exact test. Complements C3 and C4 and
circulating free light chains have been described in continued
concentrations expressed in gm/liter and mg/liter respectively,
and Kruskal-Wallis testing was used to compare the concentra-
tion level across the anti–Ro 60+ patients and anti–Ro 60–
patients in each disease. Anti–Ro 60 autoantibody–positive
samples were also classified according to their degree of posi-
tivity. Patients with positive samples with concentrations
between 10 and 640 arbitrary units (AU)/ml were considered
anti–Ro 60low patients, whereas those with samples with a
concentration > 640 AU/ml were considered anti–Ro 60high

patients.
ANA detection was performed using an in-house technique

on HEp-2 cells (ATCC strain CCL23). Each sample was systemat-
ically tested at 5 successive dilutions (1:80, 1:160, 1:320, 1:640,
1:1,280), and the threshold of positivity was set at 1:160, accord-
ing to international recommendations (22). Information regarding
current or past presence of hypergammaglobulinemia was col-
lected in each center at the time of inclusion and defined as, within
12 weeks, a serum IgG value greater than the upper limit of nor-
mal and/or gammaglobulin values >20%.

Table 1. (Cont’d)

Characteristic Value

Immunosuppressants
No
Anti–Ro 60– 100 (85)
Anti–Ro 60+ 38 (97)

Yes
Anti–Ro 60– 17 (15)
Anti–Ro 60+ 1 (2.6)
P 0.045

Biologics###
No
Anti–Ro 60– 23 (85)

Characteristic Value

Biologics (cont’d).
Anti–Ro 60+

7 (100)

Yes
Anti–Ro 60– 4 (15)
Anti–Ro 60+ 0 (0)
P 0.6

PhGA, mean ± SD score****
Anti–Ro 60– 26 ± 21
Anti–Ro 60+ 18 ± 15
P 0.12

* Except where indicated otherwise, values are the number (%) of patients. Significance was determined by Wilcoxon’s rank sum test, Fisher’s
exact test, or Pearson’s chi-square test. SS = Sjögren’s syndrome; SLE = systemic lupus erythematosus; UCTD = undifferentiated connective tis-
sue disease; PhGA = physician global assessment of disease activity; ESSDAI = European Alliance of Associations for Rheumatology (EULAR)
Sjögren’s Syndrome Disease Activity Index; ESSPRI = EULAR Sjögren’s Syndrome Patient Reported Index.
† Data were missing from 1 patient.
‡ Data were missing from 10 patients.
§ Data were missing from 3 patients and 10 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
¶ Data were missing from 4 patients and 15 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
# Data were missing from 1 patient each who was anti–Ro 60– and anti–Ro 60+.
** Data were missing from 51 patients and 277 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
†† Data were missing from 2 patients and 26 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
‡‡ Data were missing from 15 patients and 112 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
§§ Data were missing from 17 patients and 167 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
¶¶ Data were missing from 12 patients and 15 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
## Data were missing from 21 patients and 11 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
*** Data were missing from 306 patients and 158 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
††† Data were missing from 16 patients and 15 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
‡‡‡ Data were missing from 159 patients and 96 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
§§§ Data were missing from 2 patients who were anti–Ro 60–.
¶¶¶ Data were missing from 1 patient who was anti–Ro 60–.
### Data were missing from 90 patients and 32 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
**** Data were missing from 5 patients and 2 patients who were anti–Ro 60– and anti–Ro 60+, respectively.
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Clinical data. Clinical data obtained from 520 anti–Ro
60+ patients (306 with primary SS, 175 with SLE, and 39 with
UCTD), 511 anti–Ro 60– patients (61 with primary SS, 333 with
SLE, and 117 with UCTD), and 279 healthy controls were col-
lected using an electronic case report form. Clinical data
included patient’s age, sex, ethnicity, disease duration, the
physician global assessment of disease activity (PhGA), fulfill-
ment of Systemic Lupus Erythematosus Disease Activity Index
(SLEDAI) (23) for SLE, fulfillment of EULAR Sjögren’s Syndrome
Disease Activity Index (ESSDAI) (24) for primary SS, and current
use of treatments.

Other available data. High-dimensional omics geno-
types, RNA-Seq data, DNAmethylation data, and the proportions
of relevant cell types using custom flow cytometry marker panels
were analyzed in whole blood samples. Additional information,
such as cytokine levels, chemokine levels, and inflammatory
mediator expression levels were obtained from serum samples.
All of these parameters are described in greater detail in
the Supplementary Methods (http://onlinelibrary.wiley.com/doi/
10.1002/art.42243), and repartition of patients with a full data
set per omic type and across diseases is shown in Supplemen-
tary Table 1.

Dimensionality reduction. Our strategy for dimensional-
ity reduction was driven by artificial intelligence approaches
involving machine learning. Patients were first grouped according
to their disease (primary SS, SLE, or UCTD). We then separately
considered each of the data sets describing these patients
(RNA-Seq, DNA methylation, GWAS, and flow cytometry associ-
ated with cytokine expression). For each of these data sets, we
performed a Boruta analysis (25) to discriminate between
anti–Ro 60+ patients and anti–Ro 60– patients in order to extract
features that significantly distinguish the 2 groups within each
data set. The Boruta algorithm was used to create an extended
data set by adding copies of each feature in the original data set.
Values of the duplicated features were then shuffled, and the
resulting features were called “shadow features.” The random
permutation of modality within these features lead to the removal
of any preexisting correlation with the target variable, in our case,
anti–Ro 60 positivity. Once shadow features were generated, a
random forest classifier was run on the whole data set and
Z scores were computed for all clinical features (real and shadow).
Shadow features were then sorted according to their Z score, and
the maximum score was stored in memory as a threshold. The
algorithm marked each non-shadow feature with a Z score above
this threshold. Finally, Boruta findings indicated the clinical fea-
tures that had Z scores that were significantly lower than the
shadow features with maximum Z scores. These features were
considered unimportant and were removed from the data set
before removing all shadow features and returning a clean
data set.

We ran the Boruta algorithm for 300 iterations with a
maximum depth set to 5. Extracted features were run on a linear
discriminant analysis (LDA), which was only used to visually
assess the distinction between anti–Ro 60+ patients, anti–Ro
60– patients, and healthy controls. No classification metrics were
computed using LDA.

RESULTS

Specific biologic and clinical features of anti–Ro 60+
patients. We compared the characteristics of the 279 anti–Ro
60– healthy controls and 520 anti–Ro 60+ patients (306 with pri-
mary SS, 175 with SLE, and 39 with UCTD) to the 511 anti–Ro
60– patients (61 with primary SS, 333 with SLE, and 117 with
UCTD) (Table 1). Regarding the antibody profile, compared to
anti–Ro 60– patients, anti–Ro 60+ patients from the 3 diseases
had significantly increased levels of ANAs, kappa and lambda free
light chains, RF, anti–Ro 52, and anti-SSB antibodies (Figure 1
and Supplementary Table 2). Both anti–Ro 52 autoantibody levels
and anti-SSB autoantibody levels were also significantly
increased in anti–Ro 60high patients compared to anti–Ro 60low

patients. Past and/or present hypergammaglobulinemia was
more common in anti–Ro 60+ patients regardless of the disease
(Supplementary Figure 1A, http://onlinelibrary.wiley.com/doi/10.
1002/art.42243). No difference in terms of the disease activity
score (ESSDAI, SLEDAI, PhGA) was observed between anti–Ro
60–patients and anti–Ro 60+ patients (Supplementary
Figure 1B). However, in those with primary SS, anti–Ro 60+
patients had lower EULAR Sjögren’s Syndrome Patient Reported
Index (ESSPRI) (26) scores, and the higher the anti–Ro 60 scale,
the lower the ESSPRI score and its components (dryness, fatigue,
and pain) (Supplementary Figure 1C, http://onlinelibrary.wiley.
com/doi/10.1002/art.42243).

Identification of a specific signature common to
anti–Ro 60+ patients in the different omics data sets
using machine learning. We used the Boruta algorithm (25)
with all data sets to extract features that significantly contributed to
the prediction of which patients were anti–Ro 60+ according to
the different omics (RNA-Seq, DNA methylation, GWAS, and cyto-
kine expression associated with cell subset distribution). A total of
923 features were selected from RNA-Seq variables, 64 features
were selected from DNAmethylation variables, 5,749 features were
selected from GWAS variables (Supplementary Tables 3–5 respec-
tively, http://onlinelibrary.wiley.com/doi/10.1002/art.42243), and
8 features were selected from the association of cytokine expres-
sion levels and cell subset distribution. An LDA for each omics is
shown in Figure 2. We considered the combined analysis of
patients with primary SS, patients with SLE, and patients with
UCTD within the framework of the Boruta results. Features were
selected from disease data sets to capture the maximum amount
of discriminating information. We then considered the combination
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of Boruta results for primary SS, SLE, and UCTD to generate the
final signature. Of note, selected features for RNA-Seq and
GWAS data clearly distinguished between anti–Ro 60+ patients
and anti–Ro 60– patients. Remarkably, even if data from healthy
controls were not used for feature selection, their integration into
the different LDA based on the Boruta algorithm–identified fea-
tures that discriminate between anti–Ro 60+ patients and anti–Ro
60– patients, resulted in a separation from patients. These results
demonstrate that the different features selected using machine
learning from the anti–Ro 60+ patients constitute specific signa-
tures when compared to anti–Ro 60– patients and healthy
controls.

Characterization and pathway analysis of the tran-
scriptomic signature found in anti–Ro 60+ patients. The
923 transcripts identified using machine learning to discriminate anti–
Ro 60+ patients (Figure 2A) were analyzed using Reactome (27).
The 25 most relevant pathways are shown in Supplementary
Table 6 (http://onlinelibrary.wiley.com/doi/10.1002/art.42243). Anti–
Ro 60+ patients were enriched in genes involved in IFN signaling (type

I and II), cytokine signaling, activation of C3 and C5, antiviral response
by IFN-stimulated genes, and interleukin-10 (IL-10) signaling.

To further understand the IFN signature, we analyzed IFN-
annotated modules previously described as strongly up-regulated in
SLE (28,29). The different type I and type II IFN Z scores were
increased in anti–Ro 60+ patients regardless of the disease (Figure 3).

Characterization and pathway analysis of the DNA
methylation signature found in anti–Ro 60+ patients.
The 37 genes associated with the 64 CpGs identified using
machine learning to discriminate anti–Ro 60+ patients
(Figure 2B) were analyzed using Reactome. Interestingly, the
most relevant pathways were the same as those previously found
in the transcriptome analysis, such as type I and type II IFN signal-
ing, cytokine signaling in the immune system, and antiviral
response by IFN-stimulated genes (Supplementary Table 7,
http://onlinelibrary.wiley.com/doi/10.1002/art.42243).

Among these 37 differentially methylated genes, 33 methylated
genes were also found using the Boruta algorithm in the RNA-Seq
analysis. The interaction networks of these 33 common genes,

Figure 1. Serologic distributions in patients with primary Sjögren’s syndrome (pSS), those with systemic lupus erythematosus (SLE), and those
with undifferentiated connective tissue disease (UCTD). The presence of anti–Ro 52, anti–Ro 60, anti-SSB antibodies, rheumatoid factor (RF), and
circulating free light chains (cFLc) were measured in serum samples from 520 anti–Ro 60+ patients (306 with primary SS, 175 with SLE, and
39 with UCTD) and 511 anti–Ro 60– patients (61 with primary SS, with 333 SLE, and 117 with UCTD) from the same center using an automated
chemiluminescent IDS-iSYS immunoanalyser. Turbidimetry was used for the detection of RF and circulating free light chains (kappa and lambda).
Anti–Ro 60+ patients were divided in 2 groups: anti–Ro 60low patients (samples with concentrations between 10 and 640 arbitrary units [AU]/ml)
and anti–Ro 60high patients (samples with concentrations >640 AU/ml). Statistical significance was determined by 2-tailed pairwise Wilcoxon’s
rank sum test. Results are shown as box plots, in which each box represents the interquartile range, lines inside the box represent the median,
and lines outside the box represent the 10th and 90th percentiles; symbols represent individual samples. Color figure can be viewed in the online
issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.42243/abstract.
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determined using STRING with a confidence cutoff of 0.4, revealed
and confirmed the common IFN signature (Supplementary
Figure 2, http://onlinelibrary.wiley.com/doi/10.1002/art.42243) (30).
Of note, all transcripts were overexpressed in anti–Ro 60+ patients
regardless of the disease, and global hypomethylation of CpGs
was observed for all but 1 gene (ISG15). For 1 gene (IFITM1), up to
8 hypomethylated CpGs were assessed (Supplementary Figure 3,
http://onlinelibrary.wiley.com/doi/10.1002/art.42243).

GWAS analysis of anti–Ro 60+ patients. Our machine
learning approach identified 5,749 single-nucleotide polymor-
phisms (SNPs) that were able to discriminate anti–Ro 60+ patents
from anti–Ro 60– patients (Figure 2C). Interestingly, 3 of these
SNPs were located on genes previously indicated by the
algorithm from the previous RNA-Seq and DNA methylation
analyses (Figure 4A). The 3 corresponding genes were ATP10A,
MX1, and PARP14. Remarkably, the transcript Z score of these
3 genes was clearly higher in anti–Ro 60+ patients compared to

anti–Ro 60– patients but was also higher in anti–Ro 60high com-
pared to anti–Ro 60low patients when all diseases were merged
(Figure 4B). The same was true in all the diseases and constituted a
clear signature (Figure 4C). Given the strong association between
anti–Ro 60 and anti–Ro 52/tripartite motif–containing protein
21 (TRIM21) antibodies, we considered that positivity for anti–Ro
52/TRIM21 may define the signature. We then divided patients with
primary SS, patients with SLE, and patients with UCTD into 3 groups
(anti–Ro 60–/anti–Ro 52–, anti–Ro 60+/anti–Ro 52–, and anti–Ro
60+/anti–Ro 52+) and assessed the anti–Ro 60 signature identified
using the transcript Z score of the 3 genes (ATP10A, MX1, and
PARP14). Z scores were higher in anti–Ro 60+/Ro 52– patients com-
pared to anti–Ro 60–/anti–Ro 52– patients with primary SS and those
with SLE. In contrast, the Z scores were only higher in anti–Ro 60+/
anti–Ro 52+ primary SS patients compared to anti–Ro 60+/anti–Ro
52– patients with primary SS, and no significant difference was
observed in SLE patients and UCTD patients (Supplementary
Figure 4A, http://onlinelibrary.wiley.com/doi/10.1002/art.42243).

Figure 2. Identification of specific signatures common to anti–Ro 60+ patients in different omics data sets using machine learning. Linear
discriminant analysis of features selected with the Boruta algorithm, assessed among all 3 diseases combined or separately among patients with
SLE, those with UCTD, and those with primary SS. A total of 923 features were selected from RNA-Seq data (A), 64 features were selected from
methylation data (B), 5,749 features were selected from genome-wide association study (GWAS) data (C), and 8 features were selected from flow
cytometry distribution and cytokine expression data (D). Symbols represent individual samples from anti–Ro 60– patients, anti–Ro 60+ patients,
and healthy controls (HCs). See Figure 1 for other definitions.

A COMMON SIGNATURE FOR ANTI–SSA/RO 60 ANTIBODY EXPRESSION 1713

https://doi.org/10.1002/art.42243
https://doi.org/10.1002/art.42243
https://doi.org/10.1002/art.42243


We also considered that anti–Ro 60 positivity may just be a
marker of B cell reactivity, given that the majority of anti–Ro
60– patients were ENA negative. We then assessed the transcript
Z score of the 3 genes (ATP10A, MX1, and PARP14) in 5 groups
of patients regardless of disease: patients without any autoanti-
bodies, anti–Ro 60–/anti–Ro 52+ patients negative for any of the
autoantibodies analyzed (anti-RNP, anti-Sm, anti-SSB, anti–Scl-70,
anti-CCP, anti-dsDNA, antimyeloperoxidase, anti–proteinase 3,
anti–CENP-B), anti–Ro 60–/anti-Ro 52+ patients who were positive
for any other autoantibodies, anti–Ro 60–/anti-Ro 52– patients who
were positive for any of the autoantibodies, and anti–Ro 60+
patients. Z scores were clearly higher in anti–Ro 60+ patients com-
pared to all the other groups (Supplementary Figure 4B,

http://onlinelibrary.wiley.com/doi/10.1002/art.42243). All these
data confirm that the determined signature is specific to anti–Ro
60+ patients and is not just a marker of B cell activation or due to
the presence of any other autoantibody.

Characterization of the flow cytometry signature
and cytokine expression in anti–Ro 60+ patients.
Machine learning was used to identify 6 parameters among flow
cytometry data and 2 parameters among cytokine expression data
(assessed using Luminex-based quantitative assay) to discriminate
anti–Ro 60+ patients from anti–Ro 60– patients (Figure 2D). The
robustness of the 6 flow cytometry features was poor and was
only associated with 1 disease (Supplementary Figure 5,

Figure 3. Anti–Ro 60+ patients have a higher interferon (IFN) signature regardless of the disease. IFN Z score analyses were performed with 411 anti–
Ro 60+ patients (249 with primary SS, 136 with SLE, and 26 with UCTD) compared to 392 anti–Ro 60– patients (46 with primary SS, 267 with SLE, and
79 with UCTD) and 254 healthy controls. The genes from the M1.2 module (IFI44, IFI44L, IFIT1, andMX1) are induced by IFNα, while genes from both
M1.2 and M3.4 (ZBP1, IFIH1, EIF2AK2, PARP9, and GBP4) are up-regulated by IFNβ. The genes from the M5.12 module (PSMB9, NCOA7, TAP1,
ISG20, and SP140) are poorly induced by IFNα and IFNβ alone, while they are up-regulated by IFNγ. Moreover, transcripts belonging to M3.4 and
M5.12 are only fully induced by a combination of type I and type II IFNs. Other modules identified genes preferentially induced by IFNα (IFIT1, IFI44,
and EIF2AK2) or IFNγ (IRF1, GBP1, and SERPING1). Statistical significance was determined by 2-tailed pairwise Wilcoxon’s rank sum test. Results
are shown as box plots, in which each box represents the interquartile range, lines inside the box represent the median, and lines outside the box rep-
resent the 10th and 90th percentiles; symbols represent individual samples. HCs = healthy controls (see Figure 1 for other definitions). Color figure can be
viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.42243/abstract.
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http://onlinelibrary.wiley.com/doi/10.1002/art.42243). Interestingly
however, cytokine expression in serum samples showed an
increase of IFNγ-induced protein (CXCL10/IFNγ-inducible 10-kd
protein) and down-regulation of IL-1 R2, the decoy receptor for
cytokines belonging to the IL-1 family, in anti–Ro 60+ patients
regardless of disease (Supplementary Figure 5).

Established common signature between anti–Ro
60+ patients with primary SS, those with SLE, or those
with UCTD and patients with RA, those with SSc, or
those with MCTD expressing anti–Ro 60 antibodies and
showing stable antibody expression over time. To con-
firm the robustness of the identified signature, we observed
whether this signature was also present in an independent cohort
of 106 newly diagnosed patients with primary SS, those with SLE, or
those with UCTD from the inception cohort of the PRECISESADS
study, which provided an additional validation data set to test the gen-
eralization of our signature in patients whose samples were not used
for the feature selection process. At inclusion (first time point), our
study included 46 anti–Ro 60+ patients and 60 anti–Ro 60– patients.
Again, using the 923 transcripts of the RNA-Seq signature, the LDA
findings showed a clear separation between anti–Ro 60+ and anti–
Ro 60– patients regardless of the disease (Supplementary
Figure 6A). Furthermore, the Z scores for the 33 genes identified using
the Boruta algorithm that were common to RNA-Seq andDNAmeth-
ylation data were significantly increased in anti–Ro 60+ patients
(Supplementary Figure 6B). This was also true with the Z scores for

the 3 genes (ATP10A, MX1, and PARP14) previously selected using
the algorithm from the RNA-Seq, GWAS, and DNA methylation anal-
yses (Supplementary Figure 6C).

Finally, the signature’s robustness was also assessed in
724 patients with other autoimmune diseases, such as MCTD,
RA, and SSc, all from the PRECISESADS cross-sectional cohort.
A clear separation between anti–Ro 60+ patients (n = 40) and
anti–Ro 60– patients (n = 684) using the representation space
generated by the LDA is shown in Figure 5A. In all diseases
except MCTD, anti–Ro 60+ patients had significantly increased
Z scores for the 33 common genes (Figure 5B) and for the 3 genes
constituting the signature (Figure 5C). We can therefore conclude
that anti–Ro 60+ patients have a specific signature regardless of
disease.

Additionally, we assessed the transcript Z scores of the 3 genes
(ATP10A, MX1, and PARP14) in the inception cohort restricted to
86 patients (primary SS, SLE, UCTD, RA, SSc, and MCTD) who
were followed up and had samples collected at 3 time points
(recruitment, at 6 and/or 14 months). At the 6- and 14-month time
points, patients could receive any standard of care therapy pre-
scribed by their physician (Supplementary Table 8, http://
onlinelibrary.wiley.com/doi/10.1002/art.42243). Anti–Ro 60+
patients remained positive and anti–Ro 60– patients remained nega-
tive over time (data not shown). We confirmed that the Z score
remained stable in anti–Ro 60+ patients and anti–Ro 60– patients
over time (Figure 5D). Overall, the signature identified for anti–Ro
60+ patients does not depend on treatment and is stable over time.

Figure 4. Three genes common to RNA-Seq data, DNA methylation data, and GWAS findings used to characterize anti–Ro 60+ patients.
A, Venn diagram showing the number of overlapping genes according to the different omics data analyses conducted using machine learning
(RNA-Seq, DNA methylation, and single-nucleotide polymorphisms [SNPs]) to discriminate anti–Ro 60+ patients from anti–Ro 60– patients. B,
ATP10/MX1/PARP14 Z score analyses in 803 patients and 254 healthy controls (HCs) according to anti–Ro 60 expression. C, ATP10/MX1/
PARP14 Z score analyses in 295 patients with primary SS, 403 patients with SLE, and 105 patients with UCTD and 254 healthy controls. Statis-
tical significance was determined by 2-tailed pairwise Wilcoxon’s rank sum test. Results are shown as box plots, in which each box represents the
interquartile range, lines inside the box represent the median, and lines outside the box represent the 10th and 90th percentiles; symbols represent
individual samples. See Figure 1 for other definitions. Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.
com/doi/10.1002/art.42243/abstract.
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DISCUSSION

Our study demonstrates that anti–Ro 60+ patients have a
specific signature regardless of disease. Anti–Ro 60+ patients
compared to anti–Ro 60– patients presented with the same clini-
cal and biologic characteristics as those previously described in
the literature, such as hypergammaglobulinemia (12,13) and an
association with other autoantibodies (anti–Ro 52, anti-SSB, and
RF) (14). Anti–Ro 60 positivity was reported to be higher in the
low symptom burden subgroups of patients with primary SS (31)
in accordance with our observation that anti–Ro 60+ patients
had a lower ESSPRI score.

Our study has some limitations. First, it could be argued that
this was a cross-sectional study and it is assumed that single
samples (cells and sera) were collected at an arbitrary time point
during the disease course of different autoimmune diseases.
However, in our inception cohort with a 14-month follow-up
period, we demonstrated that the identified signature in anti–Ro

60+ patients remained stable over time and was not influenced
by treatment. Second, virtually all subjects were Caucasian, and
although common variants were expected to be old in evolution
and shared across ethnicities, some risk loci show considerable
ethnic differences in frequency and/or effect size.

The novelty of our study was our use of machine learning to
identify a robust signature specific to anti–Ro 60+ patients through
dimensionality reduction approaches, using high-throughput multi-
omics data. Assessment of the signature’s robustness occurred in
3 steps. First, we used discriminant features extracted from the dif-
ferent omics data sets to perform LDA. The new data representa-
tion spaces generated using the selected features through this
analysis allowed for sufficient separation of anti–Ro 60+ patients
and anti–Ro 60– patients in each of the 3 diseases studied (SLE,
primary SS, and UCTD). Second, we considered the overlap of
the selected features in RNA-Seq data and DNA methylation data
and the overlap of the selected features in RNA-Seq data, DNA

Figure 5. Confirmation of the established signature of anti–Ro 60+ patients common to patients with rheumatoid arthritis (RA), those with
systemic sclerosis (SSc), or those with mixed connective tissue disease (MCTD) expressing anti–Ro 60 antibodies. A, Linear discriminant analysis
of 923 features selected from RNA-Seq data (obtained using the Boruta algorithm in patients with SLE, UCTD, or primary SS), to discriminate anti–
Ro 60+ patients from anti–Ro 60– patients with mixed connective tissue disease (MCTD), those with systemic sclerosis (SSc), and those with rheu-
matoid arthritis (RA). B, Z score analyses of the 33 genes, identified using the Boruta algorithm and common to RNA-Seq and methylome data, in
295 patients with primary SS, 403 patients with SLE, 105 patients with UCTD, 307 patients with RA, 327 patients with SSc, and 90 patients with
MCTD, and 254 healthy controls (HCs). C, ATP10/MX1/PARP14 Z score analyses in 295 patients with primary SS, 403 patients with SLE,
105 patients with UCTD, 307 patients with RA, 327 patients with SSc, and 90 patients with MCTD and 254 healthy controls. Statistical significance
was determined by 2-tailed pairwise Wilcoxon’s rank sum test. D, ATP10/MX1/PARP14 Z score analyses in 86 patients from the inception cohort
who were followed up and had samples collected at the time of recruitment (M0) and at month 6 (M6) and/or month 14 (M14). Patients were
grouped as anti–Ro 60+ (n = 29) and anti–Ro 60– (n = 57) regardless of the disease (primary SS, SLE, UCTD, RA, SSc, or MCTD). Statistical sig-
nificance was determined by pairwise t-test. Results are shown as box plots, in which each box represents the interquartile range, lines inside the
box represent the median, and lines outside the box represent the 10th and 90th percentiles; symbols represent individual samples. Color figure
can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.42243/abstract.
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methylation data, and GWAS data, narrowing down the original
selection to 2 signatures composed of 33 genes and 3 genes,
respectively. Both Z scores, generated by either the 33 genes or
the 3 genes, were significantly different between anti–Ro 60+
patients and anti–Ro 60– patients in SLE, primary SS, and UCTD.
Third, because we used a machine learning approach to identify
the features, we assessed the possibility of overfitting by testing
the validity of these signatures in patients whose samples were
not used in the training process of the algorithm. Generalizability
of the signature was evaluated by determining RNA-Seq features
from another cohort of patients with primary SS, patients with
SLE, and patients with UCTD and from RA patients, SSc patients,
and MCTD patients. LDA findings consistently showed a clear dis-
tinction between anti–Ro 60+ patients and anti–Ro 60– patients.

Again, Z scores were significantly different between anti–Ro
60+ patients and anti–Ro 60– patients with RA and those with
SSc but not for those with MCTD. Consequently, the discriminat-
ing properties of the representation space obtained through the
computation of LDA, the statistical tests of distributions, and the
generalizability to other diseases constituted strong indicators of
the signature’s robustness.

Reactome pathway analysis of the 33 differentially expressed
andmethylated genes showed a link between anti–Ro 60 antibod-
ies and IFN signature, cytokine secretions, and IFN regulatory
factor 7, which were associated with Toll-like receptor (TLR) sig-
naling. The notable association between anti–Ro 60 autoanti-
bodies and inflammation in autoimmune diseases led to the
hypothesis that the RNA-binding properties of Ro 60 produce
aberrant TLR signaling (32). Alu retroelements activate TLR-7
and TLR-8 as oligoribonucleotides and associate with Ro 60 in
cell lines (33); consequently, inflammatory and IFN signatures
associated with anti–Ro 60 autoantibodies may be due to the
RNA-binding properties of Ro 60.

Remarkably, the transcript Z scores of 3 genes (ATP10A,
MX1, and PARP14) were clearly higher in anti–Ro 60+ patients
compared to anti–Ro 60– patients in all the diseases and consti-
tuted a clear signature. The first gene, ATP10A, encoded 1 of
the 5 P4 ATPase that requires interaction with transmembrane
protein 30A to exit from the endoplasmic reticulum to the plasma
membrane. ATP10A was recently linked to autoimmunity, as one
study demonstrated that methylation qualitative trait loci regulated
the methylation of the ATP10A gene in blood samples from
patients with primary SS (34). Since this enzymemainly transports
2 aminophospholipids: phosphatidylserine and phosphatidyleth-
anolamine, which may be the target of minor autoantibodies in
antiphospholipid syndrome (APS) (35), it is reasonable to specu-
late that there is a link between the presence of antiphospholipid
antibodies and the increase in ATP10A transcript. We re-ran the
analysis excluding patients positive for the major autoantibodies
found in APS (i.e., anti-β2GPI and IgG and IgM aCLs) to exclude
potential patients with secondary APS, and the signature that
was identified persisted (P = 4.2 × 10−10) (data not shown).

Moreover, to our knowledge, no association with APS has
been described in the literature to date. Thus, the signature car-
ried by ATP10A appears to be specific to anti–Ro 60+ patients.
Another GWAS study on cytokine responses found that genetic
variants of ATP10A were associated with IFNα production (36).
The second gene, PARP14, encoded for a member of
poly(ADP-ribose) polymerase (PARP) family proteins which con-
tain macrodomain binding proteins influencing many biologic pro-
cesses (37). PARP-14 suppressed proinflammatory IFN/STAT1
signaling and activated the antiinflammatory IL-4/STAT6 pathway
in primary human macrophages (38). PARP-14 also enhanced
histone activation to promote transcription of type I IFN genes
such as IFNB1 after lipopolysaccharide stimulation in RAW264.7
cells (39). Interestingly, PARP14was identified as 1 of the 5 genes
that can distinguish patients with primary SS from controls (40).
The third gene,MX1, encoded the Mx dynamic, MX dynamin-like
GTPase 1 or MxA, which participates in the cellular antiviral
response by antagonizing the replication processes of several dif-
ferent RNA or DNA viruses. MX1 gene expression is induced by
IFN via JAK1A/Tyk-2 followed by the activation of the STAT1/
STAT2 pathway (41). Furthermore, MX1 protein levels were
recently reported as a surrogate for the type I IFN gene scores in
SLE (42). Consequently, these 3 overexpressed, hypomethy-
lated, and mutated genes in anti–Ro 60+ patients were signifi-
cantly associated with the IFN signature regardless of the
autoimmune disease.

To control the IFN signature in anti–Ro 60+ patients with
autoimmune diseases, a key challenge would be to break the
continual turnover of Ro 60–specific clones that seems to drive
lifelong Ro 60 humoral autoimmunity (43). This may entail a dual
approach targeting both Ro 60–associated RNAs (including Alu
transcripts and Y RNAs) and Ro 60–specific autoantibody clono-
types as suggested by Reed and Gordon (32).
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