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ABSTRACT

By successively assembling genetic parts such as
BioBrick according to grammatical models, complex
genetic constructs composed of dozens of func-
tional blocks can be built. However, usually every
category of genetic parts includes a few or many
parts. With increasing quantity of genetic parts, the
process of assembling more than a few sets of these
parts can be expensive, time consuming and error
prone. At the last step of assembling it is some-
what difficult to decide which part should be se-
lected. Based on statistical language model, which
is a probability distribution P(s) over strings S that
attempts to reflect how frequently a string S occurs
as a sentence, the most commonly used parts will be
selected. Then, a dynamic programming algorithm
was designed to figure out the solution of maximum
probability. The algorithm optimizes the results of a
genetic design based on a grammatical model and
finds an optimal solution. In this way, redundant op-
erations can be reduced and the time and cost re-
quired for conducting biological experiments can be
minimized.

INTRODUCTION

With the development of synthetic biology, it has become
necessary to develop tools and methodologies to streamline
the design of custom genetic constructs (1). Gene expres-
sion studies, gene network studies, protein expression vector
design and metabolic engineering are some of applications
of this technology (2,3). There are web-based applications
such as GenoCAD to fill the needs of these scientific stud-
ies. GenoCAD is built upon a solid computational linguistic
foundation, and can be used to design synthetic genetic con-
structs (4). Yet, it captures design strategies of synthetic ge-
netic constructs in the form of grammatical models (5). Pro-
moters, ribosome-binding sites (RBS), genes and termina-

tors are all categories of parts that are needed for designing
complex genetic constructs (6–8). Decomposing biological
sequences into functional modules as genetic parts is one of
the ways to update synthetic biological database (9). There
are some assembly standards when assembling these parts
into genetic constructs. The BioBrick Foundation (BBF)
has been instrumental in promoting the BioBrick standard.
A BioBrick compliant part is a DNA fragment flanked by a
prefix and a suffix sequence having specific restriction sites
(10,11). Two BioBrick parts can be assembled by using a
specific series of restriction digestions and ligations inde-
pendent of the parts sequences. Theoretically, any set of ge-
netic parts compliant with the same standard can be assem-
bled by using specific restriction and ligation enzymes.

When assembling genetic parts into genetic constructs,
researchers are often unsure of choosing a part in a partic-
ular category. Thus, the molecular biological experiment of
assembling is always time-consuming, expensive, and error-
prone. In order to reduce the time and cost of assembling,
researchers and engineers develop robotic platforms that
can help automate the process of assembling many multi-
kilobase genetic constructs. The determination of an op-
timal assembly process can be totally automated by dy-
namic programming algorithms, without experiences (12).
In other robotic platform, a user can design a synthetic con-
struct by successively selecting design rules to transform the
structure of the design. Finally, the user can select specific
parts to complete the design (13). However, increasing num-
ber of genetic parts is being imported. At the last step of
assembling, users are always puzzled in choosing a suitable
part from few sets of categories (Figure 1). The objective
of this study was to overcome this difficulty. Here, we in-
troduce statistical language model (SLM), which can help
streamline the assembling process. The first goal of SLM
is to build a statistical language model that can estimate the
distribution of natural language as accurate as possible (14).
The original (and is still the most important) application of
SLMs is speech recognition, but SLMs also play a vital role
in various other natural language applications as diverse as
machine translation, part-of-speech tagging, intelligent in-
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Figure 1. At the last step, it’s always difficult to choose a suitable part.

put method and Text To Speech system. The statistical lan-
guage model in this paper is based on the statistical param-
eters coming from BioBrick standard parts and widely used
plasmids. After transforming the assembling process into
the mathematic model, a dynamic programming algorithm
can be performed to choose suitable parts composing the
final genetic construct. The algorithm takes experience of
former iGEM design and some widely used plasmids into
account to reduce the cost, time and errors of the assem-
bling process. This method can not only optimize the result
of genetic design from other robotic platform but also can
help design new projects by considering former experience.

MATERIALS AND METHODS

We use link http://parts.igem.org/das/parts/entry points/ to
download the entry points to the parts that we want to an-
alyze in June 2014. The version of this file published at that
time included 7242 parts. A Perl script was developed to
parse out the content of each part from the link http://parts.
igem.org/das/parts/features/?segment=part#. We then de-
composed them into structured data format, which could
be imported into a MySQL database. After being imported
into a MySQL database, 75744 features were parsed out
from these parts. The parts include both basic parts (e.g.
promoter and RBS) and composed parts, which include
multiple basic parts (e.g. device, project and composite).
The basic parts include categories of Regulatory, RBS, Cod-
ing, Terminator and Plasmid Backbone. We queried the
MySQL database to extract the basic parts and counted
their usage in composed parts. We also developed Perl script
and SQL sentences to analyze composed parts and counted
the usage of two (parts pair), three (parts triple), and four

(parts quadruple) adjacent basic parts in them. By query-
ing the MySQL database, we extracted a set of 1682 basic
parts compliant with RFC 23 standard (15). It means that
the sequence of these basic parts does not include any of the
restriction sites used by the assembly standard. These 1682
basic parts include 405 promoters, 42 RBSs, 57 terminators
and 1178 genes. We used these basic parts to design some ge-
netic constructs. The usage frequencies of basic parts, parts
pair, parts triple, and parts quadruple in the dataset were
calculated.

We also downloaded genetic parts from GenoLIB
database and developed Perl scripts and SQL sentences to
analyze them. 1633 parts which consisted of 84 categories
were included and their usages in 1750 commonly used plas-
mids were counted. The usages of parts pair, parts triple and
parts quadruple were also counted for optimizing parts as-
sembly based on SLM. Readers can be referred to home-
page of GenoCAD (www.genocad.com) for more informa-
tion of these parts and categories.

Mathematic model

For example, at the last step of GenoCAD design, every
icon has its option. It is somewhat difficult for the designer
to choose the most suitable part to complete the design (Fig-
ure 1). There are too many combinations of parts to form
different genetic constructs. It is impossible to exam every
combination with wet experiment. And adopting a reason-
able mathematical model to depict the genetic construct
will facilitate selecting suitable parts (16). To overcome this
problem, statistical language model (SLM) is introduced. In
this model, whether a sentence (S) is meaningful and rea-
sonable is based on the probability it will occur. A sentence

http://parts.igem.org/das/parts/entry_points/
http://parts.igem.org/das/parts/features/?segment=part
http://www.genocad.com
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(S) is composed of a sequence of words. Here S is a genetic
construct that is made of basic parts, and the words are these
basic parts. Now, S = part1,part2,. . . ,partn and we need to
know its P(S)––the probability that it will occur. Thus,

P(S) = P(part1, part2, ..., partn) (1)

According to conditional probability formula

P(part1, part2, ...partn)
= P(part1) · P(part2 |part1 ) · P(part3 |part1, part2 )
· · ·P(partn |part1, part2 , ..., partn−1)

(2)

In formula (2), P(part1) means that the probability part1
appears in the design. P(part2|part1) denotes the proba-
bility that part2 appears with part1 prior to it. Accord-
ing to formula (2), the probability partn appears is de-
termined by all the parts that appear prior to it. The
P(part1) and P(part2|part1) are easy to calculate, but cal-
culating P(part3|part1,part2) is difficult. Further, calculat-
ing P(partn|part1,part2,. . . ,partn–1) is very difficult, because
much more variables are involved in it. The conditions are
too complex to gauge. We believe, based on Markov Hy-
pothesis, that the probability that a part will occur is only
concerned with the part prior to it. Thus, formula (2) can
be simplified as:

P(S)
= P(part1) · P(part2 |part1 ) · P(part3 |part2 )
· · ·P(parti |parti−1 ) · · · P(partn |partn−1 )

(3)

This is the Bigram of statistical language model. How-
ever, when assembling genetic parts, whether a gene can be
expressed effectively is not only concerned with its RBS but
also with its promoter and plasmid backbone. Therefore, we
believe that the probability that a part will occur in an S is
concerned with the adjacent two or three parts prior to it.
Thus, formula (2) can be simplified as:

P(S)
= P(part1) · P(part2 |part1 ) · P(part3 |part1, part2 )
· · ·P(parti |parti−2, parti−1 ) · · · P(partn |partn−2, partn−1 )

(4)

Formula (4) is the 3-gram model of statistical language
model. Based on this theory, the 4-gram model can be es-
tablished. According to conditional probability formula:

P(parti |parti−2, parti−1 ) = P(parti−2, parti−1, parti )
P(parti−2, parti−1)

(5)

We use usage frequencies of parts pair, parts triple, and
usage frequencies of basic parts to estimate P (parti–2,
parti–1, parti), P(parti–2, parti–1) and P(parti), respectively.

P(parti−2, parti−1, parti ) ≈ Count(parti−2, parti−1, parti )
Count(all parts)

P(parti−2, parti−1) ≈ Count(parti−2, parti−1)
Count(all parts)

P(parti ) ≈ Count(parti )
Count(all parts)

According to formula (5) and the above formulas,

P(parti |parti−2, parti−1 ) ≈ Count(parti−2, parti−1, parti )
Count(parti−2, parti−1)

(6)

P(parti |parti−1 ) ≈ Count(parti−1, parti )
Count(parti−1)

In this way, any component in formula (4) can be calcu-
lated.

At the last step of design (Figure 1), there are too many
combinations of basic parts to complete the design. Which
one is the most reasonable and meaningful? We believe that
the part combination with the largest probability of occur-
rence is the answer. We have all the candidate paths, and a
path will result in an S (a path = a S = part1,part2,. . . ,partn).
The best path is represented by PATH.

P ATH = arg max
all S

(P(S))

To avoid memory overflow when performing the algo-
rithm on a computer, we considered the log of P(S).

P ATH
= arg max

all S
(log P(S))

= arg max
all S

(log(P(part1)×P(part2 |part1 )×
n∏

i=3
P(parti |parti−2, parti−1 )))

= arg max
all S

(log P(part1)+ log P(part2 |part1 )+
n∑

i=3
log P(parti |parti−2, parti−1 ))

(7)

Based on formula (6), we derived the following formulas

P(parti |parti−2, parti−1 )
= Count(parti−2,parti−1,parti )

Count(parti−2,parti−1)

P(part2 |part1 ) = Count(part1, part2)
Count(part1)

P(part1) = Count(part1)
Count(all parts)

Since we extracted the dataset from a relatively sparse
corpus, the zero-frequency problem would arise when parts
pair, parts triple never occurred in the training corpus. The
zero-frequency problem means when some parts pairs and
triples never appear in a corpus, their Count will be zero.
Then, according to above formulas the probability they ap-
pear is zero. This circumstance will cause troubles in calcu-
lating P(S) and selecting the PATH. To overcome this, we
use Add-one (Laplace) Smoothing (17). Thus, these formu-
las should be represented as:

P(part2 |part1 ) = Count(part1, part2) + 1
Count(part1) + N

(8)

P(parti |parti−2, parti−1 )
= Count(parti−2,parti−1,parti )+1

Count(parti−2,parti−1)+W
(9)

In formulas (8) and (9), N is the number of bi-gram (parts
pair) and W is the number of 3-gram (parts triple). Formu-
las (8) and (9) were used to fill the corresponding compo-
nent in formula (7). Based on same theory, a 4-gram model
of statistical language model can be established and corre-
sponding probability can be calculated. The resulted PATH
was the S with the largest probability of occurrence in all
candidate paths. We used dynamic programming algorithm
to figure out the PATH from all candidates.
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Table 1. The grammatical model used in this study

Rule Comments Parent term Child term

1 Transform a cassette (Cass) into two cassettes (Cass) Cass Cass-Cass
2 Reverse the sequence orientation of a cassette (Cass) Cass [Cass]
3 Transform a cassette (Cass) into a promoter (PRO), a cistron (Cis), and a terminator (TERM) Cass PRO-Cis-TERM
4 Transform a cassette (Cass) into a promoter (PRO), a cistron(Cis) Cass PRO-Cis
5 Transform a cistron (Cis) into two cistrons (Cis) Cis Cis-Cis
6 Transform a cistron (Cis) into a rbs (RBS) and a gene (GEN) Cis RBS-GEN
7 Transform a terminator (TERM) into two terminators (TERM) TERM TERM-TERM
8 Transform a gene (GEN) into two genes (GEN) GEN GEN-GEN

Algorithm

Next, we need to find a path in the lattice in Figure 1. This
path is composed of a series of parts and will be the S with
the largest probability. It reflects how formula (7) can be
solved. The algorithm of 3-gram model is presented as an
example, it originates from the Viterbi algorithm (18) and
consists of three steps:

Firstly, a candidate lattice was built (Figure 2). Every icon
(category) corresponds to one column, and every node in a
column corresponds to a basic part. At the start and end of
the lattice, BEG and END columns were added. In these
two columns, two virtual nodes of B and E, respectively,
were added (Figure 2). Every node is a triple-tuple < name,
V, P >, and the first element name was filled with basic part
name.

Secondly, the lattice was filled (Figure 3). In the lattice
from left to right, for every node of a triple-tuple < name, V,
P >, the V and P are calculated and filled. V was filled with
the maximum value selected from combining operation of
three nodes in three adjacent columns. P would then store
the address of the node prior to it, where V is derived from
via combining operation.

(1) First column, for the B node, let V = 0 and P = NULL.
(2) Second column, every node < name, V, P >

(name∈{I0500, R0011, . . . , R0040, . . .}) was com-
bined with B node, and its V and P were calculated
as:

V = VB + log P(part) = log P(part), ·P = address of B

(3) Third column, every node < name, V, P >
(name∈{R0032, R0034, . . . , R0041, . . .}) was com-
bined with every node in the second column, and its V
and P were calculated as:

V = max{log P(part
∣
∣part prior )},

P = address where V comes f rom

(4) Fourth column, every node < name, V, P > was com-
bined with every node in the previous two columns, and
its V and P were calculated as:

VCurrent =
max{VBe f ore+VPr evious+ log P(part

∣
∣partBe f ore, partPr evious )}

PCurrent = Address of VPr evious belong

PPr evious = Address of VBe f ore belong

(5) Step 4 was repeated; every node in the current col-
umn was combined with every node in the previous two
columns, and its V and P were calculated.

(6) In the END column, V is the maximum value selected
from the nodes in the previous column, P would store
the address of the node where V is derived form.

Thirdly, the PATH was recalled and obtained (Figure
4). Starting from node E, the P prior to it was continu-
ally searched (Figure 4). Finally, the PATH with the largest
probability was found, and the resulted S was the ge-
netic construct that was designed. In same way, a dynamic
programming algorithm can be implemented in a 4-gram
model and the corresponding PATH can be figured out. If
the length of S is L, and the maximum node number in a
column is D, the algorithm complexity of this algorithm
in a 3-gram model will be O(L·D3) and O(L·D4) in a 4-
gram model, and the algorithm complexity of exhaustive
algorithm is O(DL).

RESULTS

The general methodology of developing grammars to
model the structure of synthetic genetic constructs has been
previously described in details (4,19). The basic grammar is
clear: PRO (promoter)-RBS (ribosome-binding sites)-GEN
(genes)-TERM (terminator). The grammatical model used
in this study is similar to the context-free grammar (CFG)
(19), but has new rewriting rules to allow protein fusion.
The full grammatical model is described in Table 1. We also
used GenoLIB grammar to design new genetic constructs,
the database and the grammar also have been described be-
fore in details (9).

To demonstrate how to assemble BioBrick parts to
form a functional biosynthetic system, we selected the
banana odor biosynthetic system (http://parts.igem.org/
Part:BBa J45900), designed and implemented by the MIT
iGEM team in 2006. The system contains two expression
cassettes: one with BAT2 and THI3 genes, which produces
isoamyl alcohol; and the other catalyzes the conversion of
the cellular metabolite leucine to isoamyl acetate or banana
odor. We can design the system according to the grammat-
ical model.

Firstly, we needed a Cass, and then applied Rule 1. The
design became Cass-Cass, and then we applied Rule 4 to the
first Cass and Rule 3 to the second Cass. The design became
PRO-Cis-PRO-Cis-TERM. We applied Rule 5 to the first
Cis and Rule 6 to the second Cis. The design became PRO-
Cis-Cis-PRO-RBS-GEN-TERM. Next, we apply Rule 6 to
Cis, and the design becomes PRO-RBS-GEN-RBS-GEN-
PRO-RBS-GEN-TERM. Finally, we applied Rule 7, af-
ter which the final design was PRO-RBS-GEN-RBS-GEN-
PRO-RBS-GEN-TERM-TERM. Before we input the de-

http://parts.igem.org/Part:BBa_J45900
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Figure 2. Building a candidate lattice.

Figure 3. Filling the lattice.

sign, the genes we want to express should be determined.
Then, the input design was

PRO RBS J45008 RBS J45009 PRO RBS J45014 TERM
TERM

The assembling algorithm was implemented by a Perl
script, and then the 3-gram model algorithm recommended
the parts series:

R0040-B0030-J45008-B0030-J45009-R0040-B0030-
J45014-B0010-B0012.

The 4-gram model algorithm recommended:

R0011-B0030-J45008-B0030-J45009-R0040-B0030-
J45014-B0010-B0012.

This is the actual part that banana odor biosynthetic sys-
tem consists of.

For another example, we selected the wintergreen
odor biosynthetic system (http://parts.igem.org/Part:
BBa J45700), also designed and implemented by the MIT
iGEM team in 2006. The system consists of two expression
cassettes: one produces salicylate acid from the cellular

http://parts.igem.org/Part:BBa_J45700
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Figure 4. Recalling and obtaining the PATH.

metabolite; and the other converts the salicylic acid to
methyl salicylate, which produces the wintergreen odor.
According to the grammatical model, the design started
with a Cass. Then, on applying Rule 1, the design became
Cass-Cass. We applied Rule 3 to both Cass, and the design
became PRO-Cis-TERM-PRO-Cis-TERM. We applied
Rule 6 to both Cis, and the design became PRO-RBS-
GEN-TERM-PRO-RBS-GEN-TERM. Finally, we applied
Rule 7, and the final design was PRO-RBS-GEN-TERM-
TERM-PRO-RBS-GEN-TERM-TERM. The genes to be
expressed should be determined before input. The input
design was

PRO RBS J45004 TERM TERM PRO RBS J45017 TERM
TERM

The assembling algorithm of 3-gram model recom-
mended:

R0040-B0030-J45004-B0010-B0012-R0062-B0030-J45017-
B0010-B0012.

The 4-gram model recommended:

R0040-B0030-J45004-B0010-B0012-R0011-B0030-J45017-
B0010-B0012.

Two examples repeated the combination R0040-B0030.
According to expertise in this field, R0040-B0030 together
with Biobrick scars at each junction would result in a 93bp
direct repeat, which might be expected to make the system
unstable. To avoid this bias, we modified the parameters by
deleting combinations with less usage frequency (less than
four times in parts usage, less than three times in parts pair
usage, less than three times in parts triple usage). This is a
general procedure to correct some deviations in assembling
results. Then, in the first example the assembling algorithm
of 3-gram model recommended:

R0040-B0030-J45008-B0030-J45009-I0500-B0032-J45014-
B0010-B0012.

The 4-gram model algorithm also recommended:

R0011-B0030-J45008-B0030-J45009-R0040-B0030-
J45014-B0010-B0012.

In the second example the 3-gram model recommended:

R0040-B0032-J45004-B0010-B0012-R0062-B0032-J45017-
B0010-B0012.

The 4-gram model recommended:

R0040-B0032-J45004-B0010-B0012-R0011-B0032-J45017-
B0010-B0012.

And this is the actual part that wintergreen odor biosyn-
thetic system consists of.

The third example, we used the sascsc design in Public
Designs of GenoCAD (Figure 5). This design used Geno-
LIB v10 grammar and included All Parts. When inputting
the design PRO RBS CDS ETER SPCR ENH VREP ENH,
the assembling algorithm of 3-gram model recommended:

T7 promoter. ribosome binding site-003. DHFR. MAS
terminator. SPCR. hr5 enhancer. ORF1629-004. hr5 en-
hancer.

The 4-gram model recommended:

AmpR promoter-009. ribosome binding site-003. DHFR.
MAS terminator. SPCR. hr5 enhancer. ORF1629-004.
hr5 enhancer.

When we optimized it with the Most Popular Parts Li-
brary in GenoLIB database. Both 3 and 4-gram model rec-
ommended the result:
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Figure 5. The sascsc design in GenoCAD.

CMV promoter-009. ribosome binding site-002. DHFR.
rabbit globin terminator-001. SPCR. CMV enhancer-
003(Recommended). ORF1629-001. CMV enhancer-
003(Recommended).

The fourth example (Figure 6), we developed a new de-
sign with GenoLIB v10 grammar and optimized it with the
Most Popular Parts Library. Both 3- and 4-gram model rec-
ommended the result:

CMV promoter-009. kozak sequence-003. ATG. S-Tag-002.
stop-003. rrnB T1 terminator-002. SPCR. RSV promoter-
003. ribosome binding site-002. ATG. gag(truncated)-001.
stop-003. rabbit globin terminator -001.

When we optimized the design with the All Parts Library
in GenoLIB database, the 3-gram model recommended:

tet promoter-002. kozak sequence-003. ATG. GST-002.
stop-003. T3Te terminator-001. SPCR. cat promoter-
004(Recommended). RBS. ATG. TrxA-003. stop-003.
MAS terminator.

And the 4-gram model recommended:

AmpR promoter-009. kozak sequence-002. ATG. GST-002.
stop-003. T3Te terminator-001. SPCR. p10 promoter-001.
ribosome binding site-003. ATG. M13 gene II. stop-003.
MAS terminator.

In the first example, the 4-gram model recommended the
same assembly to the original. The 3-gram model recom-
mended assembly different from the original. In the sec-
ond example, the 4-gram model recommended an assem-
bly similar to the original composition. The 3-gram model
recommended assembly quite different from the original.
After modifying the parameters, in both examples the 3-
gram model recommended an assembly similar to the orig-
inal and the 4-gram model recommended the same one to
the original. Experienced users can modify the parameters

to optimize assembling results. In the first example that
simulating iGEM design in Supplementary Data, both 3
and 4-gram model recommended assemblies different from
the originals. After modifying the parameters, the 4-gram
model recommended a same one to the original. When we
develop more complicated designs (the other three exam-
ples simulating iGEM design), the algorithm recommended
quite different results (Supplementary Data). One reason is
the corpus is fairly sparse, more successful assemblies are
needed to enrich the corpus. And the other important rea-
son is that when the designs become complicated a more
advanced grammar will be needed. We use GenoLIB v10
grammar in GenoCAD to the third and fourth examples,
and the third one is also a public design. The algorithm
recommended some assembly results for consideration. If
we need some other options, we can exclude some parts
and repeat the algorithm. It will recommend some other
optimized assemblies for consideration. If we have known
that some parts are definitely connected, we can determine
them first (or evaluate them higher) then implement the al-
gorithm. Readers can be referred to Supplementary Data for
these applications and more examples. Theoretically, the 4-
gram model will recommend a more reasonable assembly
result than 3 and Bi-gram model. But we think in some cases
it must be tested by a wet experiment. The algorithm can
be iterated to yield different optimized results for consider-
ation. If we develop new project according to a grammar
and carry out the algorithm at the last step, the algorithm
will yield an optimized assembly based on experience. Stu-
dents enrolled in the iGEM competition may be an impor-
tant group of potential user of this method, and the Bio-
Brick grammar has been developed with this group in mind.

DISCUSSION

This paper presents a statistical language model for syn-
thetic biological parts assembling. After converting syn-
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Figure 6. A GenoCAD design to show the optimized results.

thetic biological parts assembly process into a 3- or 4-gram
model, a dynamic programming algorithm was carried out
to select an optimized result. The method can not only
be applied to optimize the assembly of a design in a syn-
thetic biological robotic platform such as GenoCAD, but
can also be independently applied to automate the DNA
assembly process in synthetic biology. After entering cat-
egories of synthetic biological parts according to a gram-
mar, the algorithm automatically selects suitable parts to
form a reasonable construct by considering successful expe-
riences. In this way, redundant operations can be reduced,
and the time and cost required for conducting biological ex-
periments can be minimized. As described previously, this
method is based on 3- or 4-gram model. It indicates every
part involved in the assembly process is concerned with the
adjacent two or three parts prior to it. But in real world
DNA assembly process, for an example, whether a gene
can be expressed effectively is not only related to its pro-
moter, RBS but also its plasmids backbone and other reg-
ulating sequences. In order to simulate real world assembly
process, models higher than 4-gram should be introduced.
These models indicate every part involved in the assembly
process is concerned with more than three parts prior to it.
But in these higher-gram models the conditional probabil-
ity is very difficult to calculate. When N = 5 or more, though
the accuracy in other natural language applications such as
machine translation, part-of-speech tagging, intelligent in-
put method will increase significantly, powerful computer
will be needed (14).

When calculating the conditional probability, we used
Add-one (Laplace) smoothing to overcome zero-frequency
problem. However, it is always not a good choice and the
disadvantages of Add-one (Laplace) smoothing are well-
known: it allows considerable amount of the probability
space to unseen events, and is poor at predicting the ac-
tual probabilities of bi-grams (17). It was used just for sim-
plicity, considering that any two parts compliant with the

same standard can be connected. We intend to develop
5- or more-gram models, and expand the corpus to simu-
late the assembly process more reasonably. Other smooth-
ing technologies such as Good-Turing Smoothing, Katz
backoff, Interpolation Smoothing (20,21) will be consid-
ered to improve the mathematical model. Some parts are
overwhelmingly likely to be returned in any analysis. One
of the reasons is that ‘noises’ in the corpus cause results de-
viating, and we can delete these ‘noises’ to correct the de-
viation. We employed commonly used combinations with
higher usage frequency (more than three times in parts us-
age, more than two times in parts pair and triple usage, and
all the parts quadruple) in the iGEM dataset, and we de-
fined these combinations were ‘successful’ or ‘good’ words
and the others was useless ‘noises’. We downloaded a rel-
atively sparse corpus from the iGEM website, and derived
a fairly sparse corpus from widely used plasmids. We also
counted the usage of parts and two or more continuous
adjacent parts. When developing new projects, some parts
pairs, parts triples and parts quadruples never occur in the
sparse corpus. These circumstances always raise the zero-
frequency problem, and cause optimized results deviating.
Besides improving smoothing technology, expanding the
corpus is absolutely necessary. But expanding corpus needs
describing the nature of features and parts in a unified way.
In other words, same sequence should have same name and
same description. This is still a more difficult issue. This
can be solved by the development of an ontology giving the
community a common controlled vocabulary to describe
the features. And developing the Synthetic Biology Open
Language will promote this process.

Based on previously described linguistic models of syn-
thetic DNA sequences, the paper presents a computational
supplement for the AutoCAD platform of Synthetic Biol-
ogy. It also has raised an important question of a too wide
choice being offered at the final stage of the design. It is
fairly important to take into account success of the previ-
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ous assemblies when creating a new design. For an inexpe-
rienced user or a new person to Synthetic Biology, it will be
difficult to make a right choice of parts to be used in the
assembly. The algorithm help users by suggesting the most
common combinations of parts based on a body of previ-
ously analyzed and successful constructs. Besides optimiz-
ing BioBrick parts assembling, by using GenoLIB grammar
and dataset in GenoCAD to create designs and optimize
the assembly it demonstrates that the method can be used
more practically and universally. The newly developed fea-
ture will facilitate popularizing of Synthetic Biology to a
wider community and might help to erase inconsistency and
jargon used in this field. On the other hand, when collecting
data from previous assemblies we know usage frequencies of
parts and parts connections. This will enrich our knowledge
of synthetic biological assemblies and favor the data-driven
feature of biotechnology. Next step, more successful assem-
blies will be taken into account and the algorithm will be
improved to enable it useful for a wider scientific commu-
nity.
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