OPEN

Association Between Expression of Cancer Stem Cell Markers and Poor Differentiation of Hepatocellular Carcinoma

A Meta-Analysis (PRISMA)

Rui Liu, MD, Yuan Shen, PhD, Kejun Nan, MD, PhD, Baibing Mi, PhD, Tao Wu, MD, Jinyue Guo, MS, Miaojing Li, MS, Yi Lv, MD, PhD, and Hui Guo, MD, PhD

Abstract: The role of cancer stem cell (CSC) markers in differentiation of hepatocellular carcinoma (HCC) remains uncertain. We conducted a meta-analysis to first investigate the association between expression of CSC markers (CD133, CD90, CD44, and EpCAM) and poor differentiation of HCC, and second, to determine if these CSC markers can be classified as biomarkers for patient classification and HCC differentiated therapy.

The relevant literature was searched using PubMed, EMBASE, Elsevier, and Chinese Biological Medicine databases for association between CSC markers and HCC from January 1, 2000 to June 30, 2014. Data were synthesized using random-effect or fixed-effect models. The effect sizes were estimated by measuring odds ratios (OR) with 95% confidence interval (CI).

The meta-analysis included 27 studies consisting of 2897 patients with HCC. The positive expression of CSC markers was associated with poor differentiation (OR = 2.37, 95% CI = 2.03-2.77, P < 0.00001). Similarly, the positive expression of CSC markers was only associated with HCC tissues compared with noncancerous liver tissues (OR = 9.26, 95% CI = 3.10-27.65, P < 0.0001). CD90 has a specificity of 91.9% for HCC and a sensitivity of 48.22% in predicting poor differentiation.

The positive expression of CSC markers is associated with poor differentiation and aggressive phenotype of patients with HCC. The CD90 marker might be a promising target for patient with HCC classification and differentiation therapy.

(Medicine 94(31):e1306)

Editor: Peng Qi.

Abbreviations: AFP = a-fetoprotein, CI = confidence interval, CSCs = cancer stem cells, EGFR = epidermal growth factor receptor, HBV = hepatitis C virus, HCC = hepatocellular carcinoma, HCV = hepatitis C virus, HER2 = human epidermal growth factor receptor 2, HNF4 α = hepatocyte nuclear factor-4 α , MeSH = Medical Subject Heading, OR = odds ratio, OSM = oncostatin M, PVTT = portal vein tumor thrombus, STAT3 = signal transducer and activator of transcription 3.

INTRODUCTION

epatocellular carcinoma (HCC) is the 6th most prevalent cancer in the world and the third leading cause of cancerrelated mortalities.¹ Only 10% to 20% of the HCCs can be surgically excised, although attended with a high frequency of recurrence.² Further, as HCC is chemoresistant and the current drug therapies are associated with limited efficacy, the prognosis of these patients is generally poor.³ Currently, there is a lack of not only predictive biomarkers that are linked to prognosis of patients with HCC but also effective therapeutic targets.

Cancer classification is expected to establish prognosis, provide adequate treatment options, and aid researchers to design controlled clinical trials. Edmondson Grading is a widely accepted histological classification method for HCC and has been endorsed by clinical management guidelines.⁴ However, this method does not predict the biological behavior of HCC accurately. Therefore, molecular biomarkers can be helpful in classifying patient population based on cellular lineages within tumors and therapy response. For example, the human epidermal growth factor receptor 2 (HER2) status in breast cancer is used to distinguish subgroups of patients with different outcomes and treatment responses to trastuzumab.⁵ Similarly, epidermal growth factor receptor (EGFR) mutation status in nonsmall cell lung cancer is helpful in determining the efficacy of erlotinib treatment.⁶ However, no such molecular data are available to predict HCC outcomes in combination with histological classification.

Cancer stem cells (CSCs) are a small subpopulation of cells within tumors endowed with the potential for self-renewal, differentiation, and tumorigenicity.⁷ The existence of CSCs in HCC partially explains its heterogeneity, metastasis, recurrence after resection, and chemoresistance.⁸ Recent studies have started exploring the potential of hepatic CSC markers in HCC diagnosis, prognosis prediction, and development of novel therapeutics. Several cell surface markers, including CD133, CD44, CD90, and EpCAM are often used to identify and enrich HCC CSCs.⁹ According to the CSC theory, multistep dedifferentiation induced by the CSCs is considered important for

Received: March 23, 2015; accepted: June 29, 2015.

From the Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China (RL, KN, TW, JG, ML, HG) and Department of Epidemiology and Statistics (YS, BM) and Department of Hepatobiliary and Pancreatic Surgery, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China (YL).

Correspondence: Hui Guo, Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi Province 710061, R.P. China (e-mail: guohuihappy97@163.com).

Rui Liu and Yuan Shen have contributed equally to this work.

The study was supported by the Science Foundation of Shaanxi province in China (No. 2012JQ4017).

The authors have no conflicts of interest to disclose.

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0, where it is permissible to download, share and reproduce the work in any medium,

permissible to download, share and reproduce the work in any medium, provided it is properly cited. The work cannot be changed in any way or used commercially. ISSN: 0025-7974

DOI: 10.1097/MD.000000000001306

multicentric carcinogenesis and aggressive phenotype. However, the relation between the expression of CSC markers and poor differentiation of HCC remains uncertain.

Therefore, this meta-analysis was carried out to determine the association between the expression of CSC markers and poor differentiation of HCC. These results may help us understand the role of CSC markers in differentiation of HCC and provide more reliable molecular markers for patient classification and potential targets for differentiation therapy.

MATERIALS AND METHODS

Search Strategy and Selection Criteria

We searched PubMed, EMBASE, Elsevier, and Chinese Biological Medicine databases (January 1, 2000 to June 30, 2014) using the Medical Subject Heading keywords "CD133," "Prominin," "CD44," "CD90," "Thy-1," "EpCAM," "HCC," "liver cancer," "liver tumor," "differentiation," "tumor grade," "Edmondson Grading," and the individual corresponding free terms. Furthermore, we reviewed citations in the retrieved articles to search for additional relevant studies. Searches were limited to papers published in English and Chinese language only. The study was approved by the Conduct of Human Ethics Committee of the First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University.

Studies were included in the meta-analysis, if they included patients with distinct HCC diagnosis by 2 independent pathologists according to the American Association guidelines; data on CD133 (Prominin), CD44, CD90 (Thy-1), and EpCAM expression and are full-length papers; information about differentiation of HCC; and data about odds ratios (ORs) with 95% confidence intervals (CI), or at least adequate data to calculate 95% CIs. The following studies were excluded; overlapping articles or duplicate data; articles about cell lines or animals; review articles and conference records without original data and full text; studies lacking information on differentiation; and studies with fewer than 10 participants. In cases where the study population was overlapped by more than 30% in 2 or more papers published by the same authors, we only included the study with the larger number of participants.

To investigate the specific expression of CSC markers in HCC tissues and their sensitivity in predicting poor differentiation of patients with HCC, the data from HCC tissues were compared with noncancerous liver tissues. Moreover, the comparison of CSC marker sensitivity and specificity was also accomplished by comparing the data between poor HCC tissues and nonpoor (well or moderate) HCC tissues from the included studies.

Review of the Studies

The datasets were independently extracted by 2 investigators (RL and YS) with a concordance rate of 94.1% and subsequently verified by the other authors. Discrepancies were resolved by consensus. The patients from all the studies were divided into positive and negative groups for each marker. Data were extracted only for participants whose differentiation status was known. The quality of the studies was evaluated by 2 investigators (HG and YS). Table 1 shows the data profile of each article included in this study.

Statistical Analysis

The association of CSC markers (CD133, CD90, CD44, and EpCAM) with differentiation (well + moderate vs poor) and other clinicopathological conditions of HCC (such as tumor size

[<5 cm vs >5 cm], tumor stage [I + II vs III + IV], tumor capsule [positive vs negative], metastasis [positive vs negative], microvascular invasion [positive vs negative], portal vein tumor thrombus [PVTT] [positive vs negative], alpha-fetoprotein [AFP] level [<200 ng/mL vs >200 ng/mL], hepatitis [positive vs negative], cirrhosis vs noncirrhosis, and liver function of Child-Pugh [A + B vs C]) were estimated by calculating ORs with 95% CI. Statistical heterogeneity among studies was evaluated using the chi-squared test, P values, and I^2 statistics. A random-effect model or fixed-effect model was used to obtain pooled OR. To calculate the sensitivity and specificity of each CSC marker for HCC, 2×2 tables were generated by using the pooled data from cancerous and noncancerous liver tissues and poorly and nonpoorly differentiated HCC tissues. The sensitivity in HCC tissues was calculated as the ratio of HCC tissues with the specific CSC marker(s) to the HCC tissues with and without the expression; the specificity in HCC tissues was calculated as the ratio of the non-HCC tissues without the specific CSC marker(s) to the non-HCC tissues with and without the expression. Similarly, the sensitivity and specificity for poorly differentiated HCC tissues were also calculated. Publication bias was estimated by using funnel plots and Egger's test. *P* value of <0.1 was indicative of statistically significant publication bias. Sensitivity analysis was conducted by removing 1 study each time to evaluate its contribution on the overall analysis. The meta-analysis was performed using Review Manager version 5.3 (The Nordic Cochrane Centre, the Cochrane Collaboration, Copenhagen, Denmark) and statistical analysis was done by STATA version 10.0 (Stata Corporation, College Station, TX) software. All statistical tests were 2-sided and a P value of <0.05 was considered statistically significant.

RESULTS

Description of Studies

Based on the search criteria, a total of 1292 articles were retrieved. Among these, 1265 records were excluded for various reasons as shown in Figure 1. Twenty-seven studies (10–36) published as full papers were finally analyzed retrospectively. The sample size of the included studies ranged from 12 to 387, and data from a total of 2897 patients were analyzed. The patients from all the studies were divided into positive and negative groups based on the marker expression. The 2 patients' cohorts of Yamashita et al were divided into 4 subgroups on the basis of EpCAM and AFP expression. Different studies have analyzed different CSC marker; for example, 15 studies used CD133 as CSC marker,^{10,11,17,18,20,22–27,30–33} 7 studies tested CD90 as CSC marker,^{12,17,20,21,31,32,36} 9 studies considered CD44-positive tumor cells as CSCs,^{11,13,15,16,18,19,28,34,35} and 7 studies used EpCAM as the CSC marker.^{10,14,17,22,28,29,32} In 2 studies co-expression of CD133 and CD44 together was considered as a CSC marker.^{11,23} The main characteristics of the studies are shown in Table 1.

Association of CSC Markers With HCC Differentiation

The overall analysis by a fixed-effect model showed that expression of CSC markers was associated with poor differentiation of HCC tissues (pooled OR = 2.37,95% CI = 2.03-2.77, P < 0.00001). Further, the subgroup analyses suggested statistically significant association of poorly differentiated HCC tissues with expression of CD133 (pooled OR = 2.75,95% CI = 2.12-3.57, P < 0.00001); CD90 (pooled OR = 1.69,

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

TABLE 1. Characteristics of the Studies Included in th	teristics of t	he Studies Inci	luded in ti	he Meta-Analysis	ysis							
References	Markers	Technology	Cutoff, %	Number of Patients	Age, Mean/ Median	Male, %	Treatment	Cases (Marker +)	Cases (Marker–)	Significant	Control (Marker +)	Control (Marker-)
Chan et al ¹⁰	CD133	IHC	NS	282	55.4	84	LR	38	244	No		
	EpCAM	IHC	NS					56	226	Yes		
Chen et al ¹¹	CD133	IHC	0	387	NS	88	LR	216	171	Yes		
	CD44		10					234	153	Yes		
	CD133/		NS					161	226	Yes		
ġ	CD44											
Cheng et al ¹²	CD90	IHC	NS	50	NS	NS	LR/LT	36	14	Yes	20	30
Gao et al ¹³	CD44	IHC	NS	40	49	75	LR	23	17	Yes	0	10
Govaere et al ¹⁴	EpCAM	IHC	5	167	60.3	73	LR	25	141	No		
Guan et al ¹⁵	CD44	IHC	NS	67	NS	NS	LR	18	49	Yes	0	47
Guo et al ¹⁶	CD44	IHC	0	49	NS	NS	LR	19	30	No	0	13
Guo et al ¹⁷	CD133	IHC	5	50	NS	NS	LR	42	8	No	0	10
	CD90	IHC	5		NS	NS	LR	32	18	Yes	0	10
	EpCAM	IHC	5		NS	NS	LR	21	29	No	0	10
Lingala et al ¹⁸	ČD133	IHC	5	23	56.4	80	NS	10	13	No	S	Э
)	CD44	IHC	5					15	8	No	С	5
Liu et al ¹⁹	CD44	IHC	0	39	NS	NS	LR	27	12	Yes	0	10
Liu et al ²⁰	CD133	IHC	NS	245	48	84	LR	45	200	Yes	56	26
	CD90	IHC	NS					91	154	No	0	82
In et al ²¹	CD90	THC	SN	50	55	83	LR	43	16	Ves	19	40
Pan et al ²²	CD133	THC	0	02	55	57	ĽI	49	21	oN N	0	202
	EnCAM	THC	0					49	21	Yes	21	40
Colnitrov of 0123		IF.	NIC	1	72	20	тастрит	4	77	No.	17	f
DAILINUV CL AL		11		17	0 E	00	INCENTIO	0 4	7 C			
	CD133/	IF	NN N	17	5/	80		0	/	NO		
FC.	CD44		,									
Sasaki et al ⁴⁺	CD133	IHC	0	136	61	112	LR	30	106	Yes		
Song et al ²⁵	CD133	IHC	1.32	63	50	79	LR	26	27	Yes		
Tsuchiya et al ²⁶	CD133	IHC	NS	31	69	81	LR	6	22	No		
Wu et al ²⁷	CD133	IHC	0	190	58.7	93	LR	42	148	Yes		
Xu et al ²⁸	EpCAM	IHC	NS	106	NS	83	LR	52	54	Yes		
:	CD44	IHC	NS					15	8			
Yamashita et al ²⁹	EpCAM	TMA	NS	238	51	87	LR	95	143	Yes		
(conort 2)												
Yamashita et al ²⁹ (cohort 3)	EpCAM	IHC	5	101	49	92	LR	39	62	Yes		
Yeh et al ³⁰	CD133	IHC	NS	154	56	74	LR	24	130	Yes		
Yilmaz et al ³¹	CD133	IHC	0	35	64	86	LR/biopsv	24	11	Yes	32	31
	CD90	IHC	0					6	26	Yes	0	63
Yu et al ³²	CD133	IHC	NS	20	51	85	LR/LT	17	ю	Yes		
	EpCAM	IHC	NS					17	33	No		
	CD90	IHC	NS					18	2	Yes		
Zeng et al ³³	CD133	IHC	10	109	58	94	LT	44	65	Yes	0	41

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

References	Markers	Markers Technology	Cutoff, %	Number of Patients	Age, Mean/ Median	Male, %	Treatment	Cases (Marker +)	Cases Cases (Marker +) (Marker-) Significant	Significant	Control (Marker +)	+) Control
Zhang et al ³⁴	CD44	IHC	0	51	51	63	LR	23	34	No	7	39
Zheng et al ³⁵	CD44	IHC	NS	87	55	86	LR	45	42	No	4	16
Zheng et al ³⁶	CD90	IHC	10	36	55	69	LR	23	13	Yes	0	20
EpCAM, epithelial cell adhesion molecule chemoembolization; TMA, tissue microarray.	lial cell adhesi 1; TMA, tissue	EpCAM, epithelial cell adhesion molecule; IHC, immunohis temoembolization; TMA, tissue microarray.	IC, immuno	histochemistry;	IF, immunofluc)rescence;	ce; LR, liver resection; LT, liver tr	ion; LT, liver tra	ansplantation; NS, not specified; TACE, t	S, not specified	l; TACE, transce	theter arterial

Liu et al

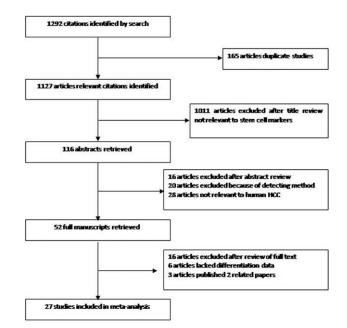


FIGURE 1. Flow chart of article selection. HCC, hepatocellular carcinoma.

95% CI = 1.14–2.49, P = 0.009); CD44 (pooled OR = 1.95, 95% CI = 1.38–2.78, P = 0.002); and EpCAM (pooled OR = 2.40, 95% CI = 1.64–3.51, P < 0.00001). Moreover, the double-positive expression of CD133 and CD44 was also associated with poorly differentiated HCC (pooled OR = 3.44, 95% CI = 2.11–5.61, P < 0.00001) (Figure 2).

Sensitivity and Specificity of CSC Markers in HCC

To investigate the relationship between expression of CSC markers and HCC, we analyzed data pertaining to CSC markers from 1010 cancerous and 549 noncancerous liver tissues (Figure 3). Overall, a statistically significant association of CSC markers with cancerous compared with noncancerous liver tissues (pooled OR = 9.26, 95% CI = 3.1-27.65, P < 0.00001) was observed, as analyzed by a random-effect model. Subsequent subgroup analysis showed significant association between the expression of CD90 (pooled OR = 28.17, 95% CI = 5.20-152.59, P = 0.0001; CD44 (pooled OR = 6.78, 95%) CI = 2.25 - 20.49, P = 0.0007); and EpCAM (pooled OR = 5.79, 95% CI = 2.87 - 11.67, P < 0.00001), whereas CD133 expression was not significantly associated (pooled OR = 5.55, 95% CI = 0.39-79.57, P = 0.21) with HCC tissues.

Further, we investigated the individual CSC markers for their specificity and sensitivity in HCC tissues compared with noncancerous liver tissues. Among all CSCs, CD90 had the highest specificity of 91.9% (95% CI = 88.3-95.5) whereas EpCAM had the highest sensitivity of 58.3% (95% CI = 46.7-69.9). The sensitivity and specificity of CD133 were 40.0% (95% CI = 33.4-46.6) and 65.9% (95% CI = 59.0-72.8), respectively, and for CD44 they were 47.8% (95% CI = 40.3-55.3) and 88.2% (95% CI = 82.8-93.6), respectively, as shown in Table 2.

Sensitivity and Specificity of CSC Markers in Poorly Differentiated HCC

In order to obtain potential biomarkers for prediction of poorly differentiated stages of HCC, we evaluated the

	Case (mark		Control (mar		0000000	Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
amashita et al. 2008	3	94	7	141	2.5%	0.63 [0.16, 2.50]	
an et al. 2012	24	49	12	21	4.0%	0.72 [0.26, 2.02]	
Suo et al. 2014	14	21	16	29	2.1%	1.63 [0.51, 5.21]	
han et al. 2014	8	56	15	226	2.4%	2.34 [0.94, 5.84]	
Sovaere et al. 2014	10	25	28	142	2.3%	2.71 [1.10, 6.68]	
'u et al. 2011	12	17	1	3	0.2%	4.80 [0.35, 65.76]	
u et al. 2014	43	52	20	54	1.6%	8.12 [3.28, 20.10]	
amashita et al. 2008	5	39	0	53	0.2%	17.06 [0.91, 318.35]	
ubtotal (95% CI)		353		669	15.2%	2.40 [1.64, 3.51]	•
otal events	119		99				
leterogeneity: Chi ² = 1	8.31, df = 7 (P	= 0.01);	I= 62%				
est for overall effect Z	= 4.50 (P < 0.	00001)					
.1.2 CD133+ /CD44+							
alnikov et al. 2009	- 1	3	2	7	0.4%	1.25 [0.07, 22.88]	
then et al. 2014	58	161	31	226	7.6%	3.54 [2.15, 5.82]	
ubtotal (95% CI)		164		233	8.0%	3.44 [2.11, 5.60]	•
otal events	59		33			and the state of	0.00
leterogeneity: Chi² = 0 est for overall effect: Z			*= 0%				
.1.3 CD44							
uo et al. 2000	5	19	10	30	2.6%	0.71 [0.20, 2.55]	
hang et al. 2002	15	23	20	28	2.9%	0.75 [0.23, 2.46]	
heng et al. 2007	20	39	25	48	5.1%	0.97 [0.42, 2.26]	
uan et al. 2002	5	18	8	49	1.4%	1.97 [0.55, 7.09]	
hen et al. 2014	65	234	24	153	9.7%	2.07 [1.23, 3.48]	
iu et al, 2009	9	27	2	12	0.9%	2.50 [0.45, 13.91]	
u et al. 2014	43	52	34	54	2.7%	2.81 [1.14, 6.96]	
ingala et al. 2010	8	13	2	6	0.5%	3.20 [0.42, 24.42]	
ao et al. 2008	10	23	2	17	0.6%	5.77 [1.06, 31.27]	
ubtotal (95% CI)		448		397	26.3%	1.77 [1.28, 2.44]	•
otal events	180		127				
leterogeneity: Chi ² = 9 est for overall effect: Z			*= 17%				
.1.5 CD133	0	1.9	12	112	128227	1005-000-0018	
alnikov et al. 2009	1	4	3	6	0.8%	0.33 [0.02, 5.33]	1 (The second se
iu et al, 2013	11	45	76	200	9.8%	0.53 [0.25, 1.10]	
uo et al. 2014	25	42	5	8	1.6%	0.88 [0.19, 4.19]	
ingala et al. 2010	4	9	5	12	1.1%	1.12 [0.20, 6.41]	
han et al. 2014	4	38	19	244	2.1%	1.39 [0.45, 4.34]	
ilmaz et al. 2014	4	24	1	11	0.5%	2.00 [0.20, 20.33]	
eh et al. 2009	18	24	77	130	2.8%	2.06 [0.77, 5.55]	
eng et al. 2012	8	44	4	65	1.2%	3.39 [0.95, 12.05]	
an et al. 2012		49	6	21	1.5%	3.95 [1.30, 11.95]	
hen et al. 2014	30						
	71	216	18	171	6.2%	4.16 [2.37, 7.32]	
suchiya et al. 2009	71 2	9	1	22	0.2%	6.00 [0.47, 76.71]	
suchiya et al. 2009 /u et al. 2013	71 2 34	9 42	1 60	22 148	0.2%	6.00 [0.47, 76.71] 6.23 [2.70, 14.40]	
suchiya et al. 2009 Vu et al. 2013 cong et al. 2008	71 2 34 12	9 42 26	1 60 3	22 148 27	0.2% 2.3% 0.7%	6.00 [0.47, 76.71] 6.23 [2.70, 14.40] 6.86 [1.65, 28.56]	
suchiya et al. 2009 /u et al. 2013 ong et al. 2008 asaki et al. 2010	71 2 34 12 19	9 42 26 30	1 60 3 21	22 148 27 106	0.2% 2.3% 0.7% 1.6%	6.00 [0.47, 76.71] 6.23 [2.70, 14.40] 6.86 [1.65, 28.56] 6.99 [2.89, 16.90]	
suchiya et al. 2009 /u et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011	71 2 34 12	9 42 26 30 17	1 60 3	22 148 27 106 3	0.2% 2.3% 0.7% 1.6% 0.1%	6.00 [0.47, 76.71] 6.23 [2.70, 14.40] 6.86 [1.65, 28.56] 6.99 [2.89, 16.90] 21.00 [0.90, 489.76]	
suchiya et al. 2009 Vu et al. 2013 Iong et al. 2008 Iasaki et al. 2010 Iu et al. 2011 Iubtotal (95% CI)	71 2 34 12 19 13	9 42 26 30	1 60 3 21 0	22 148 27 106	0.2% 2.3% 0.7% 1.6%	6.00 [0.47, 76.71] 6.23 [2.70, 14.40] 6.86 [1.65, 28.56] 6.99 [2.89, 16.90]	•
suchiya et al. 2009 /u et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 ubtotal (95% CI) otal events leterogeneity: Chi ² = 4	71 2 34 12 19 13 256 0.39, df = 14 (9 42 26 30 17 619 P = 0.00	1 60 3 21 0 299	22 148 27 106 3	0.2% 2.3% 0.7% 1.6% 0.1%	6.00 [0.47, 76.71] 6.23 [2.70, 14.40] 6.86 [1.65, 28.56] 6.99 [2.89, 16.90] 21.00 [0.90, 489.76]	•
suchiya et al. 2009 /u et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 ubtotal (95% CI) otal events leterogeneity: Chi ² = 4 est for overall effect: Z	71 2 34 12 19 13 256 0.39, df = 14 (9 42 26 30 17 619 P = 0.00	1 60 3 21 0 299	22 148 27 106 3	0.2% 2.3% 0.7% 1.6% 0.1%	6.00 [0.47, 76.71] 6.23 [2.70, 14.40] 6.86 [1.65, 28.56] 6.99 [2.89, 16.90] 21.00 [0.90, 489.76]	•
suchiya et al. 2009 Vu et al. 2013 song et al. 2008 asaki et al. 2010 U et al. 2011 Ubtotal (95% CI) otal events leterogeneity: Chi ² = 4 est for overall effect. Z .1.6 CD90	71 2 34 12 19 13 256 0.39, df = 14 (9 42 26 30 17 619 P = 0.00	1 60 3 21 0 299	22 148 27 106 3	0.2% 2.3% 0.7% 1.6% 0.1%	6.00 [0 47, 76,71] 6.23 [2,70, 14,40] 6.86 [1.65, 28,56] 6.99 [2.89, 16,90] 21.00 [0.90, 489,76] 2.69 [2.07, 3.49]	•
suchiya et al. 2009 fu et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 ubtotal (95% CI) otal events leterogeneity. Chi ^a = 4 est for overall effect Z 1.6 CD90 u et al. 2011	71 2 34 12 19 13 256 0.39, df = 14 (= 7.47 (P < 0.	9 42 26 30 17 619 (P = 0.00 00001)	1 60 3 21 0 299 02); I² = 65%	22 148 27 106 3 1174	0.2% 2.3% 0.7% 1.6% 0.1% 32.6%	6.00 [0.47, 76.71] 6.23 [2.70, 14.40] 6.86 [1.65, 28.56] 6.99 [2.89, 16.90] 21.00 [0.90, 489.76]	•
suchiya et al. 2009 /u et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 uutotat (95% CI) otal events leterogeneity: Chi ^{ae} = 4 est for overall effect Z .1.6 CD90 u et al. 2011 iu et al. 2013	71 2 34 12 19 13 256 0.39, df = 14 (= 7.47 (P < 0.	9 42 26 30 17 619 P = 0.00 00001) 43	1 60 3 21 0 299 02); I*= 65% 8 49	22 148 27 106 3 1174	0.2% 2.3% 0.7% 1.6% 0.1% 32.6%	6.00 (0 47, 76,71) 6.23 (2.70, 14,40) 6.86 (1.65, 28,56) 6.99 (2.89, 16,90) 21.00 (0.90, 489,76) 2.69 (2.07, 3,49) 0.26 (0.08, 0.90) 1.54 (0.90, 2.63)	*
suchiya et al. 2009 /u et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 ulutotat (95% Cl) otal events leterogeneity. Chi ² = 4 est for overall effect. Z .1.6 CD90 u et al. 2011 iunaz et al. 2014	71 2 34 12 19 13 256 0.39, df = 14 (= 7.47 (P < 0. 9 38	9 42 26 30 17 619 (P = 0.00 .00001) 43 91	1 60 3 21 0 299 02); I*= 65% 8	22 148 27 106 3 1174	0.2% 2.3% 0.7% 1.6% 0.1% 32.6%	6.00 [0 47, 76.71] 6.23 [2.70, 14.40] 6.86 [1.65, 28.56] 6.99 [2.88, 16.90] 21.00 [0.90, 489.76] 2.69 [2.07, 3.49] 0.26 [0.08, 0.90] 1.54 [0.90, 2.63] 2.19 [0.30, 15.85]	
suchiya et al. 2009 fu et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 ubtotal (95% CI) otal events leterogeneity. Chi ^a = 4 est for overall effect Z 1.6 CD90 u et al. 2011 iu et al. 2011 limaz et al. 2014 heng et al. 2012	71 2 34 12 19 13 256 0.39, df = 14 (= 7.47 (P < 0. 9 38 2	9 42 26 30 17 619 (P = 0.00 .00001) 43 91 9	1 60 3 21 0 299 02); I≠= 65% 8 49 3	22 148 27 106 3 1174 16 154 26	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6%	6.00 (0 47, 76,71) 6.23 (2.70, 14,40) 6.86 (165, 28,56) 6.99 [2.88, 16,90] 21.00 (0.90,489,76] 2.69 [2.07, 3,49] 0.26 (0.08, 0.90] 1.54 (0.90, 2.63) 2.19 (0.30, 15,85] 2.56 (0.55, 11,85]	• •
suchiya et al. 2009 /u et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 uutotat (95% CI) otal events leterogeneity: Chi ^{ae} = 4 est for overall effect Z .1.6 CD90 u et al. 2011 iu et al. 2013 iimaz et al. 2014 heng et al. 2012	71 2 34 12 19 13 256 0.39, df = 14 (= 7.47 (P < 0. 9 38 2 10	9 42 26 30 17 619 (P = 0.00 .00001) (P = 0.00 .00001) 43 91 9 23	1 60 3 21 0 299 02); *= 65% 8 49 3 3	22 148 27 106 3 1174 16 154 26 13	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6% 1.0%	6.00 (0 47, 76,71) 6.23 (2,70, 14,40) 6.86 (165,28,56) 6.99 (2,89, 16,90) 21.00 (0,90, 489,76) 2.69 (2,07, 3,49) 0.26 (0,08, 0,90) 1.54 (0,90, 2,63) 2.19 (0,30, 15,85) 2.56 (0,55, 11,85) 3.47 (0,96, 12,54)	
suchiya et al. 2009 (u et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 ulutotati (95% CI) otal events eterogeneily: Chi≆ = 4 est for overall effect. Z 1.6 CD90 u et al. 2013 limaz et al. 2014 heng et al. 2012 heng et al. 2014	71 2 34 12 19 13 256 0.39, df = 14 (= 7.47 (P < 0. 9 38 2 10 26 24	9 42 26 30 17 619 P = 0.00 .00001) 43 91 9 23 36 33	1 60 3 21 0 299 02); ⊫ 65% 8 49 3 3 6 6	22 148 27 106 3 1174 166 154 26 13 14 17	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6% 1.0%	6 00 [0 47, 76.71] 6.23 [2.70, 14.40] 6.86 [165, 28.56] 6.99 [2.88, 16.90] 21.00 [0.90, 489.76] 2.69 [2.07, 3.49] 0.26 [0.08, 0.90] 1.54 [0.90, 2.63] 2.19 [0.30, 15.85] 2.56 [0.55, 11.85] 3.47 [0.96, 12.54]	
suchiya et al. 2009 (u et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 ubtotal (95% CI) otal events eterogeneity. Chi ^a = 4 est for overall effect Z 1.6 CD90 u et al. 2011 iu et al. 2011 iu et al. 2012 heng et al. 2012 uo et al. 2014 heng et al. 2012 uo et al. 2014	71 2 34 12 19 13 256 0.39, df = 14 (= 7.47 (P < 0. 9 38 2 10 26	9 42 26 30 17 619 (P = 0.00 .00001) (P = 0.00 .00001) 43 91 9 23 36	1 50 3 21 0 299 02); I*= 65% 8 49 3 3 6	22 148 27 106 3 1174 16 154 26 134 14 17 2	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6% 1.0% 1.0% 1.0% 0.1%	6.00 (0 47, 76,71) 6.23 (2,70, 14,40) 6.86 (1.65, 28,56) 6.99 [2,88, 16,90] 21.00 (0,90,489,76) 2.69 [2,07, 3,49] 0.26 (0.08, 0.90) 1.54 (0,90, 2.63) 2.19 [0,30, 15,85] 2.56 (0.55, 11,85) 3.47 (0,96, 12,54) 3.47 (0,96, 12,54) 12.27 (0,50, 299,32)	
suchiya et al. 2009 hu et al. 2013 ong et al. 2008 asaki et al. 2010 ue tal. 2011 ubtotal (95% Cl) otal events leterogeneity. Chi ² = 4 est for overall effect. Z 1.6 CD90 ue tal. 2011 ue tal. 2013 ilmaz et al. 2014 heng et al. 2012 uo et al. 2014 ue tal. 2014 ue tal. 2011 ubtotal (95% Cl)	71 2 34 12 19 13 256 0.39, df = 14 (= 7.47 (P < 0. 9 38 2 10 26 24	9 42 26 30 17 619 P = 0.00 00001) P = 0.00 00001) 43 91 9 23 36 33 33 18	1 60 3 21 0 299 02); ⊫ 65% 8 49 3 3 6 6	22 148 27 106 3 1174 166 154 26 13 14 17	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6% 1.0%	6 00 [0 47, 76.71] 6.23 [2.70, 14.40] 6.86 [165, 28.56] 6.99 [2.88, 16.90] 21.00 [0.90, 489.76] 2.69 [2.07, 3.49] 0.26 [0.08, 0.90] 1.54 [0.90, 2.63] 2.19 [0.30, 15.85] 2.56 [0.55, 11.85] 3.47 [0.96, 12.54]	
suchiya et al. 2009 fu et al. 2013 ong et al. 2008 asaki et al. 2010 u et al. 2011 ubtotal (95% CI) otal events leterogeneity. Chi ^{ae} = 4 est for overall effect Z 1.6 CD90 u et al. 2011 iu et al. 2011 iu et al. 2011 heng et al. 2012 heng et al. 2012 uo et al. 2014 uo et al. 2014 uo et al. 2014 uo et al. 2014 uo et al. 2011 ubtotal (95% CI) otal events leterogeneity. Chi ^{ae} = 1	71 2 34 12 19 35 0.39, df = 14 (= 7, 47 (P < 0. 9 38 2 10 0 26 24 13 122 4,70, df = 6 (P	9 42 26 30 17 619 P = 0.00 00001) P = 0.00 30 31 36 33 18 253 253 253	1 3 21 0 299 02); ₱=65% 8 49 3 3 6 6 0 75	22 148 27 106 3 1174 16 154 26 134 14 17 2	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6% 1.0% 1.0% 1.0% 0.1%	6.00 (0 47, 76,71) 6.23 (2,70, 14,40) 6.86 (1.65, 28,56) 6.99 [2,88, 16,90] 21.00 (0,90,489,76) 2.69 [2,07, 3,49] 0.26 (0.08, 0.90) 1.54 (0,90, 2.63) 2.19 [0,30, 15,85] 2.56 (0.55, 11,85) 3.47 (0,96, 12,54) 3.47 (0,96, 12,54) 12.27 (0,50, 299,32)	
suchiya et al. 2009 $v_{\rm u}$ et al. 2013 cong et al. 2008 asaski et al. 2010 u et al. 2011 ulutotal (95% CI) otal events leterogeneity: Chi ²² = 4 est for overall effect Z 1.6 CD90 u et al. 2011 u et al. 2014 heng et al. 2012 theng et al. 2014 u et al	71 2 34 12 19 35 0.39, df = 14 (= 7, 47 (P < 0. 9 38 2 10 0 26 24 13 122 4,70, df = 6 (P	9 42 26 30 17 619 (P = 0.00 00001) 43 9 23 36 33 33 18 253 (C = 0.02); 009)	1 3 21 0 299 02); ₱=65% 8 49 3 3 6 6 0 75	22 148 27 106 3 1174 16 154 26 13 14 13 14 17 2 242	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6% 1.0% 1.0% 0.1% 1.7%	6.00 [0 47, 76,71] 6.23 [2,70, 14,40] 6.86 [165,28,56] 6.99 [2,88,16,90] 21.00 [0,90, 489,76] 2.69 [2,07, 3,49] 0.26 [0.08, 0,90] 1.54 [0,90, 2,63] 2.19 [0,30, 15,85] 2.56 [0,55, 11,85] 3.47 [0,96, 12,54] 4.89 [1,30, 17, 16] 12.27 [0,50, 299,32] 1.69 [1,14, 2,49]	
Suchiya et al. 2009 Vu et al. 2013 Cong et al. 2008 Lasaki et al. 2010 U et al. 2011 Vu total (95% CI) Total events Heterogeneity. Chi ²⁸ = 4 est for overall effect Z .1.6 CD90 U et al. 2011 Ju et al. 2011 Ju et al. 2011 Ju et al. 2012 Cheng et al. 2012 Cheng et al. 2012 Cheng et al. 2012 Cheng et al. 2014 Vu et al. 2011 U et al. 2011 U et al. 2011 U et al. 2011 U et al. 2011 Vu et al. 2011 Sub et al. 2012 Cheng et al. 2012 Sub et al. 2014 Vu et al. 2011 Sub et al. 2014 Vu	71 2 34 12 19 33 256 0.39, df = 14 (= 7.47 (P < 0. 26 24 10 26 24 13 122 4.70, df = 6 (P = 0.	9 42 26 30 17 619 P = 0.00 00001) P = 0.00 30 31 36 33 18 253 253 253	1 60 3 21 0 299 9 299 9 299 9 299 9 3 3 6 0 75 P=55%	22 148 27 106 3 1174 16 154 26 13 14 13 14 17 2 242	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6% 1.0% 1.0% 1.0% 0.1%	6.00 (0 47, 76,71) 6.23 (2,70, 14,40) 6.86 (1.65, 28,56) 6.99 [2,88, 16,90] 21.00 (0,90,489,76) 2.69 [2,07, 3,49] 0.26 (0.08, 0.90) 1.54 (0,90, 2.63) 2.19 [0,30, 15,85] 2.56 (0.55, 11,85) 3.47 (0,96, 12,54) 3.47 (0,96, 12,54) 12.27 (0,50, 299,32)	
Suchiya et al. 2009 Vu et al. 2013 Song et al. 2008 Sasaki et al. 2010 Vu et al. 2011 Vu et al. 2011 Vu et al. 2011 Vu et al. 2011 Vu et al. 2014 Vu et al. 2014 Vu et al. 2013 Vimaz et al. 2014 Vu et al. 2011 Vu et al. 2011 Vu et al. 2011 Vu et al. 2014 Vu et al. 2011 Vu et al. 2014 Vu et al. 2014	71 2 34 12 19 13 256 0.39, df = 14 (= 7.47 (P < 0. 26 24 13 122 4.70, df = 6 (P = 2.63 (P = 0. 736	9 42 26 30 17 619 (P = 0.00 00001) 43 9 23 36 33 33 38 253 * = 0.02); 009) 1837	1 60 299 02); IF = 65% 8 49 3 3 6 6 0 75 IF = 59% 633	22 148 27 106 3 1174 16 154 26 13 14 13 14 17 2 242	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6% 1.0% 1.0% 0.1% 1.7%	6.00 [0 47, 76,71] 6.23 [2,70, 14,40] 6.86 [165,28,56] 6.99 [2,88,16,90] 21.00 [0,90, 489,76] 2.69 [2,07, 3,49] 0.26 [0.08, 0,90] 1.54 [0,90, 2,63] 2.19 [0,30, 15,85] 2.56 [0,55, 11,85] 3.47 [0,96, 12,54] 4.89 [1,30, 17, 16] 12.27 [0,50, 299,32] 1.69 [1,14, 2,49]	
suchiya et al. 2009 $v_{\rm U}$ et al. 2013 cong et al. 2008 iasaki et al. 2010 u et al. 2011 ubtotat (95% CI) obal events leterogeneity. Chi ²⁸ = 4 est for overall effect Z illimaz et al. 2011 iu et al. 2011 iu et al. 2011 iu et al. 2012 cheng et al. 2012 iu et al. 2014 heng et al. 2012 iu et al. 2014 ubtotat (95% CI) otal events leterogeneity. Chi ²⁸ = 1 est for overall effect Z otal (95% CI)	71 2 34 19 13 256 0.39, df = 14 (= 7.47 (P < 0. 9 38 2 2 4 10 26 24 13 3 122 4.70, df = 6 (P = 0. 736 2.49, df = 40 (9 42 26 30 17 619 P = 0.00 00001) 43 91 33 36 33 36 33 36 33 36 253 32 8 253 31 8 253 32 8 7 9 9 9 27 8 9 9 1 9 9 28 9 9 1 9 9 1 9 9 1 9 1 9 1 9 1 9 1 9 1	1 60 3 21 0 299 02); P=65% 6 49 3 3 6 6 0 75 P=59% 633 001); P=57%	22 148 27 106 3 1174 16 154 26 13 14 13 14 17 2 242	0.2% 2.3% 0.7% 1.6% 0.1% 32.6% 4.3% 9.8% 0.6% 1.0% 1.0% 0.1% 1.7%	6.00 [0 47, 76,71] 6.23 [2,70, 14,40] 6.86 [165,28,56] 6.99 [2,88,16,90] 21.00 [0,90, 489,76] 2.69 [2,07, 3,49] 0.26 [0.08, 0,90] 1.54 [0,90, 2,63] 2.19 [0,30, 15,85] 2.56 [0,55, 11,85] 3.47 [0,96, 12,54] 4.89 [1,30, 17, 16] 12.27 [0,50, 299,32] 1.69 [1,14, 2,49]	

FIGURE 2. Plot illustrates findings from meta-analysis of associations between the positive expression of cancer stem cell markers (CD133, CD90, CD44, and EpCAM) and differentiation of hepatocellular carcinoma (HCC). Squares represent study-specific estimates (size of the square reflects the study-specific statistical weight); horizontal lines represent 95% confidence intervals (CIs); diamonds represent pooled estimates with corresponding 95% CIs. All statistical tests were 2-sided.

frequencies of CSC markers in data extracted from included studies. CD90 had a higher sensitivity of 48.22% (95% CI = 39.3-57.1) but a lower specificity 69.0% (95% CI = 62.0-76.0), whereas CD133 had a sensitivity of 41.4% (95% CI = 35.4-47.4) and specificity of 75.4% (95% CI = 71.7-77.3). CD133/CD44 and EpCAM had high specificities of 85.8% (95% CI = 81.0-90.6) and 85.2% (95% CI = 82.1-88.3), respectively, but low sensitivities of

35.98% (95% CI = 23.8-48.2) and 33.71% (95% CI = 25.2-42.2), respectively, as shown in Table 3.

Association of CSC Markers With Other Clinicopathological Parameters

Finally, the association of CSC markers with other clinicopathological parameters was assessed. We observed a

	Tumor tis		Adjacent tumor t			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.2.1 EpCAM							
Guo et al. 2014	21	50	0	10	4.4%	15.31 [0.85, 275.65]	
Pan et al. 2012	49	70	21	70	6.2%	5.44 [2.64, 11.22]	
Subtotal (95% CI)		120		80	10.6%	5.79 [2.87, 11.67]	
Total events	70		21				
Heterogeneity: Tau ² =	= 0.00: Chi ² :	= 0.49.0	f=1 (P=0.48); P=	= 0%			
Test for overall effect				22465			
1.2.2 CD44							
Gao et al. 2008	23	40	0	10	4.4%	28.20 [1.55, 514.44]	
Guan et al. 2002	18	67	0	47	4.5%	35.51 [2.08, 605.93]	· · · · · · · · · · · · · · · · · · ·
Guo et al. 2000	19	49	0	13	4.4%	17.26 [0.97, 307.30]	
Lingala et al. 2010	15	23	7	7	4.3%	0.12 [0.01, 2.40]	
Liu et al, 2009	27	39	0	10	4.4%	46.20 [2.50, 852.12]	
Zhang et al. 2002	23	51	7	46	6.1%	4.58 [1.73, 12.14]	
Zheng et al. 2007	45	87	4	20	6.0%	4.29 [1.33, 13.86]	
Subtotal (95% CI)	1.1.1.1	356		153	34.1%	6.78 [2.25, 20.49]	
Total events	170		18				
Heterogeneity: Tau ² =	the second second second second	= 1219	and the second	= 51%			
Test for overall effect							
1.2.3 CD133							
Guo et al. 2014	42	50	0	10	4.4%	105.00 [5.60, 1968.48]	
Lingala et al. 2010	10	25	5	7	5.4%	0.27 [0.04, 1.65]	
Liu et al, 2013	45	245	56	82	6.3%	0.10 [0.06, 0.18]	
Pan et al. 2012	49	70	0	70	4.5%		
Yilmaz et al. 2014	24	35	32	63	6.2%	2.11 [0.89, 5.03]	
Zeng et al. 2012	44	109	0	41	4.5%	56.39 [3.38, 940.69]	
Subtotal (95% CI)		534	•	273		5.55 [0.39, 79.57]	
Total events	214	004	93	210	O IL IV	0.00 [0.00, 10.01]	
Heterogeneity: Tau ² =	and the second se	- 112 00	and the second	011-12-00	205		
Test for overall effect			s, al = 5 (F < 0.000	01), 1 = 30	5.70		
1.2.4 CD90							
Guo et al. 2014	32	50	0	10	4.4%	36.89 [2.04, 666.40]	
Liu et al, 2013	91	245	0	82	4.5%	97.72 [5.99, 1594.44]	
Lu et al. 2011	43	59	19	59	6.2%	5.66 [2.56, 12.49]	
Yilmaz et al. 2014	9	35	0	63	4.4%	45.53 [2.56, 810.82]	
Zheng et al. 2012	23	36	Ő	20	4.4%	71.37 [3.99, 1276.70]	
Subtotal (95% CI)	20	425		234	24.0%	28.17 [5.20, 152.59]	
Total events	198		19				
Heterogeneity: Tau ² =		= 11.05	second statements in the second statements and	= 64%			
Test for overall effect							
Total (95% CI)		1435		740	100.0%	9.26 [3.10, 27.65]	-
Total events	652		151		S. Martin		
Heterogeneity: Tau ² =	a commence of the second second	= 204 40	and the second se	001): 12 = 9	91 %		
Test for overall effect							0.001 0.1 1 10 100
			2. df = 3 (P = 0.40).	12-0%			non-cancerous liver tissues HCC tissues

FIGURE 3. Plot illustrates findings from meta-analysis of the association between the positive expression of cancer stem cell markers (CD133, CD90, CD44, and EpCAM) and hepatocellular carcinoma (HCC) compared with noncancerous liver tissues.

statistically significant association of CSC markers with advanced tumor stage (pooled OR = 2.31, 95% CI = 1.39-3.84, P < 0.00001, random effect) (Figure S1), positive tumor capsule (pooled OR = 0.48, 95% CI = 0.24-0.91, P = 0.04, random effect) (Figure S2), microvascular invasion (pooled OR = 2.74, 95% CI = 1.83 - 4.10, P < 0.00001, fixed effect) (Figure S3), positive hepatitis B virus (HBV) infection (pooled OR = 1.31,95% CI = 1.04–1.65, P = 0.02, fixed effect) (Figure S4), higher level of AFP (pooled OR = 1.63, 95% CI = 1.36-1.95, P < 0.00001, fixed effect) (Figure S5), and the presence of PVTT (pooled OR = 1.72, 95% CI = 1.02-2.90, P < 0.00001, random effect) (Figure S6). However, no correlations existed between the expression of CSC markers and cirrhosis (pooled OR = 1.31, 95% CI = 0.84 - 2.03, P = 0.23, random effect), positive hepatitis C virus (HCV) infection (pooled OR = 0.69, 95% CI = 0.44–1.08, P = 0.1, fixed effect), bigger tumor size (pooled OR = 1.10, 95% CI = 0.78 - 1.56, P = 0.59, random effect), positive metastasis (pooled OR = 3.07, 95% CI = 0.89-10.63, P = 0.08, random effect), or poor Child-pugh stage (pooled OR = 0.89, 95% CI = 0.55-1.44, P = 0.65, fixed effect) (data not shown).

Publication Bias and Sensitivity Analysis

The studies on HCC differentiation showed no publication bias as analyzed by Egger's test (t value = -0.89, 95% CI = -22.0 to 8.64, P = 0.38). The funnel plot also showed no publication bias (Figure 4). We conducted a sensitivity analysis to determine the influence of individual studies on the summary effect. The meta-analysis was not dominated by any single study, and exclusion of any study at a time made no difference (data not shown).

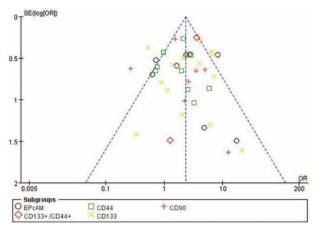
DISCUSSION

CSCs can be distinguished by their properties of selfrenewal and differentiation and subsequently generate cancer

CSC Marker	HCC Tissues, N	Noncancerous Liver Tissues, N	Sensitivity, % (95% CI)	Specificity, % (95% CI
CD133			40.0 (33.4-46.6)	65.9 (59.0-72.8)
Positive	214	93		
Negative	320	180		
CD90			46.6 (39.6-53.6)	91.9 (88.3-95.5)
Positive	198	19		
Negative	227	215		
CD44			47.8 (40.3-55.3)	88.2 (82.8-93.6)
Positive	170	18		
Negative	186	135		
EpCAM			58.3 (46.7-69.9)	73.8 (62.5-85.0)
Positive	70	21		× ,
Negative	50	59		

TABLE 2. Ser	nsitivity and	Specificity	of CSC N	Aarkers in	HCC Tissues
--------------	---------------	-------------	----------	------------	--------------------

cells with heterogeneity.³⁷ We have systematically evaluated the association between the expression of CSC markers and HCC differentiation. In the current meta-analysis, a total of 27 studies, consisting of 2897 patients with HCC, were included. The pooled results of the meta-analysis suggest that the positive expression of CSC markers was significantly correlated with poorly differentiated HCC. Subsequent subgroup analysis also confirmed that the expression of each of the CSC markers (CD133, CD90, CD44, and EpCAM) was markedly associated with poor differentiation of HCC. These results suggest a diagnostic or predictive value of CSC markers for patients with poorly differentiated HCC.


Typically, an ideal biomarker for diagnosis should have tumor-specific expression. Therefore, to investigate the sensitivity and specificity of CSC markers in HCC tissues, we first compared the frequencies of CSC marker expression between HCC and noncancerous liver tissues. We observed that the positive expression of CSC markers was significantly associated with only HCC tissues. Furthermore, CD90 had the highest specificity of 91.9% among all the analyzed CSC markers, suggesting that it might be a specific marker for HCC in. Based on these data, we conclude that the positive expression of CSC markers, especially CD90, may play a key role in hepatocarcinogenesis.

Recent studies have suggested induction of targeted differentiation of CSC cells.³⁸ Induction of differentiation in hepatic CSCs abrogates their capacity for self-renewal. In recent years, several clinical investigators have attempted to explore the role of CSC markers in the treatment of solid cancers. CD133, CD90, CD44, and EpCAM are established stem cell markers in HCC. CD133 was the first target indicated for differentiation therapy. Hepatocyte nuclear factor- 4α has been shown to suppress tumorigenesis and metastasis by inducing HCC differentiation to hepatocytes via decreasing "stemness" of gene expression and reducing CD90 and CD133 positive cell populations.³⁹ NSC74859 is a specific inhibitor of STAT3 (signal transducer and activator of transcription 3) activation and suppresses carcinogeneis by reducing CD133 positive HCC cells.⁴⁰ Oncostatin M (OSM) effectively induces differentiation and active cell division of dormant EpCAM positive hepatic CSC cells.⁴¹ Arsenic trioxide also induced cell differentiation, and thereby increased the sensitivity of hepatic CSCs to

TABLE 3. Sensitivity and Specificity of Single and Combined Detection of CSC Markers in Poorly Differentiated HCC

CSC Marker	Poor Differentiation, N	Nonpoor Differentiation, N	Sensitivity, % (95% CI)	Specificity, % (95% CI
CD133			41.4 (35.4–47.4)	74.5 (71.7-77.3)
Positive	256	299		
Negative	363	875		
CD90			48.2 (39.3-57.1)	69.0 (62.0-76.0)
Positive	122	75		
Negative	131	167		
CD44			37.4 (30.1-44.7)	67.0 (60.9-73.1)
Positive	170	115		
Negative	284	234		
EpCAM			33.7 (25.2-42.2)	85.2 (82.1-88.3)
Positive	119	99		
Negative	234	570		
CD133/CD44			36.0 (23.8-48.2)	85.8 (81.0-90.6)
Positive	59	33	× /	× /
Negative	105	200		

CI = confidence interval; CSC = cancer stem cell; EpCAM = epithelial cell adhesion molecule; HCC = hepatocellular carcinoma

FIGURE 4. Funnel plot of the logarithm of the odds ratio (OR) for differentiation of hepatocellular carcinoma. The dashed line represents 95% Cl. Cl = confidence interval; SE, standard error.

conventional chemotherapy in HCC.⁴² However, it was unclear which CSC markers were more sensitive in poorly differentiated HCC and more effective for differentiation inducing therapy. Therefore, we first elucidated the frequencies of CSC markers expressed in poorly and well-differentiated HCC tissues. The results showed that the sensitivities of CSC markers were <50% in poorly differentiated HCC tissues due to a limited number of CSC cells. However, we still believe that they have a clinical value based on their pivotal role in differentiation and progression of tumors. CD90 had the highest sensitivity of 48.22%, indicating that it might be a better candidate than other CSC markers in predicting poorly differentiated patients with HCC and for differentiation therapy.

It is well known that differentiation of HCC cells determines the pathophysiology of tumors. Based on the CSC dogma, cancer cell is differentiated from CSC and obtains the aggressive phenotype, which subsequently drives the progression and metastasis of tumor. The results of the metaanalysis suggest that CSC markers in HCC are positively associated with aggressive phenotypes, such as advanced tumor stage, positive tumor capsule, microvascular invasion, HBV infection, higher level of AFP, the presence of metastasis, and PVTT. Previous studies supported the notion that the presence of CSCs was associated with poor overall survival and diseasefree survival.⁴³ Recently, Zhang et al indicated that CD133 overexpression is associated with poorer survival outcome in 2592 HCC patients.⁴⁴ Therefore, we speculate that positive expression of CSC markers might predict poor differentiation, aggressive phenotype and worse outcomes in patients with HCC. It is possible to distinguish and target the CSC markers in HCC to reverse the progression of disease. More evidence indicated targeted CSCs would be a promising method in cancer treatment.⁴⁵ Our results suggested that CD90 might be the more specific marker for HCC tissues and more sensitive in predicting poor differentiation in HCC, indicating that CD90 is a promising target for patient with HCC classification and differentiation therapy.

This study has several potential limitations. First, coexpression of a few CSC markers that associate significantly with HCC differentiation was not included since fewer patients manifested them. Second, only 4 CSC markers were included in this analysis as there were fewer patients available with other CSC markers. Third, noncancerous liver tissues were not further categorized into adjacent tumor tissues and normal liver tissues due to fewer numbers of studies involving normal liver tissues. Fourth, most studies included in this meta-analysis were conducted in Eastern Asia, where HCC is widely induced by HBV and HCV. Thus, our findings cannot be generalized across all populations of HCC because it can also be induced by alcohol, diabetes, and other factors. Fifth, our search strategy was restricted to articles only published in English or Chinese languages. Articles with potentially high-quality data published in other languages were not included due to anticipated difficulties in obtaining accurate medical translation.

In conclusion, we found that the positive expression of CSC markers is associated with poor differentiation of patients with HCC. CD90 might be a promising target for patient classification and differentiation therapy because of its specificity to HCC tissues and higher sensitivity in predicting poorly differentiated patient with HCC. In the future, similar to breast and lung cancer, the diagnosis and management of patients with HCC based on conventional differentiation criteria might be further classified into 2 subtypes based on the expression of CSC markers.

ACKNOWLEDGMENTS

We thank Medjaden Bioscience Limited (Hong Kong, China) for providing professional copy editing services.

REFERENCES

- Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA. 2011;61:69–90.
- Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. *Protein Cell*. 2014;5:673–691.
- Altekruse SF, Henley SJ, Cucinelli JE, et al. Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. *Am J Gastroenterol.* 2014;109:542–553.
- Wittekind C. Pitfalls in the classification of liver tumors. *Der Pathol.* 2006;27:289–293.
- Oostra DR, Macrae ER. Role of trastuzumab emtansine in the treatment of HER2-positive breast cancer. *Breast Cancer*. 2014;6:103–113.
- Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EUR-TAC): a multicentre, open-label, randomised phase 3 trial. *Lancet Oncol.* 2012;13:239–246.
- Majumdar A, Curley SA, Wu X, et al. Hepatic stem cells and transforming growth factor beta in hepatocellular carcinoma. *Nat Rev Gastroenterol Hepatol.* 2012;9:530–538.
- Mishra L, Banker T, Murray J, et al. Liver stem cells and hepatocellular carcinoma. *Hepatology*. 2009;49:318–329.
- Feng D, Wang N, Hu J, et al. Surface markers of hepatocellular cancer stem cells and their clinical potential. *Neoplasma*. 2014;61:505–513.
- Chan AW, Tong JH, Chan SL, et al. Expression of stemness markers (CD133 and EpCAM) in prognostication of hepatocellular carcinoma. *Histopathology*. 2014;64:935–950.
- Chen ZL, Jiang P, Zhang X, et al. CD44, CD133 and TF correlate with formation of portal vein tumor thrombus and poor prognosis in patients with hepatocellular carcinoma. *J Third Mil Med Univ.* 2014;36:1068–1073.

- Cheng BQ, Jiang Y, Li DL, et al. Up-regulation of Thy-1 promotes invasion and metastasis of hepatocarcinomas. *Asian Pac J Cancer Prev.* 2012;13:1349–1353.
- Gao AS, Li JG. The expression and significance of CD44v6, MMP and VEGF in hepatocellular carcinoma. *Shandong Med J.* 2008;48:30–31.
- Govaere O, Komuta M, Berkers J, et al. Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. *Gut.* 2014;63:674–685.
- Guan XQ, Xu M, Li YY, et al. The observation of CD44 OR differentiation and vascular invasion in hepatocellular carcinoma. J Chongging Med Univ. 2002;27:3.
- Guo LL, Guo Y, Cao CA. The expression and significance of CD54, CD44 and E-cadherin in hepatocellular carcinoma. *Chin J Gen Surg.* 2000;9:3.
- Guo Z, Li LQ, Jiang JH, et al. Cancer stem cell markers correlate with early recurrence and survival in hepatocellular carcinoma. *World J Gastroenterol.* 2014;20:2098–2106.
- Lingala S, Cui YY, Chen X, et al. Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma. *Exp Mol Pathol.* 2010;89:27–35.
- Liu W, Wang ZY, Bai XY, et al. Expression and clinical significance of FN and CD44v6 in hepatocellular carcinoma. *Chin J Clin Oncol.* 2009;36:3.
- Liu LL, Liu W, Li YJ. Expressions of CD133 and CD90 in hepatocellular carcinoma tissue and their clinical significance. Acad Med Qingdao Univ. 2013;49:4.
- Lu JW, Chang JG, Yeh KT, et al. Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis. *Acta Histochem.* 2011;113:833–838.
- Pan QX, Su ZJ, Wang CR, et al. Expressions of tumor stem cell markers EpCAM and CD133 in human primary hepatocellular carcinoma and their value in prognostic prediction. *Tumor*. 2012;32:5.
- Salnikov AV, Kusumawidjaja G, Rausch V, et al. Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter. *Cancer Lett.* 2009;275:185–193.
- Sasaki A, Kamiyama T, Yokoo H, et al. Cytoplasmic expression of CD133 is an important risk factor for overall survival in hepatocellular carcinoma. *Oncol Rep.* 2010;24:537–546.
- Song W, Li H, Tao K, et al. Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. *Int J Clin Pract.* 2008;62:1212–1218.
- Tsuchiya A, Kamimura H, Takamura M, et al. Clinicopathological analysis of CD133 and NCAM human hepatic stem/progenitor cells in damaged livers and hepatocellular carcinomas. *Hepatol Res.* 2009;39:1080–1090.
- Wu LM, Chen XX, Cheng CT, et al. Expression of CD133 and VEGF in hepatocellular carcinoma and its prognostic value. *Chin J Liver Dis.* 2013;5:5.
- Xu M, Qian G, Xie F, et al. Expression of epithelial cell adhesion molecule associated with elevated ductular reactions in hepatocellar carcinoma. *Clin Res Hepatol Gastroenterol.* 2014;38:699–705.

- Yamashita T, Forgues M, Wang W, et al. EpCAM and alphafetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. *Cancer Res.* 2008;68:1451–1461.
- Yeh CT, Kuo CJ, Lai MW, et al. CD133-positive hepatocellular carcinoma in an area endemic for hepatitis B virus infection. *BMC Cancer*. 2009;9:324.
- 31. Yilmaz G, Akyol G, Cakir A, et al. Investigation of diagnostic utility and expression profiles of stem cell markers (CD133 and CD90) in hepatocellular carcinoma, small cell dysplasia, and cirrhosis. *Pathol Res Pract.* 2014;210:419–425.
- Yu XH, Xu LB, Liu C, et al. Clinicopathological characteristics of 20 cases of hepatocellular carcinoma with bile duct tumor thrombi. *Dig Dis Sci.* 2011;56:252–259.
- 33. Zeng XC, Zhang T, Fu BS, et al. Expression of CD133 as a tumor stem cell marker in hepatocellular carcinoma and its significance in the prognosis of liver transplantation patients. *Chin J Hepat Surg.* 2012;1:5.
- Zhang QG, Li YP. Detection of CD44v6 and its clinical significance in hepatocellular carcinoma. *Chin J Clin Oncol Rehabil.* 2002;3:2.
- 35. Zheng WH, Yang WB, Fu CB, et al. Expression of KAI1 protein and its relationship with CD44v6 in HCC and prognosis study. *China J Mod Med.* 2007;20:4.
- 36. Zheng SW, Zhao HW, Wang W, et al. The expression and clinical significance of CD90, IGF1R, and hTERT protein in hepatocellular carcinoma. *Chin J Bases Clin Gen Surg.* 2012;19:6.
- Zeuner A, Todaro M, Stassi G, et al. Colorectal cancer stem cells: from the crypt to the clinic. *Cell Stem Cell*. 2014;15:692–705.
- Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells what challenges do they pose? *Nat Rev Drug Discov.* 2014;13:497– 512.
- Yin C, Lin Y, Zhang X, et al. Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4alpha gene. *Hepatology*. 2008;48:1528–1539.
- Lin L, Amin R, Gallicano GI, et al. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling. *Oncogene*. 2009;28:961–972.
- Yamashita T, Honda M, Nio K, et al. Oncostatin M renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-fluorouracil by inducing hepatocytic differentiation. *Cancer Res.* 2010;70:4687–4697.
- 42. Zhang KZ, Zhang QB, Zhang QB, et al. Arsenic trioxide induces differentiation of CD133+ hepatocellular carcinoma cells and prolongs posthepatectomy survival by targeting GL11 expression in a mouse model. *J Hematol Oncol.* 2014;7:28.
- Ma YC, Yang JY, Yan LN. Relevant markers of cancer stem cells indicate a poor prognosis in hepatocellular carcinoma patients: a meta-analysis. *Eur J Gastroenterol Hepatol.* 2013;25:1007–1016.
- 44. Zhong C, Wu JD, Fang MM, et al. Clinicopathological significance and prognostic value of the expression of the cancer stem cell marker CD133 in hepatocellular carcinoma: a meta-analysis. *Tumour Biol.* 2015 [Epub ahead of print].
- 45. Takebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. *Nat Rev Clin Oncol.* 2015 [Epub ahead of print].