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Abstract

Maternal obesity is known to predispose offspring to metabolic and neurodevelopmental

abnormalities. While the mechanisms underlying these phenomena are unclear, high fat

diets dramatically alter intestinal microbiota, and gut microbiota can impact physiological

function. To determine if maternal diet-induced gut dysbiosis can disrupt offspring neurobe-

havioral function, we transplanted high fat diet- (HFD) or control low fat diet-associated (CD)

gut microbiota to conventionally-housed female mice. Recipient mice were then bred and

the behavioral phenotype of male and female offspring was tracked. While maternal behav-

ior was unaffected, neonatal offspring from HFD dams vocalized less upon maternal separa-

tion than pups from CD dams. Furthermore, weaned male offspring from HFD dams had

significant and selective disruptions in exploratory, cognitive, and stereotypical/compulsive

behavior compared to male offspring from CD dams; while female offspring from HFD dams

had increases in body weight and adiposity. 16S metagenomic analyses confirmed estab-

lishment of divergent microbiota in CD and HFD dams, with alterations in diversity and taxo-

nomic distribution throughout pregnancy and lactation. Likewise, significant alterations in

gut microbial diversity and distribution were noted in offspring from HFD dams compared to

CD dams, and in males compared to females. Regression analyses of behavioral perfor-

mance against differentially represented taxa suggest that decreased representation of

specific members of the Firmicutes phylum predict behavioral decline in male offspring. Col-

lectively, these data establish that high fat diet-induced maternal dysbiosis is sufficient to

disrupt behavioral function in murine offspring in a sex-specific manner. Thus these data

reinforce the essential link between maternal diet and neurologic programming in offspring

and suggest that intestinal dysbiosis could link unhealthy modern diets to the increased

prevalence of neurodevelopmental and childhood disorders.
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Introduction

A prevailing theory of neurodevelopmental pathogenesis is that environmental factors and

genetic predisposition converge to disrupt neural circuits controlling social, emotional, and

cognitive behavior [1],[2],[3],[4]. An environmental factor that could impair neurodevelop-

ment is maternal obesity, as one third of women in the United States are obese [5]. The prena-

tal/perinatal environment plays a critical role in programming offspring’s metabolic and

mental health; and an unhealthy maternal diet and/or maternal metabolic disorders (obesity,

diabetes, hypertension, and pre-eclampsia) adversely impact offspring physiology and behav-

ioral function [6],[7]. Although numerous experimental and epidemiological studies have

confirmed an association between maternal obesity and adverse offspring outcomes, the

underlying mechanisms remain unclear. In light of the coincident increases in obesity and

neuropsychiatric disorders [8], it is crucial to understand the relationship between these two

phenomena.

Diet-induced obesity could affect physiology through the gut microbiome, as modern diets

high in fat and sugar are known to trigger robust and lasting alterations in intestinal microbiota

[9]. The human gastrointestinal tract harbors a great number of bacteria from distinct species,

and this dynamic population of microbes participates in physiologic functions including nutri-

tion/digestion, growth, inflammation, immunity, and protection against foreign pathogens [10],

[11],[12]. Accordingly, disruptions in the balance and diversity of intestinal microbiota could

underlie variable host susceptibility to illness [13],[14], including neuropsychiatric impairment

[15],[16]. Indeed, experimental and clinical studies strongly indicate that disruption to gut

microbiota can impair brain function and mental health [11],[17],[18],[19],[20],[21],[22]. With

regard to neurodevelopmental disorders, a number of conditions are associated with altered neo-

natal microbial colonization, which may impact intestinal barrier and immune maturation, the

brain-gut axis, and ultimately contribute to development of neurologic disease [23],[24]. For

example, autism spectrum disorders are strongly associated with gastrointestinal dysfunction

[25], and collective studies reveal altered microbiota with shifts in several specific bacterial taxa

in the stool of autistic children [26],[27],[28]. Furthermore, maternal nutrition during pregnancy

may impact offspring gut microbiota and influence disease susceptibility [29]. While maternal

obesity/high fat diet consumption has been linked to autism [30],[31],[32] and shown to modify

offspring intestinal microbiota [33],[34], the direct link from unhealthy, high fat-shaped mater-

nal microbiota to neurobehavioral impairment in offspring has only recently come under inves-

tigation [35] and remains incompletely understood. The aim of the present study was to test the

hypothesis that high fat diet-associated maternal microbiota are sufficient to adversely affect neu-

robehavioral function in offspring. Adult female C57BL/6 mice maintained on chow diet were

subjected to a microbiome depletion/transplantation paradigm using donor microbiota collected

from either high fat diet- or control diet-fed mice [21]. Recipient female mice were then bred

and the behavioral phenotype of male and female offspring tracked. Metagenomic sequencing of

microbiota collected from dams and offspring at various times during pregnancy and postnatal

development was conducted.

Materials and methods

Maternal microbiome transplantation, breeding, and behavioral testing

This study was carried out in strict accordance with PHS/NIH guidelines on the use of experi-

mental animals, and the PBRC IACUC reviewed and approved all protocols. Microbiota

donor material was taken from 4-month-old male C57Bl/6 mice (Jackson Laboratory) follow-

ing 3 month exposure to either high fat diet (HFD; JAX # 380050, 60 kcal% fat (Research
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Diets, Inc. D12492i) or control diet (CD; JAX # 380056, 10 kcal% fat (Research Diets, Inc.

D12450Bi). Cecal and colonic contents were harvested from donor mice, pooled, diluted

40-fold (weight: volume) in sterile water, and stored at -80˚C as described previously [21].

The experimental timeline is schematically depicted in Fig 1. Adult (3 month old) male and

proven breeder female C57Bl/6 mice (Charles River Laboratories) were single-housed under

standard conditions with ad libitum access to water and “breeder chow”diet (Purina 5015;

Fig 1. Schematic illustration of experimental design and schedule for behavioral testing. Adult (3

month old) male and proven breeder female C57Bl/6 mice purchased from Charles River Laboratories were

single-housed under standard laboratory conditions. Female mice were subjected to the 14-day antibiotic-

based microbiome depletion protocol, followed 48 hours later by transplantation with donor microbiota (daily

gavage for 3 days, followed by twice-weekly boosts thereafter). Female mice were paired with males exactly

10 days after microbiome recolonization. Behavioral assessments were initiated sequentially in the order

presented after litters were born, and the age of the mice when assessed is presented in parentheses (PND,

postnatal; wks, weeks).

https://doi.org/10.1371/journal.pone.0175577.g001
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19.7% of calorie provided from protein, 26.1% from fat, and 54.1% from carbohydrate). A

cocktail of ampicillin, gentamicin, metronidazole, neomycin (all at 1.0 mg/day in sterile

water), and vancomycin (0.5 mg/day) was given to female mice once daily for 14 consecutive

days by oral gavage to deplete their native intestinal microbiome [36],[21]. The microbiome

was re-established 72 hours after the last antibiotic administration via gavage administration

of CD- or HFD-donor cecal contents (100 μl) daily for 3 days, followed by bi-weekly boosts

(100 μl) throughout pregnancy and lactation. Females were paired with males exactly 10 days

after the start of microbiome recolonization. Males were maintained under standard labora-

tory conditions with no microbiome manipulation, and were removed from the cages with

females after 4 consecutive nights. Spontaneous maternal behavior in the home cage was

assessed on postnatal days 1, 3, and 5 by real-time instantaneous sampling as described in S1

File.

Offspring behavioral testing

All behavioral testing was conducted between 7 am and 1 pm, and was recorded/analyzed

using Any-Maze software (Stoelting Co; see S1 File). Ultrasonic vocalizations from neonatal

mice separated from their dams/littermates at postnatal days 6, 8 and 10 were recorded using

an ultrasound microphone (Avisoft UltraSoundGate condenser microphone capsule CM16,

Avisoft Bioacoustics, Berlin, Germany), and analyzed using Avisoft SASLab Pro (Version 5.0)

[37]. Social approach/preference was assessed in weanling mice (3–4 week-old) using the stan-

dard three-chambered apparatus [38]. Overall anxiety and exploratory behavior was assessed

using the Open Field assay [39]. Repetitive Motor Learning was assessed using a Five Station

Rota-Rod Treadmill for Mouse (Med-Associates, St. Albans, VT) over 3 days (3 trials/day)

with speed accelerating from 4 to 40 rpm. Stereotypical/compulsive behavior was assessed by

quantifying marble burying during a 30 minute trial in a novel cage pre-loaded with 4 cm of

clean bedding and 16 evenly-spaced marbles [40]. Sucrose preference/anhedonia was mea-

sured by offering mice a choice of 1% sucrose or water, with preference derived from the quo-

tient of sucrose intake over total fluid intake. Both ad libitum intake and intake following a

4-hr fast was recorded. Memory was measured using a video-based fear conditioning system

(Med-Associates) that pairs a unique context (scent and cage) and unconditioned stimulus

(auditory tone) with a repeated foot shock (day 1), and then quantifies freezing behavior to the

context (day 2) and to the tone (day 3) as a measure of memory [41].

16S metagenomic sequencing

Fecal samples were collected under aseptic conditions from dams before breeding, during

pregnancy, and while nursing. Fecal samples were collected from offspring at weaning, while

fecal and cecal samples were collected at euthanasia. DNA preparation, sequencing and bioin-

formatics were performed by the PBRC Genomics Core Facility. DNA was isolated using a

commercial reagent system (MoBio Power Fecal Kit, MoBio Laboratories, Carlsbad, CA) aug-

mented by enzymatic lysis using lysostaphin, mutanolysin, and lysozyme [42]. Sequencing

libraries targeting V4 of the gene encoding the 16S ribosomal RNA were generated using a

commercially available kit (NEXTflex™ 16S V4 Amplicon-Seq Library Prep Kit, BIOO Scien-

tific, Austin, TX), relying of 16S gene-specific primer sequences V4F 5’-GTGCCAGCMGCC
GCGGTAA-3’ and V4R 5’-GGACTACHVGGGTWTCTAAT-3’, and including Illumina adap-

tors and molecular barcodes as described by the manufacturer to produce 253bp amplicons.

Samples were sequenced with custom primers (BIOO Scientific, Austin, TX) on an Illumina

MiSeq instrument using version 3 sequencing chemistry (300bp paired end reads). Forward

and reverse sequence reads were processed into double-stranded DNA contigs using quality
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control metrics implemented in the software package ‘mothur’ [43]. Sequence clustering (at

better than 97% identity) to identify operational taxonomical units (OTU), removal of chime-

ric sequences, and generation of a read count table (i.e. tabulating the occurrence of each OTU

in each sample) were performed with the software package ‘usearch ‘[44]. Taxonomical classi-

fication of each OTU sequence relied on the SILVA 16S rRNA sequence database version

123.1 [45], and statistical tests for differential representation were performed with tools incor-

porated in ‘mothur’, as well as using the software package DESeq2 [46]. Relative abundance of

each OTU was examined on the phylum, class, order, family and genus levels.

Statistical analyses

Behavioral and biochemical data were analyzed using Prism software (GraphPad Software,

Inc.), and displayed as mean ± standard error. Body weight, maternal care behavior, ultrasonic

vocalization, and fear conditioning data were analyzed with 2-way repeated measures ANOVA

followed by planned Bonferroni post-hoc comparisons to determine differences between

groups. All other behavior were analyzed by unpaired t-tests. Statistical significance for all anal-

yses was accepted at p< 0.05, and �, ��, and ��� represent p< 0.05, p< 0.01, and p< 0.001,

respectively. Alpha diversity (chao1 metrics) and beta diversity (weighted UniFrac metrics [47])

were assessed using tools implemented in ‘mothur’ on the basis of 80,000 sequences per sample.

Beta-diversity between groups was also assessed by Per Mutational Multivariate Analysis Of

Variance (PERMANOVA) to confirm group differences in overall microbiome composition.

Differential representation of OTUs was assessed using DESeq2 on the basis of sequence count

data, relying on Wald statistics with Benjamini-Hochberg correction and a false discovery rate

cutoff set at 0.1. Inter-sample relationships relying on Principal Component Analysis on the

basis of DESeq2 output, and data visualizations were both performed using JMP Genomics soft-

ware (SAS, Cary, NC)

Results

Effects of intestinal microbiome transplantation on maternal body weight

and behavior

All animals tolerated microbiome depletion/repopulation [36],[21] with only a temporary 5%

loss of body weight (Fig 2A), and there were no differences in pregnancy rates, litter sizes, or

sex balance of offspring between CD and HFD breeder dams (Fig 2B). More specifically, 10

proven breeder dams from each group (CD and HFD) were paired, resulting in 5 successful lit-

ters from each group, producing offspring in each group/sex ranging from 16 to 23 pups. Sam-

ple sizes (group/sex) were balanced to 15 mice after weaning, but offspring from only 4 CD

and 4 HFD dams were followed into adulthood as not all litters contained both sexes. Sponta-

neous maternal behavior was assessed during both light and dark phases of postnatal days 1, 3,

and 5, and for presentation, all maternal behavior data were summarized and presented as per-

cent time with pups during either light or dark cycle. While nursing dams spent progressively

less time physically in contact with pups as they grew, particularly during the dark cycle, no

significant differences in time spent with pups between CD and HFD dams were noted (Fig

2C and 2D).

Effects of maternal intestinal microbiome transplantation on offspring

Body weight and adiposity. Body weight during the postnatal period was measured

beginning on postnatal day 8, and data show that female offspring from HFD dams were sig-

nificantly heavier (t(42) = 2.25, p<0.05) than females from CD dams at weaning (Table 1). As
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adults (9 weeks), female offspring from HFD dams remained significantly heavier (t(42) = 2.15,

p<0.05), and had significantly more body fat (t(42) = 2.24, p<0.05) compared to adult females

Fig 2. High fat diet associated microbiota do not affect body weight, pregnancy rates, or maternal care

in breeding female mice. (A) Body weight of female mice during depletion (ABX), recolonization (Repop),

breeding (Male), and pregnancy shows no difference between mice transplanted with microbiota from high fat

diet fed donors (HFD) or control diet fed donors (CD). (B) Pregnancy rates following 4-night pairing with males,

litter sizes, and sex balance of offspring in CD and HFD breeder dams. Data on litter size and % male offspring

represent mean and SEM of 5 litters from each group of breeder mice, and were evaluated by unpaired t-test.

Maternal behavior was assessed on postnatal days 1, 3, and 5, days, and was visually scored every minute for

1 hour during both light (9am) and dark cycles (9pm) as described in Methods. Individual behaviors were scored

as “1” or “0”, and the following behaviors were counted: dam away from pups (grooming, eating or drinking, or

sleeping); dam with pups (nursing pups in any posture, licking/grooming pups, nest-building or sleeping while in

contact with pups) For presentation, maternal behavior data were summarized and presented as percent time

with pups during either light (C) or dark (D) cycle.

https://doi.org/10.1371/journal.pone.0175577.g002

Table 1. Body and fat weight in offspring from dams with CD- and HFD-shaped microbiota.

Body Weight (gr) From CD-Dams From HFD-Dams

Female PND 8 4.97 ± 0.10 5.43 ± 0.21

Female PND 10 5.98 ± 0.11 6.46 ± 0.25

Female PND 12 12.09 ± 0.22 12.86 ± 0.27*

Female Adult (9 wks) 22.72 ± 0.37 24.04 ± 0.51*

Male PND 8 5.02 ± 0.1 5.21 ± 0.1

Male PND 10 6.13 ± 0.1 6.23 ± 0.1

Male PND 12 12.78 ± 0.1 12.55 ± 0.1

Male Adult (9 wks) 28.68 ± 0.43 28.63 ± 0.68

Total Body Fat (gr)

Female Adult (9 wks) 3.64 ± 0.25 4.48 ± 0.27*

Male Adult (9 wks) 4.67 ± 0.17 4.83 ± 0.43

Total body weight and body fat content in male and female offspring were measured on postnatal day (PND)

8, 10, and 12, and as adults (9 weeks old) as described in Methods. All offspring were maintained on chow

diet. Data represent mean ± SEM, and were analyzed by 2-tailed, unpaired t-tests. Statistically significant

increases in body weight and body fat in female offspring from HFD-dams as compared to female offspring

from CD-dams mice are noted by *(p<0.05).

https://doi.org/10.1371/journal.pone.0175577.t001
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from CD dams (Table 1). No differences in body weight or composition in male offspring

from CD or HFD dams were noted (Table 1).

Ultrasonic communication. Ultrasonic distress calls from pups isolated from their dam

and littermates on postnatal days 6, 8 and 10 were recorded. Total call time (call number x dura-

tion) was significantly decreased in both male (t(38) = 2.11, p<0.05) and female HFD (t(43) =

2.21, p<0.05) offspring compared to CD offspring on postnatal day 8 (Fig 3A). There were no

group- or sex- differences in total call time on postnatal days 6 or 10, and the ultrasonic fre-

quency of calls emitted did not differ between groups, sex, or days (data not shown).

Exploratory and anxiety-like behavior. Exploratory and anxiety-based behavior was

assessed using the Open Field assay. Male offspring from dams with HFD microbiota had sig-

nificantly fewer entries into (t(27) = 3.80, p<0.001), and spent significantly less time (t(27) =

3.46, p<0.01) in the inner zone of the open field compared to male offspring from CD dams

(Fig 3B and 3C). No differences in Open Field behavior were noted in female offspring (Fig 3B

and 3C). No differences in mean speed or total distance traveled between CD and HFD groups

of either sex were recorded (see S1 Fig), suggesting that the decreased exploratory behavior

associated with males from HFD dams likely reflects increased anxiety and not decreased

motor function.

Stereotypical behavior. Mice were then tested for stereotypical marble burying, a mea-

sure of agitated, compulsive, and repetitive behavior [48]. Male offspring from dams with

HFD microbiota showed significant increases (t(26) = 23.42, p<0.01) in marble burying, but no

differences were noted in females (Fig 3D).

Sucrose preference. Preference/indifference for palatable foods in offspring was assessed

by measuring sucrose preference under ad lib conditions and following a 4-hr fast. All animals

Fig 3. Maternal high fat diet associated microbiota causes sex-specific alterations in and behavioral

outcomes in offspring mice. (A) Ultrasonic vocalizations (USV) were recorded over 2-minutes of separation

from dam and littermates on postnatal day 8 as described in Methods. USV calls were reduced in male and

female offspring of dams transplanted with high fat diet (HFD)-shaped microbiota offspring. (B) Analysis of

behavior in the Open Field task revealed that male offspring from dams with HFD-shaped microbiota spent

less time in the inner zone than male offspring from CD mice. (C) Entries into the inner zone of the Open Field

were significantly decreased in male offspring from HFD mice as compared to male offspring from CD mice.

(D) Stereotypical marble burying behavior was significantly increased in male offspring from HFD mice as

compared to male offspring from CD mice. Preference for sucrose (1% in sterile water) over water was

derived from the quotient of sucrose intake over total fluid intake, and both total ad libitum intake and intake

following a 4-hr fast was recorded. Sucrose preference was significantly increased in male offspring (E) from

HFD mice, but no changes in sucrose preference were noted in female (F) offspring. Following fear

conditioning, conditioned freezing to the tone on day 3 was significantly reduced in male offspring (G) from

HFD mice as compared to male offspring from CD mice, but no effect was noted in female (H) offspring. All

data are presented as mean ± SEM of 15–20 mice per group, and * and ** indicate statistical significance

(p < 0. 05, 0.01, respectively) based on unpaired t-tests or 2-way ANOVA.

https://doi.org/10.1371/journal.pone.0175577.g003
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preferred sucrose-water over plain water, but male offspring from HFD dams displayed a sig-

nificant increase in sucrose preference under ad lib conditions compared to male offspring

from CD dams (Fig 3D), while no differences between female groups were noted.

Auditory fear conditioning. Effects of maternal microbiota manipulations on offspring

memory were assessed using the fear conditioning assay. Significant differences in freezing

behavior were observed using the ‘‘tone test” as a measure of associative learning, and, post-

hoc analyses revealed that freezing behavior in response to the tone was significantly decreased

in male mice from dams with HFD microbiota as compared to male offspring from CD dams

(Fig 3E), while no differences were noted in females (Fig 3F). While social approach/prefer-

ence and repetitive motor learning were also measured, no group- or sex-differences were

recorded (see S2 and S3 Figs).

Phylogenetic profiles of intestinal microbiota from dams and offspring

Maternal metagenome. Analysis of dams and offspring fecal DNA via V4 16S rDNA

sequencing identified a total of 708 operational taxonomical units (OTUs); 87% could be clas-

sified to family level, with 49.4% identifiable at genus level. In dams reconstituted with CD-

microbiota, an average of 220 OTUs could be detected, while 214 OTUs were detected in

HFD-reconstituted females. For all three time points (before mating, during pregnancy, dur-

ing lactation), statistically significant differences in microbiota community composition were

detected between CD- and HFD-reconstituted dams using weighted Unifrac phylogentic anal-

ysis tools (Table 2). However, no significant differences in alpha-diversity (Chao1 metric) were

observed between CD- and HFD-reconstituted dams at any time (See S4 Fig). Visualization of

beta-diversity via principal component analysis on normalized read count data showed group-

based differences in beta-diversity of microbiota isolated at all 3 times points from breeding

females (Fig 4A). Specifically, while both pregnancy and lactation introduced distinguishable

shifts in community composition of both CD- and HFD-manipulated dams, the distinction

between groups is maintained along the entire timeline despite changes between each time

point group-differences persisted throughout pregnancy and lactation (Fig 4A). Statistically

significant group-based differences in pre-pregnancy maternal microbiomes were confirmed

by PERMANOVA analyses (F = 5.2, p = 0.009). The taxonomical distribution within groups

at Phylum levels for the maternal fecal samples (Fig 4B) revealed that before pregnancy, HFD-

reconstituted dams show a statistically significant elevated level of Bacteroidetes (blue)

Table 2. Differences in microbiota community composition in dams with CD- and HFD-shaped microbiota and their offspring.

Comparison Score P value

Maternal Microbiota Pre-pregnancy: CD vs HFD 0.85984 <0.001

Mid-pregnancy: CD vs HFD 0.623789 <0.001

Lactation: CD vs HFD 0.543845 <0.001

Offspring Microbiota Males: CD vs HFD 0.589994 <0.001

Females: CD vs HFD 0.611843 <0.001

CD: females vs males 0.698365 <0.001

FDD: females vs males 0.655131 <0.001

Operational taxonomical units (OTU) were identified based on sequence clustering as described in Methods, and generation of a read count table was

performed with the software package ‘usearch’. Statistical tests for differential representation were performed with tools incorporated in ‘mothur’, and

statistically significant differences in microbiota community composition between groups were detected using weighted Unifrac phylogentic analysis tools.

https://doi.org/10.1371/journal.pone.0175577.t002
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Fig 4. Effects of transplantation protocol on maternal and offspring microbiome. A: Normalized 16S metagenomics

sequencing read count data obtained from fecal pellets of dams at three different time points were subjected to principal

component analysis in order to reveal differences between groups. Samples from CD-reconstituted dams obtained pre-

pregnancy (pre) at 2 weeks after antibiotic depletion and oral reconstitution (dark blue circles) form a distinct cluster compared

to HFD-reconstituted dams (red circles). By mid-pregnancy (mid), changes are noted in community composition in both CD-

(green) and HFD-reconstituted dams (magenta-pink). Samples obtained post-pregnancy (post) after weaning offspring show

distinct clustering properties as well (CD: turquoise; HFD: pale pink). Distinction between the CD- and HFD-reconstituted

dams is maintained along the entire timeline. Black lines show sequential development of community composition in individual

Maternal microbiota impact offspring behavior
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compared to CD-reconstituted dams (p = 0.007) at the expense of Verrucomicrobia (red;

p = 0.009). No other phylum-level changes could be observed. Analyses at the level of individ-

ual OTUs demonstrated that 90 OTUs are differentially represented between CD- and HFD-

reconstituted females (criteria: padj<0.1, more than 2-fold absolute fold-change). The majority

of these changes (87%) occur within the phylum Firmicutes (see S1 Table).

Offspring metagenome. The microbiota of adult offspring was analyzed in cecal/colonic

samples collected at euthanasia. Initial weighted Unifrac phylogentic analyses revealed statisti-

cally different microbiota composition between CD- and HFD-offspring of both sexes

(Table 2). Significant sex-based differences were also noted in offspring from both CD- and

HFD-manipulated dams (Table 2). There was no significant difference in alpha diversity in

female offspring from CD compared with HFD dams (see S5 Fig). However, assessment of

beta diversity in female offspring microbiota revealed significant differences between the two

groups, as revealed by PERMANOVA analyses (F = 2.51, p = 0.003), and visualized on princi-

pal component analysis plots generated from normalized read count data (Fig 4C). Female lit-

termates from individual HFD or CD dams could also be identified as groupings on principal

component analysis plots, and PERMANOVA analyses likewise confirmed significant effects

of kinship on beta diversity in female offspring (F = 3.17, p = 0.001).

Microbiota samples from female offspring of CD- and HFD-reconstituted females show

significant group differences based on a weighted UniFrac test, and visualization of sample

relationships via Principal Component Analysis based on normalized sequence count data

shows that while there is a tendency towards formation of two clusters, there is considerable

overlap between the two groups (Fig 4C). The taxonomical distribution at the phylum levels

for the female offspring samples revealed no statistically significant differences (Fig 4D). Anal-

ysis of sequence count data via DESeq2 (relying on a statistical cutoff at padj<0.1, and more

than 2-fold absolute fold-change) demonstrated that 100 OTUs were differentially represented

between female offspring of CD- and HFD-reconstituted dams, with 61 OTUs higher in

females from HFD-dams, and 39 OTUs higher in offspring from CD-dams (see S2 Table).

These analyses show that difference in the representation of individual OTUs drive group dis-

tinction in female offspring rather than phylogenetic differences.

Males born from CD-manipulated dams had significantly higher alpha diversity (Chao1,

p<0.01) compared to male offspring from HFD dams (Fig 4E). Significant differences in beta

diversity were also evident in males from CD dams relative to males from HFD dams as

revealed by PERMANOVA analyses (F = 2.05; p = 0.034), and visualized on principal

dams. (B) Phylum-level community composition of CD- and HFD-reconstituted dams. HFD-reconstituted dams show a

statistically significant increase of Bacteroidetes (blue) compared to CD-reconstituted dams (p = 0.007) at the expense of

Verrucomicrobia (red; p = 0.009). No other statistically significant phylum-level differences were detected. (C) Gut microbiome

sample relationships among female offspring from either CD- (blue) or HFD-reconstituted dams (red) were visualized using

principal component analysis on normalized read count data generated by DESeq2 analysis for differential representation of

individual taxonomical units. Different shapes (cubes, spheres, pyramids, and diamonds) identify female littermates that all

came from the same dam in each group. (D) Phylum-level community composition in female offspring. (E) Alpha diversity

analyses using chao1 metrics reveal significantly higher diversity (p = 0.009) in male offspring from CD-reconstituted dams

compared to males from HFD-reconstituted dams. (F) Principal component analysis on normalized sequence count data

shows significant differences in taxonomical representation in samples from male offspring of CD- (blue) and HFD-

reconstituted (red) dams, suggesting that significant differences gut microbiome composition exist between the two groups.

Different shapes (cubes, spheres, pyramids, and diamonds) identify male littermates that all came from the same dam. (G)

Color legend for phylum-level community analyses in B, D, and I. (H) Comparison of sex-specific microbiome differences

between offspring of CD- and HFD-reconstituted dams. In males, 96 OTUs are differentially represented (either enriched or

depleted; FDR<0.1, more than 2-fold absolute fold change) in a HFD/CD comparison. In females, 100 OTUs fulfill this criterion.

27 OTUs are common in both sexes; 8 of those change concordantly, and 19 OTUs changing in a manner discordant between

the two sexes. 69 OTUs are specific for the response in male offspring. (I) Phylum-level community composition in male

offspring.

https://doi.org/10.1371/journal.pone.0175577.g004

Maternal microbiota impact offspring behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0175577 April 25, 2017 10 / 20

https://doi.org/10.1371/journal.pone.0175577.g004
https://doi.org/10.1371/journal.pone.0175577


component analysis plots (Fig 4F). Similar to their female littermates, male pups born from

individual HFD or CD dams could be identified in tight clusters on principal component anal-

ysis plots, and PERMANOVA likewise confirmed a significant and powerful effect of kinship

in driving beta diversity in male offspring (F = 4.23; p = 0.001). Kinship effects persisted be-

yond weaning, as clusters of 5 or 6 are apparent (Fig 4C and 4F) while no more than 4 mice

were ever group-housed post-weaning. Significant differences in phylum level taxonomical distri-

bution were not observed for male offspring (Fig 4I), suggesting again that group distinctions are

driven by individual OTUs. Accordingly, 96 individual OTUs were detected to be significantly

different (padj<0.1, more than 2-fold absolute fold-change) between male offspring from CD

dams compared to males from HFD dams (see S3 Table). 27 of these OTUs were also found to be

differentially represented in the two female offspring groups, yet only 8 OTUs displayed concor-

dant (between sexes) differential (derived from HFD- vs. CD-reconstituted dams) representation;

19 OTUs show discordance between sexes. 69 OTUs exhibited differences only in male but not

in female offspring (Fig 4H); overall, the male-specific pattern constitutes of 87 OTUs. The maj-

ority of male-specific changes (84%) occur within the phylum Firmicutes. Ten of these OTUs

(OTU_022, Clostridium_sensu_stricto_1; OTU_023, Erysipelotrichaceae; OTU_045, Lachnos-

piraceae_NK4A136_group; OTU_054, Ruminococcaceae_UCG-014; OTU_081, Ruminococca-

ceae_UCG-013; OTU_090, Ruminococcaceae_UCG-014; OTU_175, Ruminococcaceae_UCG-

014; OTU_183, Lachnospiraceae_NK4A136_group; OTU_266, Enterococcus; OTU_410, Lach-

nospiraceae_NK4A136_group) were also differentially represented in HFD- compared to CD-

reconstituted dams before pregnancy, and we find a concordant direction of change (HFD vs.

CD, dams and male offspring) for all but one OTU (OTU_022, Clostridium_sensu_stricto_1).

This suggests that components of maternal microbiome constituents may contribute directly to

the microbiome in male offspring.

A final analysis was undertaken to determine the relationship of specific intestinal taxa with

behavioral function in male offspring. 23 individual OTUs that show log2-based group differ-

ences greater than 3 in male offspring (see S3 Table) were correlated against specific behavioral

readouts. An additional 5 OTU’s for which the log2-fold change did not reach 3, but that were

differentially expressed in both male offspring and in pre-pregnancy dams, were also selected

(see S1 and S3 Tables). DESeq2 normalized read count values for these 28 OTUs were correlated

against data from individual male mice subjected to ultrasonic vocalization (total calls), open

field (time in inner zone), marble burying (% exposed), and fear conditioning (freezing at min-

ute 6 or 7) assays to determine correlation coefficients (Pearson r) and p values (Table 3). Data

show that 10 individual OTUs correlated significantly with at least 1 behavioral metric in male

offspring, and that 9 of these OTUs arise from the Firmicutes phylum (Table 3). Importantly,

nearly all of these taxa (9 of 10) correlate in a positive direction with behavioral data such that

increasing scores reflect intact/appropriate function, meaning that decreased representation of

these taxa is associated with behavioral dysfunction in male mice.

Discussion

While adverse consequences of maternal obesity during pregnancy are well established, the

mechanisms are unknown. Here we show that transplanting high fat diet-shaped gut micro-

biota into female mice before breeding is sufficient to disrupt neurobehavioral function in

offspring. Specifically, neonatal offspring born from females with HFD-shaped microbiota

emitted fewer ultrasonic calls upon separation, and also demonstrated sex-specific impair-

ments in learning, anxiety, and compulsive-stereotypical behaviors later in life when com-

pared to offspring from females with control-diet shaped microbiota. While ultrasonic

vocalization was decreased in both male and female offspring, all other behavioral deficits
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were observed only in male offspring. Conversely, HFD-shaped maternal microbiota

slightly increased body weight and adiposity in female, but not male offspring. Importantly,

the transplant-recipient female dams were not obese or exposed to high-fat diet, and the

HFD-shaped microbiome did not affect maternal contact or nesting behavior. These data

suggest that altered gut microbiota are uniquely and intrinsically able to disrupt neurologic

function in offspring. These findings are in agreement with the extensive body of literature

documenting the adverse effects of maternal obesity and high fat diet consumption on body

weight and neuronal function in offspring in both human and animal models [49],[50],[51],

[52],[53]. For example, maternal high fat diet, obesity, and metabolic syndrome have all

been shown to adversely impact the behavior and physiology of children [49, 51], [7],[31],

[32]. In experimental laboratory settings, data link disruptions in social behavior, increases

in anxiety-like and depressive-like behaviors, and impairments in cognition [54],[52, 55,

56] to maternal obesity. In light of increasing prevalence of both obesity[57] and neuropsy-

chiatric disorders [58],[59] it is becoming increasingly important to resolve the relationship

between these two concomitant public health crises.

Table 3. OTUs whose representation predicts behavioral performance in male offspring.

Correlation with Behavior in Male Offspring (Pearson r / p

value)

OTU Log2FC HFD/CD USV OF MB FC

0054:

Firmicutes/Clostridia/Clostridiales/Ruminococcaceae

/Ruminococcaceae_UCG-014

• -2.12

• -7.16 Dam

ns • 0.517

• p = 0.003

ns • 0.571

• p = 0.002

0081: Firmicutes/Clostridia/Clostridiales/Ruminococcaceae

/Ruminococcaceae_UCG-013

• -7.92

• -9.99 Dam

ns ns • 0.513

• p = 0.005

• 0.487

• p = 0.012

0109:

Firmicutes/Erysipelotrichia/Erysipelotrichales

/Erysipelotrichaceae

• -9.24 ns • 0.442

• p = 0.014

• 0.529

• p = 0.004

• 0.446

• p = 0.022

0132:

Firmicutes/Clostridia/Clostridiales/ Lachnospiraceae

• 17.49 ns • -0.319

• p = 0.045

ns ns

0152:

Firmicutes/Clostridia/Clostridiales/Lachnospiraceae

/Anaerostipes

• -3.95 ns ns • 0.409

• p = 0.034

• 0.450

• p = 0.021

0176:

Tenericutes/Mollicutes/Mollicutes_RF9

• -8.46 ns • 0.472

• p = 0.008

ns • 0.438

• p = 0.025

0235:

Firmicutes/Clostridia/Clostridiales/ Lachnospiraceae

• -3.86 ns • 0.409

• p = 0.025

• 0.400

• p = 0.035

ns

0268:

Firmicutes/Clostridia/Clostridiales/Ruminococcaceae

/Ruminococcaceae_UCG-010

• -3.32 ns • 0.552

• p = 0.002

ns ns

0273:

Firmicutes/Clostridia/Clostridiales /Lachnospiraceae

• -3.78 • 0.409

• p = 0.025

ns ns ns

0356:

Firmicutes/Clostridia/Clostridiales/Lachnospiraceae

/Lachnospiraceae_UCG-006

• -3.15 ns ns ns • 0.428

• p = 0.029

Individual OTUs (taxonomic level as maximum taxonomical depth) that were differentially represented (increased or decreased) in HFD males as compared

to CD males were correlated against behavioral performance. Log2-transformed fold-changes (Log2FC) in OTU representation are shown for male

offspring, and for pre-pregnancy dams (Dam) if applicable. Data are correlation coefficients (Pearson r) and p values, and the specific behavioral metrics

analyzed were ultrasonic vocalization (USV, total calling (duration*number)), open field (OF, time in inner zone), marble burying (MB, % exposed), and fear

conditioning (FC, component freezing at minute 6 or 7) assays.

https://doi.org/10.1371/journal.pone.0175577.t003
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Role of maternal gut microbiota in altering behavior of offspring

Our data strongly suggest that diet-induced disruption to intestinal microbiota (gut dysbiosis)

contributes to the adverse effects of maternal obesity on offspring. Intestinal microbiota are

increasingly recognized as an important player in health and disease, and preclinical studies in

rodents have clearly demonstrated that high fat diet-induced alterations to intestinal bacterial

populations can cause metabolic and neurobehavioral impairment [21],[60]. In relation to

maternal-fetal interactions, maternal obesity has been linked to altered offspring gut micro-

biota [34], which have in turn been linked to early manifestations of temperament in children

[61]. Data also that the behavioral impairments in offspring of high-fat diet-induced obese

mice can be transferred to germ-free mice [35], reaffirming a primary role of the gut micro-

biota. Furthermore, impairments in offspring can also be prevented by co-housing with off-

spring from healthy, regular diet-fed dams. Since mice are coprophagic, these results suggest

that vertical transmission of unhealthy microbiota could mediate behavioral abnormalities in

mice [35]. Indeed, our data indicate that maternal lineage is a powerfully strong diver of intes-

tinal microbial composition in offspring, with kinship effects remaining strong even after

weaning. While these data certainly imply that dietary and/or pharmacological disruption to

healthy maternal gut microbiota could result in behavioral abnormalities associated with neu-

rodevelopmental disorders, the mechanisms whereby maternal microbiota affect offspring

remain unknown. There are multiple pathways that could facilitate bidirectional communica-

tion between gut microbiota and the brain, including direct interactions of microbes or micro-

bial metabolites with intrinsic and extrinsic neurons, immune or inflammatory mediators

produced by local immune tissues, or translocation of microbial products such as tryptophan

metabolites or short-chain fatty acids into the circulation (reviewed in [62]). In terms of neu-

rodevelopment, recent data suggest a key role for intestinal microbiota in the development of

the CNS serotoninergic system. Specifically, data show that male mice born to germ-free dams

have increased hippocampal 5-HT, decreased hippocampal BDNF, altered anxiety, and

increased plasma levels of tryptophan [63]. While alterations in serotonin regulation in this

study occurred only in males, other immunological and neuroendocrine consequences of

germ-free development were evident in both sexes [63]. Collectively, these data suggest micro-

biota could modulate the development of CNS serotonergic neurotransmission by regulating

peripheral precursors, but they also underscore the complexity of the likely bidirectional and

sex-specific pathways whereby intestinal microbiota affect the developing brain.

Sex differences in vulnerability to maternal manipulation

The demonstration of sex-specific responses to maternal microbiota is in keeping with an

evolving understanding of the role of sex in developmental disorders. The concept of develop-

mental programming posits that early life environment shapes offspring physiology through-

out life, and sex-specific differences in offspring outcomes are becoming a standard metric of

many developmental models [64]. Furthermore, the physiologic and behavioral outcomes of

adverse in utero conditions appear more prominent in male than in female offspring [65],[66],

suggesting that male fetal homeostasis may be more vulnerable to environmental influences.

For example, environmental and olfactory stress during pregnancy disrupts emotionality in

male but not female offspring [67], and maternal immune activation has likewise been shown

to increase anxiety and depression specifically in male offspring [68],[69]. While the underly-

ing molecular and cellular mechanism(s) whereby males are preferentially programmed

remain unknown, the placenta is a widely recognized programming agent and data do suggest

sex-specific alterations in placental homeostasis. For example, studies have noted that the pla-

centas of female rodents respond more readily to prenatal insults [70],[71],[72], suggesting
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that female offspring are bolstered by enhanced placental resilience. Indeed, microarray data

reveal sex-dependent differences in global transcriptomic profiles for human placenta, with

females possessing more up-regulated autosomal genes, including immune-regulating genes

[73], suggesting an enhanced response to perinatal infection. With regard to obesity, transcrip-

tomic and epigenetic signatures also indicate that basal placental gene expression and

responses to maternal high-fat diet are sexually dimorphic [74], [75].

Specific microbiota participating in effects on offspring

It is unclear how specific microbiome constituents differentially influence offspring develop-

ment. Several studies on obesity report reductions in Bacteroidetes and increases in Firmicutes

[76],[77] that are reversed after weight loss [78],[79], indicating that the balance between these

predominant phyla might impact host physiology. However, more recent data suggests that

this binary distinction does not sufficiently reflect the complexity of high fat diet-induced

alterations to the gut microbiome [80], [81], and that indeed, shifts within the Firmicute phy-

lum might drive the overall distinction of high fat from control diet [21]. Data presented in

this manuscript reinforces this view, as the vast majority (9 of 10) of the individual taxa that

correlate with behavioral function come from the Firmicutes phylum, with decreased repre-

sentation predicting impaired behavioral function. This suggestion of beneficial roles for rep-

resentatives of the Firmicutes phylum is in keeping with the known ability of Firmicutes to

produce butyrate as a byproduct of fermentation [82]. Butyrate is a major energy source for

colonic epithelium [83], and more importantly, butyrate-producing bacteria play a vital role in

maintaining the integrity of the intestinal epithelial barrier [84], [85]. Dysbiotic states with

reduced butyrate production could facilitate translocation of intestinal antigens, which could

disrupt brain function through multiple local or systemic pathways [86] [86]. Thus, the relative

abundance of purportedly beneficial and harmful species in each group is likely to participate

in neurobehavioral consequences rather than phylum-wide shifts in representation. However,

another example is Verrucomicrobia, the phylum containing the presumed beneficial species

Akkermansia muciniphila, which was significantly lower in dams following reconstitution with

HFD-shaped microbiota, raising the possibility that loss of this species of bacteria may partici-

pate in the adverse effects of diet-induced dysbiosis, as suggested previously [21],[87]. The

ongoing and collective identification of specific bacterial species/populations driving individ-

ual physiologic responses to diet could lead to personalized microbial therapies that optimize

health in the context of modern diets/ lifestyles. Indeed, the use of gnotobiological methods on

experimental animals has been indispensable in establishing the significance of specific micro-

biota taxa to mammalian physiology [88]. However, it is important to remember that germ-

free mice are smaller than conventional mice, with decreased cardiac output and notably

underdeveloped immune systems [89],[90]; and any of these confounds could affect pregnancy

outcomes and fetal programming. Thus we feel that these data from transplantation models

faithfully portray the essential link between maternal gut dysbiosis and neurologic outcomes

in offspring. These data suggest that improved maintenance of healthy maternal microbiota,

which is relatively inexpensive and uncomplicated, could potentially slow or reverse recent

epidemiologic trends in neurodevelopmental childhood disorders.
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