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Inspired by the biology of human tactile perception, a hardware neuromorphic approach

is proposed for spiking model of mechanoreceptors to encode the input force. In this

way, a digital circuit is designed for a slowly adapting type I (SA-I) and fast adapting

type I (FA-I) mechanoreceptors to be implemented on a low-cost digital hardware, such

as field-programmable gate array (FPGA). This system computationally replicates the

neural firing responses of both afferents. Then, comparative simulations are shown.

The spiking models of mechanoreceptors are first simulated in MATLAB and next the

digital neuromorphic circuits simulated in VIVADO are also compared to show that

obtained results are in good agreement both quantitatively and qualitatively. Finally, we

test the performance of the proposed digital mechanoreceptors in hardware using a

prepared experimental set up. Hardware synthesis and physical realization on FPGA

indicate that the digital mechanoreceptors are able to replicate essential characteristics

of different firing patterns including bursting and spiking responses of the SA-I and FA-I

mechanoreceptors. In addition to parallel computation, a main advantage of this method

is that the mechanoreceptor digital circuits can be implemented in real-time through

low-power neuromorphic hardware. This novel engineering framework is generally

suitable for use in robotic and hand-prosthetic applications, so progressing the state

of the art for tactile sensing.

Keywords: mechanoreceptor, hardware implementation, tactile sensing, spiking model, neuromorphic circuit

INTRODUCTION

Touch is a co-existing sensation required to interact with our surrounding environments (Tiwana
et al., 2012; Yi and Zhang, 2017). The sensitivity provided by the sense of touch enables us to
distinguish different textures and manipulate grasped objects, accurately. The sense of touch arises
from receptors placed throughout the whole body and its modality is divided into three categories:
cutaneous (tactile), kinesthetic and haptic (Bensmaia et al., 2008; Chaudhuri, 2011). The kinesthetic
and cutaneous systems differ in terms of the location of mechanoreceptors in response to the
sensory inputs. The cutaneous system relies on the receptors embedded in the skin, while the
former is based on the receptors within muscles and joints. The haptic system utilizes the combined
sensory inputs from both systems (Healy and Proctor, 2003; Chaudhuri, 2011). In natural contact,
the mechanoreceptor cells are activated and carry information about the objects’ size and shape
(Kim et al., 2009; Yi et al., 2017).
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The glabrous part of the human skin comprises four
types of mechanoreceptors: Merkel’s disks, Ruffini cylinders,
Meissner and Pacinian corpuscles, each is responsible for the
reception of specific stimuli and then sends tactile information
by myelinated fibers to the central nervous system (CNS)
for higher level perception (Pearson et al., 2011; Yi et al.,
2017). These mechanoreceptors are divided into two categories,
slowly adapting (SA) and fast adapting (FA). Merkel’s disks
are innervated by SA-I fibers and Ruffini cylinders by SA-II
fibers, respond to low frequency stimuli and describe the static
properties of a stimulus including skin indentations and stretch.
In contrast, Meissner corpuscles are innervated by fast adapting
fibers (FA-I), and Pacinian corpuscles by PC fibers (FA-II) and
respond to skin vibrations (Saal et al., 2017).

Goodwin and Wheat found that humans could estimate
the magnitude of the contact force and the shape and
contact force information could be independently perceived
by humans (Goodwin and Wheat, 1992). By applying the
force stimulus to the volar surface of the index fingertip,
the human ability to discriminate the 3D force stimuli was
investigated (Panarese and Edin, 2011). The authors presented
that the force direction was recognized mainly during the
dynamic force stimulation, while the static force stimulation
improved the discrimination ability only to a limited extent.
Birznieks et al. (2009), reported that when forces were applied
in five distinct directions, almost all the tactile afferents such
as SA-I/SA-II and FA-I afferents from the whole terminal
phalanx responded. The authors concluded the tactile afferents
potentially contributed to the encoding of the fingertip
forces.

Tactile sensing using spiking neural networks has attracted
increasing attention in the recent years (Friedl et al., 2016; Oddo
et al., 2016; Yi and Zhang, 2016). To discriminate local curvature
of objects, Lee et al. used a fabric based binary tactile sensor
array (Lee et al., 2013). The tactile signals were converted into
spikes using two Izhikevich models. Lee and his collaborators
(Lee et al., 2014), also applied the soft neuromorphic method
for gait event detection using a low-cost, foot pressure sensor.
A closed perception-action loop was constructed for classifying
Braille letters (Bologna et al., 2013), by providing pressure sensor
data to the leaky integrate-and-fire neurons (LIF). In contrast
to Lee et al.’s work, their work was distinct in both analog-to-
spike transformation model and pattern decoding algorithms
(Bologna et al., 2011). By simulating the Izhikevich neuron in
response to an array of four piezoresistive sensors and examining
the spike timing, 10 naturalistic textures have been classified by
Rongala and his coworkers (Oddo et al., 2011; Rongala et al.,
2015). Finally, Oddo and his colleagues used the same sensor to
transduce haptic stimulus into a spatiotemporal pattern of spikes.
By delivering these spike patterns to the skin afferents of the
rats through an array of stimulation electrodes, they showed a
potential neuro-prosthetic approach to communicate with the rat
brain (Oddo et al., 2017).

Using neural coding principles to design and implement
the neuro-mimetic architectures for active perception may help
in embedding neuro-prosthetic devices with sensory feedbacks.
This neuromorphic implementation of touch sensing based

on artificial spiking neurons can accelerate the design of new
architectures for artificial tactile sensory systems for development
of assistive and human rehabilitation and also industrial robotics
(Kim et al., 2009; Raspopovic et al., 2014). Nevertheless, the
development of a new architecture for spiking mechanoreceptor
is still necessary, and hence in the present research, we directly
proceed to the neuromorphic implementation in hardware. We
adopt this approach utilizing the Izhikevich spiking model to
convert sensor outputs to spike/burst trains conveying tactile
information (Rongala et al., 2015; Oddo et al., 2016; Yi et al.,
2017). This novel engineering framework is an important
step toward the upcoming hardwired implementation of the
mechano-neuro transduction process which is not addressed yet.

One of the most common methods to realize the neural
computational models is developing hardware circuit due to
its high operating efficiency for practical applications (Cassidy
et al., 2011; Nazari et al., 2014a; Ranjbar and Amiri, 2016). Very
large scale integration (VLSI) design can be more realistic for
hardware implementations of spiking neuronal networks due to
its capability to implement nonlinear models in a straightforward
way (Ranjbar and Amiri, 2015; Yang et al., 2016), however the
long development time and high costs of this method limit
its usage (Nazari et al., 2015a,b). On the one hand, digital
execution with field-programmable gate array, (FPGA) can be
faster and thus FPGAs have increasing applications in the
neural computing area, in recent years (Bonabi et al., 2012;
Sabarad et al., 2012; Nanami and Kohno, 2016). Currently, with
the advancement in HDL synthesis tools (high-level hardware
description language), configurable devices (such as FPGA) can
be operated as effective hardware accelerators for neuromorphic
systems. Indeed, FPGA technology provides flexibility necessary
for algorithm exploration while satisfying time and performance
constraints (Misra and Saha, 2010; Arthur et al., 2012).

The feasibility of using FPGAs for simulation of the Izhikevich
model in a pipelined manner for character recognition was
explored in Rice et al. (2009). Wang et al. presented an
FPGA realization of a polychronous spiking neural network for
spatial-temporal patterns. The proposed network was capable
of successfully recalling of spikes for the stored patterns (Wang
et al., 2013). Grassia and collaborators investigated the feasibility
of stochastic neuron simulation in FPGA, and realized a digital
implementation for a two-dimensional neuron model (Grassia
et al., 2017). In Ambroise et al. (2013a), a digital hardware
implementation of a biorealistic neural network composed of
117 Izhikevich neurons which works in biological real time
was described. In this way, using the Izhikevich model, a
biomimetic implementation of a network of 240 CPGs (central
pattern generator) in an FPGA, to implement the leech heartbeat
system neural network with minimum resources was explored
in Ambroise et al. (2013b). This digital system opens the way
toward hybridization of biological tissue and artificial neural
networks. Indeed, a hybrid interconnection between a living
spinal cord and an artificial neural network to restore functional
activity was demonstrated in Joucla et al. (2016). It facilitated
toward the realization of a new neuroprosthesis in which an
open/closed-loop bio-hybrid experiment was implemented in the
neuromorphic board using uni/bi-directional communication
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between in vitro biological neuronal network and artificial neural
network (Ambroise et al., 2017).

In this paper, we propose a digital neuromorphic circuit
for SA-I mechanoreceptors (Merkel mechanoreceptors),
and FA-I mechanoreceptors (Meissner’s corpuscles) which
are also important cells for surface roughness perception.
First, in order to achieve an efficient real-time hardware
implementation in FPGA, the nonlinear differential equations of
the mechanoreceptor spiking model are simulated in MATLAB.
Then, the designed digital circuit which provides a multi-module
parallel architecture for mechanoreceptor model is executed in
VIVADO simulation environment. Using several simulations in
different conditions, it is demonstrated that the digital circuit
mimic the dynamical behavior of the mechanoreceptor spiking
model simulated in MATLAB and the results are in good
agreements both quantitatively and qualitatively. Finally, we
provide an experimental set up to investigate the performance of
the artificial SA-I and FA-I mechanoreceptors in hardware. We
present a quantitative justification of the computational accuracy
and also show the physical execution results.

The rest of the paper is organized as follows: in section
Materials and Methods, the biological concepts and
mathematical models of the mechanoreceptor cells are explained.
The proposed digital circuit is also described in this section.
In section Results of Software and Hardware Simulations, the
results of simulations are discussed. Then, section Hardware
Implementation, will describe an experimental set up to assess
the real-time performance of the digital mechanoreceptor
in physical hardware realization. Finally, section Conclusion
concludes the paper.

MATERIALS AND METHODS

In this section, first we explain spiking models of
mechanoreceptors and then present digital circuit for hardware
realization.

Mechanoreceptor Spiking Model
Touch sensing is essential for survival and development of
multicellular organisms. Forces that affect the skin are encoded
by specialized mechanosensory cells. These touch receptors in
our fingertips which are selective, sensitive and fast, allow us for
fine tactile sensing and manipulating objects (Kim et al., 2011;
Weber et al., 2013). Depending on this skill, we are able to do
numerous tasks ranging from ordinary (typing an e-mail) to
superior (playing a Mozart concert).

Slow adapting receptors (SA-I and SA-II) are light-touch
receptors which respond to static pressures and thus fire
throughout sustainedmechanical stimuli. Fast adapting receptors
(FA-I and FA-II) are the other touch receptors that respond at
the onset and offset of the mechanical stimuli. They respond
to vibrations and dynamic forces (derivative of force with
respect to time). SA-I receptors are located near the skin surface
and respond to its indentations with high sensitivity. SA-II
receptors are located deeper inside the skin and are mainly
responsible for measuring skin stretch; thus, they are important
for proprioception. Both SA-I and FA-I fibers have small receptive

field while SA-II and FA-II fibers respond to stimulation of large
swaths of skin (Lesniak et al., 2014; Saal and Bensmaia, 2015).
Figure 1 shows a cross section of the glabrous skin.

Primary afferent signals are handled by neurons in the cuneate
nucleus (CN) of the brainstem, the brain’s first level of tactile
processing, which organizes the important synaptic relay along
the somatosensory pathway from the fingertip to the CNS. The
functional link between the first and the second order neurons
(mechanoreceptors and cuneate cells, respectively) has not
been completely explored, and computational and experimental
findings on how information is processed along this pathway are
still required (Weber et al., 2013; Saal and Bensmaia, 2014).

To mimic this biological representation, different models have
been proposed (Friedl et al., 2016). The mechanoreceptor model
by Kim et al. (2013) has been shown to accurately reproduce the
spike trains of FA-I and SA-I type cells on a variety of stimuli.
Considering this model and the other related models (Kim et al.,
2012; Rongala et al., 2015; Friedl et al., 2016; Yi et al., 2017), we
take the sensor output f(t), and its derivative ḟ (t), and separate
each of them into positive and negative rectified parts producing
four signals. The rectified signals are then weighted and summed
to make the current [I(t)] to an Izhikevich neuron model. In this
way, the sensor-detected force, f(t) and change in the detected
force, ḟ (t), in N/ms, are linearly converted into current, I(t),
in mA. It should be pointed out that we used the previously
published Izhikevich model which was shown that is able to
reproduce both spiking and bursting responses of the two general
types of mechanoreceptors considered in this research (Oddo
et al., 2011, 2016, 2017; Rongala et al., 2015; Yi et al., 2017).
Although some papers used LIF model (Kim et al., 2009; Bologna
et al., 2011, 2013) which is simpler than Izhikevich model,
however, the LIF models are not able to accurately reproduce
mechanoreceptor diverse responses obtained in experimental
observations.

In this design, the Izhikevich neuron model is used due
to its capability to exhibit adaptation, which is a key feature
of mechanoreceptors, and also to reproduce the dynamic
characteristics of the both spiking and bursting responses.
The dynamics of the membrane potential, v, of the SA-I
mechanoreceptors are as follows: (Ranjbar and Amiri, 2016);

dv(t)

dt
= 0.04V(t)2 + 5V (t)+ 140− u (t)+

K1

Cm
I(t) (1)

du(t)

dt
= a(bv (t)− u (t)) (2)

and we have the auxiliary equation as follow:

If v ≥ 30mv

{

v← c
u← u+ d

(3)

where a, b, c, d are neuron parameters and their values are listed
in the Table 1. u is the membrane recovery variable and I is
the input current. The value of the parameters a and b can be
varied to reproduce different kinds of adaptation: a defines the
characteristic time of recovery variable, b defines the sensitivity
of recovery variable. In case that the membrane potential reached
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FIGURE 1 | A cross section of the glabrous skin which shows individual type of mechanoreceptors. The obtained spike trains in response to a specific stimulus are

also shown.

TABLE 1 | Parameter values of spiking model of SA-I and FA-I mechanoreceptors

used in the simulations.

Parameter Spiking Bursting

a 0.02 0.02

b 0.2 0.2

c −65 −50

d 6 1.5

Vth 30mV 30mV

Cm 1 1

the threshold value (Vth= 30mV), one spike was generated
and the membrane voltage and the recovery variable are reset
according to (3). Parameters c and d contribute as well in
defining the adaptation properties of the neuron. The values of
the parameters a, b, c, and d are chosen to obtain regular spiking
and bursting dynamics (Izhikevich, 2003), which is the case of
human finger mechanoreceptors. Computations are performed
in MATLAB with a time step, dt = 0.01ms. Similarly, following
model matches the spiking activity of FA-I mechanoreceptor cells
as discussed in detail in Rongala et al. (2015) and Oddo et al.
(2017) and Yi et al. (2017).

dv(t)

dt
= 0.04V(t)2 + 5V (t)+ 140− u (t)+

K2

Cm

dI(t)

dt
(4)

du(t)

dt
= a(bv (t)− u (t)) (5)

If v ≥ 30mv

{

v← c
u← u+ d

(6)

Indeed, these spiking models of the mechanoreceptor cells have
shown promise as computationally efficient models to reproduce
a wide range of neural responses to stimuli (Kim et al., 2012;
Rongala et al., 2015; Friedl et al., 2016; Yi et al., 2017). In sum, two
kind of mechanoreceptors namely, SA-I and FA-I models which
are described by the Equations (1)–(6), are used to encoded the
input force.

Digital Neuromorphic Mechanoreceptor
In this section, we present a digital mechanoreceptor circuit
with a new architecture based on the mechanoreceptor spiking
model. This digital framework might be implemented on low-
cost and commonly available hardware platforms such as
FPGAs. Computation methods used in Von Neumann PCs or
SIMD processing units such as GPUs or DSPs significantly
differ from classic methods used for FPGA (Yang et al.,
2016). FPGA, not only implement a real-time platform with
the flexibility of programmable logic but also its ability in
parallel, high-speed computation, make it as a good choice for
designing neuromorphic systems (Nazari et al., 2015c). Indeed,
FPGAs can significantly improve the speed of signal processing
compared with the software-based methods. In recent years,
implementation of digital neuronal networks on FPGAs have
attracted considerable attention and several successful cases have
been reported in literature (Sabarad et al., 2012; Nazari et al.,
2014b).

The digital circuit for the Merkel (SA-I) mechanoreceptor
model is obtained first by discretizing its spiking model, namely
Equations (1)–(3) using Euler method. The discrete equations are
as follows with h= 0.01 ms:

v [n+ 1] = v [n]+ h ∗ (0.04 ∗ v [n] ∗ v [n]+ 5 ∗ v [n]

+140− u [n]+
K1

Cm
I [n]) (7)

u [n+ 1] = h ∗ (0.02 ∗ (0.2 ∗ v[n]− u[n]))+ u[n] (8)

Similarly, discretizing the Meissner’s Corpuscle (FA-I)
mechanoreceptor spiking model yields:

v [n+ 1] = v [n]+ h ∗ (0.04 ∗ v [n] ∗ v [n]+ 5 ∗ v [n]+ 140

−u [n])+
K2

Cm
(I [n+ 1]− I [n]) (9)

u [n+ 1] = h ∗ (0.02 ∗ (0.2 ∗ v[n]− u[n]))+ u[n] (10)

Considering Equations (7)–(10), Figure 3 shows the scheduling
diagram for (a) Merkel Cells (SA-I), (b) Meissner’s Corpuscle
(FA-I). This figure describes the essential steps to produce the
membrane potential (v) and the recovery variable (u) of the
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FIGURE 2 | The model for Merkel Cells (SA-I) and Meissner’s Corpuscle (FA-I) mechanoreceptor. The FA-I receptor responds with action potentials during stimulus

onset and offset. The SA-I receptor is active throughout the period of stimulus contact. The Izhikevich model was used for producing spiking/bursting responses.

FIGURE 3 | Scheduling diagram for spiking part of the (A) Merkel cell (SA-I), (B) Meissner’s Corpuscle (FA-I). Membrane potential (v dynamic) and the membrane

recovery variable (u dynamic).

mechanoreceptor model in one iteration. This process is done
for producing individual output sample using last samples. At
each block a memory register is used to store the outputs which
will be utilized in the next computing steps. Each state variable
is solved in N-bits registers. “N” is the register length and
is determined by the required precision for implementation.
It directly affects the computational time and cost. In this
research, we set N = 32 to obtain a low-error, low-cost and
high speed circuit. Finally, the desired signals are converted to

analog signal using a digital-to-analog converter chip. In this
work, the MAX5216PMB1 module was used. This digital system
based on reproducing mechanoreceptor dynamics, suggests
the neuromorphic conversion of input signal (sensor outputs)
to spike/burst patterns conveying tactile information as it is
observed in natural touch coding.

Considering Figure 3, since there is no high-cost operation
to slow critical paths, the reduction in area and increase
in maximum operation frequency is expected. Consequently,
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less hardware resources are required for the proposed digital
mechanoreceptor. The digital circuit proposed in this study for
matching the dynamic characteristics of the spiking model of
mechanoreceptors, can also be extended to different types of in
silico designs with similar complexity of spiking neuron.

RESULTS OF SOFTWARE AND
HARDWARE SIMULATIONS

In this section, the results of software simulations of the
mechanoreceptor spiking model in MATLAB and the proposed
digital neuromorphic circuit in VIVADO are described. We

illustrate how the digital circuit preserves the necessary
properties of its spiking counterpart. Both MATLAB and
VIVADO simulations were performed using the same dt =
0.01ms.

To show the flexibility of the designed circuit and to compare
its capabilities and behavior with those of mechanoreceptor
spiking model, several simulations are done. Figures 4, 5 show
the spiking and bursting responses for Merkel Cells (SA-I) and
Meissner’s Corpuscle (FA-I), respectively. In these figures, the
first panels show the staircase pulse as the input signal, the
second panels display the MATLAB simulations of the spiking
mechanoreceptor model and the third panels illustrate the
VIVADO simulation of the designed digital circuit. According

FIGURE 4 | The time response of the Merkel Cells (SA-I) mechanoreceptor in mV. (A) Spiking and (B) bursting response. In these simulations, the first panels show

the input signal, the second panels display the MATLAB simulation of the spiking mechanoreceptor model and the third panels illustrate the VIVADO simulation of the

proposed digital circuit.

FIGURE 5 | The time response of the Meissner’s Corpuscle (FA-I) mechanoreceptor in mV. (A) Spiking and (B) bursting responses. In these simulations, the first

panels show the input signal, the second panels display the MATLAB simulation of the spiking mechanoreceptor model and the third panels illustrate the VIVADO

simulation of the proposed digital circuit.
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FIGURE 6 | The timing of firing (A) the SA-I mechanoreceptor, (B) the FA-I mechanoreceptor for spiking/bursting responses obtained by the MATLAB simulations of

the SA-I and FA-I mechanoreceptor models and VIVADO simulation of the proposed SA-I and FA-I digital mechanoreceptors. This figure corresponds to Figures 4, 5.

TABLE 2 | The average and variance values of ISI and IBI for two types of

mechanoreceptors using VIVADO and MATLAB simulations.

ISI IBI

Average Variance Average Variance

SA-I MATLAB 37.8550 0.0025 57.8538 0.0025

VIVADO 37.8400 0.0024 57.8538 0.0025

FA-I MATLAB 199.7000 1633.5800 197.5667 1620.0156

VIVADO 199.7000 1633.5800 197.6000 1623.4400

to these results, both spiking and bursting responses could
be realized and hence the digital circuit is able to work
in both regimes. It should be pointed out that the model
parameters for spiking and bursting patterns are shown in
Table 1.

Considering Figures 4, 5, the SA-I receptors fire throughout
a sustained stimulus and the FA-I receptors respond at the onset
and offset of that stimulus. This result is in agreement with
the response obtained by the observations reported in Jöntell
et al. (2014). In other words, the spiking mechanoreceptor
model which is inspired from the biology of human tactile
perception, and the proposed a digital mechanoreceptor
circuit, produce time responses which functionally are
in agreement with spiking activity of mechanoreceptor
cells.

Next, we continue our simulations and compare the result of
MATLAB and VIVADO simulations. To this end, we compute
the mean and variance of Inter-spike interval (ISI) and Inter-

burst interval (IBI) of the results shown in Figures 4, 5, which
are reported in Table 2. Indeed, the responses of any neuron

can be characterized by the spike timing and these spiking

responses carry information (Jöntell et al., 2014; Saal and
Bensmaia, 2014). Consequently, ISIs and IBIs are important

factors to be considered and compared to validate the reliability
of responses obtained by the proposed digital circuit. Table 2

shows the mean and variance values of ISIs and IBIs obtained
by the MATLAB simulations of the mechanoreceptor model and
VIVADO simulation of the proposed digital mechanoreceptor.

In this way, Figure 6 shows the timing of firing a spike or

burst obtained by the MATLAB and VIVADO simulations of the

mechanoreceptor model and its digital circuit, respectively which

illustrates a good agreement. Given Table 2 and Figure 6, we
expect that the errors caused by the approximation of the discrete

equations are small and thus the spike timing (a fundamental

component in brain information processing) is matched. Finally,
the performance of the proposed digital circuit from dynamical

point of view is investigated. Figures 7, 8 show the phase plane,
v(t+5) vs. v(t), of the mechanoreceptor models simulated in
MATLAB and the digital mechanoreceptors for spiking and
bursting responses, respectively. As can be observed, although
there are also some quantitative differences, the overall shape and
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FIGURE 7 | The phase plane of (A) the SA-I mechanoreceptor, (B) the FA-I mechanoreceptor for spiking responses. In each part, first panel shows the

mechanoreceptor model simulated in MATLAB and the second panel displays the mechanoreceptor digital circuit simulated in VIVADO. This figure corresponds to

Figures 4, 5A, for spiking mode. It can be seen that the proposed circuit preserves the model dynamics.

FIGURE 8 | The phase plane of (A) the SA-I mechanoreceptor, (B) the FA-I mechanoreceptor for bursting response. In each part, first panel shows the

mechanoreceptor model simulated in MATLAB and the second panel displays the mechanoreceptor digital circuit simulated in VIVADO. This figure corresponds to

Figures 4, 5B, for bursting mode. It can be seen that the proposed circuit preserves the model dynamics.

features of the trajectories are similar, qualitatively. Regarding
the obtained results, one can conclude that the designed circuit
has maintained the dynamical characteristics of the original
system.

Considering Figures 4–8, the proposed digital circuit
properly demonstrates similar time domain and dynamical
behaviors of its computational model without any serious
limitation. This operational circuit can effectively be executed
in an FPGA device (in the next section). It is capable of
realizing both spiking and bursting responses with a few
number of multipliers to decrease the hardware resource
requirement. This highlights that a large number of digital
mechanoreceptor can be realized on an FPGA in real
time.

HARDWARE IMPLEMENTATION

The whole diagram for hardware testing of the proposed digital
mechanoreceptor is shown in Figure 9. This platform encodes
the force recorded from sensor into the spiking activity of a
mechanoreceptor digital circuit. Indeed, detected force at the
sensor is converted into current, which in turn produces a train
of action potentials. This is analogous to how stress and/or strain
applied at a mechanoreceptor end organ is transformed into
current across its membrane.

To verify the validity of the proposed digital design for the
mechanoreceptor model, it has been executed on the ZedBoard
development kit. The expandability features of this platform
make it possible for proof-of-concept development and rapid
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prototyping. The key objective is to explore the feasibility
of FPGA implementation of the circuit, specifically targeted
to benefit from reconfigurable hardware blocks and parallel
processing. The first component in Figure 9 is the force sensor.
Force-sensitive resistor (FSR) is commercially available and
has relatively easily integration with peripheral hardware and
software. It designed for measuring the presence and relative

FIGURE 9 | The diagram for hardware testing of the mechanoreceptor digital

circuit. In this case, the digital mechanoreceptor is implemented on the

ZedBoard and the obtained signals after converting to analog signal will be

displayed on oscilloscope. A 10-bit ADC was used for analog to digital

conversion. However, a 16-bit DAC was used to convert the digital outputs of

the ZedBoard to analog signals to be shown on the Oscilloscope.

magnitude of localized physical pressure. FSR separated by two
layers, as the pressure increases, these points will touch the active
semiconductor elements, so that the resistance becomes small. In
other words, it can be seen as a resistor to change its resistance
value by the size of the pressure of the resistance (in ohms, �)
depends on how much repression. FSR responds to normal force
within a range of 0.2–20N over its thin and circular pressure
sensitive area. The voltage passed through the sensor is first
amplified and then filtered before being fed to a 10-bit ADC
(analog-to-digital converter), which collects data at a 200 kHz
sampling rate. Supporting software (VIVADO) was developed to
read the digital signal from ADC to be prepared for real-time
execution of the digital mechanoreceptor implemented on the
ZedBoard.

Force detected at the sensor, f(t), is transformed into
current (Figure 2) to be injected as the input current to the
digital mechanoreceptor. Following the procedure mentioned in
(Rongala et al., 2015), a broad range of values for gain factors
(K1 and K2) have been tested. High gain values induced a
strong firing rate independent from the stimulus and results
in a less informative temporal structure of spikes. However,
low gain factors lead to low firing rate and consequently to
a long latency in spike responses (Oddo et al., 2017). After
proper tradeoff, we achieved K1 = 0.75 and K2 = 3. Next, the
input current is transformed into spike/burst trains using digital
mechanoreceptor implemented on the ZedBoard.

Figures 10, 11 show oscilloscope photographs of the digital
realization of the SA-I mechanoreceptor for spiking and bursting

FIGURE 10 | The spiking response of the digital SA-I mechanoreceptor (yellow color) executed on the ZedBoard. Signals are physically produced and observed on

the oscilloscope. The SA-I mechanoreceptor remains active during the period of stimulus contact. The filtered input of the A/D is shown in blue. The volt division for

the output (input) channel was set on 500mV (100mV).

FIGURE 11 | The bursting response of the digital SA-I mechanoreceptor (yellow color) executed on the ZedBoard. Signals are physically produced and observed on

the oscilloscope. The filtered input of the A/D is shown in blue. The volt division for the output (input) channel was set on 500mV (100mV).
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FIGURE 12 | The output of the digital FA-I mechanoreceptor (yellow color) implemented on the ZedBoard for (A) spiking and (B) bursting responses. Signals are

physically produced and observed on the oscilloscope. The FA-I mechanoreceptor responds with bursting / spiking patterns during stimulus onset and offset (blue

color). The volt division for the output (input) channel was set on 500mV (2V).

TABLE 3 | Device utilization summary of the ZedBoard.

Used in SA-I Used in FA-I Available

Slice LUTs 975 1131 53,200

Slice Registers 65 97 1,06,400

Slice 268 309 13,300

LUT Flip Flop Pairs 60 60 53,200

DSP48 16 18 220

Bonded IOB 12 12 200

responses, respectively. In these figures, the output of the
FPGA board was shown in yellow color (membrane voltage of
mechanoreceptor) and the filtered input of the A/D is shown in
blue. As it is observed, as the amplitude of the detected force
increases, the frequency of the spiking/bursting patterns is also
increased. This approach makes possible to decode stimuli while
the tactile data stream is collected. This in fact is in agreement
with experimental observations in which different stimulation
patterns evoked different total number of spikes (Weber et al.,
2013; Jöntell et al., 2014; Saal and Bensmaia, 2014). The results
obtained for digital realization of the FA-I mechanoreceptor are
shown in Figure 12. The device utilization for realization of both
SA-I/FA-I digital circuit is summarized in Table 3.

To cover more input signals in addition to the step signal,
different inputs such as sinusoidal, triangular and pulsatile are
also applied to FPGA when it is running mechanoreceptor digital
circuits. Figure 13 shows the output of digital Merkel (yellow
color) while input signal is in blue color. Depending on the
amplitude and frequency of the input, digital mechanoreceptor
sends a train of spikes/bursts to the output pin of the ZedBoard
to be shown on the oscilloscope (after analog conversion). To
provide quantitative analysis, the physical outputs of the digital
mechanoreceptors (ZedBoard) are compared with MATLAB
simulation of continuous (Equations 1, 2 solved by Runge–Kutta
method, RK4) and discrete (Equations 7, 8) spiking models and

VIVADO simulation of the digital circuit (Figure 3) for the same
input. An input signal with four different amplitudes is used
for performance comparison. Figure 14 illustrates the obtained
responses which are completely matched for a specific input.
To do a comparison of the firing patterns produced by the
digital realization to those of the computational models, the
ISI values are computed and reported in Table 4. As discussed
previously, the ISIs are important factors to be compared for
reliability validation of the responses. The very low relative
error (Table 4, last column) between the ISI values obtained
by the MATLAB/VIVADO simulations and digital realization
on an FPGA, indicates an acceptable performance and thus the
proposed digital circuit is faithful.

Although this analysis does not support the validity of the
model from biological point of view, it shows that digital circuit
executed on the FPGA properly follows the spiking model,
which is a necessary step for moving forward and further
analysis. Considering Figures 10–14, the digital circuit maintains
the essential properties of its computational counterpart in
different conditions. Regarding the main criteria from the
hardware viewpoint such as scaling up the circuit, decreasing
the digital realization cost while obtaining results similar to
the mechanoreceptor computational model, the digital circuit
produces satisfactory responses. Finally, this neuromorphic
approach can offer the possibility to mimic a sense of touch
with flexible design features to evaluate related effects. This also
supports the design of new architectures for artificial tactile
sensory systems for rehabilitation applications.

CONCLUSION

Considering performance, power and time constraints, recent
improvements in FPGA technology support flexibility required
for algorithm exploration. By discovering the basic mechanisms
found in the neuroscience and transforming them to hardware
realization, it is possible to advance current technologies.
These neuro-inspired novel technologies have several real-world
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FIGURE 13 | The spiking and bursting responses of the digital Merkel (yellow color) executed on the ZedBoard when it receives different input signals. The input is

shown in blue (1mA, p-p). (A) Sinusoidal, (B) triangular, and (C) pulsatile input. The volt division for both output and input channels was set on 500mV.

FIGURE 14 | The response of the Merkel spiking model. In each part, the first panel (green) shows the response of the differential Equations (1) and (2) solved by

Runge–Kutta method, RK4, the second panel (pink) is the response of the discrete Equations (7) and (8), the third panel (red) illustrates the VIVADO simulation of the

digital circuit and the last panel is the response of the digital mechanoreceptor (blue color) executed on the ZedBoard. The last panel also displays the input (yellow

color) which its amplitude is for (A) 2.4, (B) 2.6, (C) 2.8, (D) 3mA. The Time division was set on 25ms.

applications including adding sensory capabilities to provide
information about body positioning (proprioception) and grip
forces (Jöntell et al., 2014; Raspopovic et al., 2014; Oddo et al.,
2016).

The present research opens a new window to analyze
mechanoreceptors in hardware. To overcome the problems of
analog fabrication, in this research, a digital execution was
used. We proposed a digital neuromorphic circuit both in
software simulations and hardware realization. It was shown
that the system reproduced spike/burst patterns and was mainly
oriented for applications requiring efficient and low-power
hardware systems. In this way, the proposed circuit enabled

us to design hardware architecture for running on an FPGA.
The compartmentalized structure of the digital circuit and the
ability to control mechanoreceptor parameters facilitated to add
supplementary mechanisms without extensive circuit redesign.
This helped for easy scalability of the model to include a greater
number of mechanoreceptors on an FPGA. This engineering
approach is a new method for fabricating sensory systems which
artificially replicates the firing activities of the SA-I and FA-
I afferents. It should be pointed out that the proposed digital
mechanoreceptor has minimal level of biological plausibility in
the sense that for the digital Merkel receptor, firing rate increases
with higher forces and for the digital Meissner receptor, firing
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TABLE 4 | The values of ISI (in ms) for spiking responses calculated using MATLAB and VIVADO simulations and FPGA implementation corresponds to different parts of

Figure 14.

P
P
P
P
P
P

Figure 14

ISI
MATLAB VIVADO simulation of

Figure 3

Physical implementation on

the ZedBoard

Relative Error

Continuous Diff. Equations (1)

and (2) solved by RK4

Discrete Diff.

Equations (7) and (8)

A 48.6 48.6 48.7 48.5 0.002

B 44.5 44.7 44.9 45 0.011

C 41.2 41.3 41.3 41.5 0.007

D 38.5 38.4 38.5 39 0.012

Relative error is computed by considering the output of the ZedBoard (5th column) as the measured value and obtained value by RK4 (2nd column) as the actual value and then use

RE= |actual value−measured value| /actual value.

rate changes based on the rate of force changes. Nevertheless,
in this digital realization the structure of the mechanoreceptors
was ignored and the input/output properties were considered.
Furthermore, parameter sensitivity analysis and comparison of
the results of the digital realization with biological data should be
investigated in future development of this approach.

Future works will be conducted to include the other
mechanoreceptor models. Moreover, by implementing a large
population of digital mechanoreceptor, the development of new
generation of prosthetic hands to reestablish sensory feedback for
people with skin damage or amputations can also be possible.
The obtained spike/burst trains from digital mechanoreceptors
may be passed to a brainstem spiking model (which also can
be implemented in hardware) for further processing. This will
make a neuromorphic sensory system that will be utilized on
a mobile robot to do various real-world tasks such as texture
discrimination and object recognition.
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