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Abstract: Financial bubbles are a result of aggregate irrational behavior and cannot be explained
by standard economic pricing theory. Research in neuroeconomics can improve our understanding
of their causes. We conducted an experiment in which 28 healthy subjects traded in a simulated
market bubble, while scalp EEG was recorded using a low-cost, BCI-friendly desktop device with
14 electrodes. Independent component (IC) analysis was performed to decompose brain signals and
the obtained scalp topography was used to cluster the ICs. We computed single-trial time-frequency
power relative to the onset of stock price display and estimated the correlation between EEG power
and stock price across trials using a general linear model. We found that delta band (1–4 Hz) EEG
power within the left frontal region negatively correlated with the trial-by-trial stock prices including
the financial bubble. We interpreted the result as stimulus-preceding negativity (SPN) occurring
as a dis-inhibition of the resting state network. We conclude that the combination between the
desktop-BCI-friendly EEG, the simulated financial bubble and advanced signal processing and
statistical approaches could successfully identify the neural correlate of the financial bubble. We add
to the neuroeconomics literature a complementary EEG neurometric as a bubble predictor, which can
further be explored in future decision-making experiments.

Keywords: neuroeconomics; financial bubble; financial decision-making; EEG; stimulus preceding
negativity; default mode network

1. Introduction

Crashes of financial bubbles have had severe negative impacts on society. Bubbles
are deviations from the market equilibrium for which standard asset pricing theory does
not apply, and they form when prices are significantly increased above a fundamental
intrinsic value [1,2]. Their causes could be attributed to over-inflated expectations of
market participants towards future prices, which in turn are a consequence of cognitive
biases such as aggregate overconfidence [1] or herding behavior [3]. These psychological
factors, what Keynes deemed as “animal spirits”, drive deviations from market equilibrium,
warranting supplementary methods from the field of experimental cognitive neuroscience
to understand bubble dynamics in addition to the traditional econometric approaches
using historical data [4]. Fortunately, there is a surge of interest in the brain–computer
interface (BCI) using low-cost, low-density, desk-top or even wearable EEG devices rather
than expensive and immobile neuroimaging machines with superconductive or radioactive
elements. As most stock trades occur in front of computer monitors today, the distance
between non-invasive cognitive neuroscience and stock trading has never been closer. The
use of low-cost desktop/wearable EEG-based BCI devices may become a standard practice
in the near future for stock trading to support the user’s decisions or to calibrate behavior
and provide real time neurofeedback in this sense [5].

The primary limitation of low-cost, low-density EEG systems is given by the small
number of scalp electrodes. The solution is discussed in the reference paper of the keyhole
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hypothesis [6]. The name is taken from the analogy that seeing inside a room from a
keyhole only provides narrow field of view, but if the observer knows the room well
(e.g., his/her own room), one can still understand the ongoing situation in the room.
Similarly, a measurement from low-dimensional EEG provides a narrow field of view, but
we can still obtain valuable insights if it is evaluated based on the prior knowledge of
the observed phenomenon. Fortunately, there are neuroeconomic studies which applied
neuroscientific research methods to economics to understand the cognitive processes
underlying financial decision making [7,8]. Financial decision-making tasks during bubbles
mainly recruit the frontal cortex, and the list of repeatedly reported frontal regions include
the medial prefrontal cortex (PFC) [9–12], lateral PFC [13–15], and the orbitofrontal cortex
(OFC) [16,17]. Particularly, the lateral frontal cortex is responsible for value-based choice,
ranging from consumption-based decisions [18,19], intertemporal choice [20] to deductive
reasoning [21]. Furthermore, in terms of risk-taking, several studies used the popular
Iowa Gambling Task [22] in understanding brain dynamics, which have isolated FRN and
P300 components in the centro-frontal region [23,24]. These studies provide useful prior
information that the frontal lobe is the key region in financial decision making. Moreover,
the theory of the generative mechanism of the scalp-recorded EEG predicts that a dominant
EEG contributor is likely to be found on the surface of the neocortex, i.e., a continuum of
crowns of the neocortical gyri [25]. Taken together, we predict that the lateral regions of the
frontal cortex make preferable targets for the current scalp EEG measurement. However, as
far as we know, trial-by-trial EEG analysis on financial bubbles using realistic inexpensive
BCI-friendly desk-top environments has not been reported in the literature.

To demonstrate a proof of concept, we designed an EEG study on a financial decision-
making task in a financial bubble market using an inexpensive BCI-friendly desk-top
environment, with an Emotiv EPOC headset. Details on EGG-based BCI data acquisition
and analysis using this headset are detailed by Paszkiel and Szpulak [26]. We developed
an unconventional EEG analysis approach using mass-univariate linear modeling [27]
on independent component analysis (ICA)-decomposed EEG power changes in the time-
frequency domain [28–30] to examine trial-by-trial changes toward the financial bubble. We
set our region of interest (ROI) in the lateral frontal regions based on the prior information
suggested from the literature of neuroimaging studies on neuroeconomics. The goal of the
study is to demonstrate that the trial-by-trial EEG power change reflects the stock price in
the lateral frontal regions as predicted.

2. Materials and Methods
2.1. Subjects

A total of 28 healthy adults (10 women) participated in the study. EEG was successfully
recorded from 26 subjects. There were two sessions, totaling 52 datasets, but 3 of them
were not usable due to technical error. Thus, 49 EEG datasets were used for the final
analysis. Written informed consent was obtained from all participants. The protocol of
the experiment was approved by THE Q-AGENCY, the company from which the EEG
headset was rented. Full consent was given in accordance with the Helsinki accord by
each participant. The participants were both (i) last year Bachelor’s and Master’s students
in economics and (ii) professionals with economic background studies working in the
financial industry. We also included three former traders with investing experience. The
rationale behind the selection was to obtain an as homogenous group as possible with
general financial markets knowledge. Thus, proper comparison and analysis of data
between the two experiments could be carried out relevantly within the context of the
research question.

2.2. Electroencephalography (EEG) Recording

Scalp EEG recordings were obtained using an Emotiv EPOC headset (May–June 2017,
Bucharest, Romania) using 14 NaCl wet electrodes placed to the locations of AF3, AF4, F3,
F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1 and O2, according to International 10–20 system.
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EEG signal was recorded with a sampling rate at 128 Hz. Skin–electrode impedance was
decreased by using saline liquid until the level required by the Emotiv Pro software was
reached and turned green, signifying a impedance below 20 kΩ. Data from 3 subjects could
not be analyzed due to excessive noise.

2.3. Experimental Design

The experiment is a replication of [31], adapted using EEG. The task was repeated
once to observe changes after having experienced the bubble crash once. The experimental
software was designed with the help of two developers, and it supplied market prices
which subjects could not impact by means of supply and demand. Thus, the market was
simulated and while participants thought they were actively trading, their actions did not
impact the market price. This approach provides advantages both from the perspective
of it being similar to real-world trading (as it is unlikely for individual traders to impact
prices using small orders) and the fact that the experiment can be run using one subject at
a time, thereby ensuring simplicity. A similar approach was taken by [12], for which [5]
identify similar upsides. Figure 1A displays market dynamics.

1 
 

 

Figure 1. (A) The simulated market price for 30 trial periods. All prices above 14 represent a bubble.
This time series data were used as a regressor for the subsequent EEG analysis. Prices on the y-axis
are expressed in experimental currency. (B) Images from one trading period subjects saw (numbered
in order of appearance): 1. Holdings 2. Decision-making, 3. Outcome and 4. Income (stock dividend
and interest from cash). Adapted from Smith et al. (2014) [31]. The main event-related spectral
perturbation (ERSP, i.e., EEG power changes caused by behavioral events) reported in this paper
is based on single-trial ERSP of +/− 2 s relative to Holdings, i.e., the onset of the updated stock
price display.
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We shortly review the experiment design, turning the reader to the original study
for more details. Each subject starts with six stocks and 100 units of experimental cash
currency. When a stock is bought (sold), the paid price is deducted (added) from the cash
at that period. Only one stock can be traded for each period. Each asset produces income
for the subject. The stock produces a dividend of either 1 or 0.4 units with equal chances,
dividends being independent in time. Cash produces fixed income at 5% for each period.
At the end of the experiment, each stock held is sold at a price of 14 units. Any price
above 14 is considered a bubble. All information was the same for all subjects. Prior to
the experiment, subjects read detailed experimental instructions and took a quick quiz in
order for the experimenter to assess their understanding. Almost all participants obtained
maximum scores.

The experiment was run twice—each trial run consisted of 30 trading periods—the
same for all subjects. Experimental sessions are referred to as Time 1 and Time 2 in the
following sections. Each trading period consisted of four different information screens:
1. Holdings, where subjects saw information on the current stock price and cash held, 2.
Decision-making, where subjects had to decide on whether to buy, hold or sell one unit of
the stock, 3. Outcome, where the decision from the previous screen was re-iterated and 4.
Income, where subjects read how much they won. Each information screen lasted for 5 s
maximum (decision times differed among subjects), with a 2.5 s fixation cross in between
each of them, for a maximum total of 15 min/experiment. Figure 1B provides the window
screens that were shown to subjects during the experiment.

For participating in the experiment, each subject received a show-up fee of approx-
imately EUR 4 (in domestic currency using the official exchange-rate at the time) and a
variable incentive, in order to induce the necessary risk aversion mandated in order to
better simulate market performance. After trading, the final individual earnings were
converted into real money (RON) using a rate of 100 cash = 1.5 RON. Each subject won
on average EUR 10. Post-experimental questionnaires were filled in by subjects to obtain
socio-demographic information. Overconfidence was also measured using a question that
captured the better-than-average effect. Simply stated, subjects were asked to rank their
position in terms of payoff as opposed to other subjects. Subsequently, the difference
between their actual position and what they stated was the metric to deem the subject
(non)-overconfident.

2.4. Preprocessing of the Scalp-Recorded EEG Data

Figure 2 left shows the flow chart of the preprocessing pipeline for individual data.
Offline, the raw data sets were imported to EEGLAB 14.1.2 [32] running under Matlab
2017b (The MathWorks, Inc., Natick, MA, USA) and in-house developed custom code. The
continuous data were high-pass filtered at a cutoff frequency of 0.5 Hz (FIR, Hamming
window, transition bandwidth 0.5 Hz). Electrode locations in MNI coordinate system
were imported. EEGLAB plugin clean_rawdata() was applied to remove and reconstruct
artifact subspaces using the algorithm artifact subspace reconstruction (ASR) [33–39]. The
plugin clean_rawdata() has a function that if the data interpolation by ASR is insufficient
in more than 25% of the electrodes within the 0.5-s sliding window, it rejects the window.
This approach is capable of removing non-stationary high-amplitude artifacts effectively,
which makes an ideal preprocessing stage for subsequent blind source separation, namely
independent component analysis (ICA). As a result from cleaning the data, average 1.2 elec-
trodes (SD 1.5, range 0–6) and 4.8% (SD 7.6, range 0–47.9) of data points were rejected.
Some of the datasets that showed the large amount of data rejection were excluded in the
later stage from the final analysis as a quality control. Adaptive Mixture Independent
Component Analysis (AMICA) was applied to the entire time series data decompose
multivariate scalp electrode signals into temporally maximally independent components
(ICs) [28–30,40,41].



Brain Sci. 2021, 11, 670 5 of 12

Brain Sci. 2021, 11, x FOR PEER REVIEW 5 of 12 
 

continuous data were high-pass filtered at a cutoff frequency of 0.5 Hz (FIR, Hamming 
window, transition bandwidth 0.5 Hz). Electrode locations in MNI coordinate system 
were imported. EEGLAB plugin clean_rawdata() was applied to remove and reconstruct 
artifact subspaces using the algorithm artifact subspace reconstruction (ASR) [33–39]. The 
plugin clean_rawdata() has a function that if the data interpolation by ASR is insufficient 
in more than 25% of the electrodes within the 0.5-s sliding window, it rejects the window. 
This approach is capable of removing non-stationary high-amplitude artifacts effectively, 
which makes an ideal preprocessing stage for subsequent blind source separation, namely 
independent component analysis (ICA). As a result from cleaning the data, average 1.2 
electrodes (SD 1.5, range 0–6) and 4.8% (SD 7.6, range 0–47.9) of data points were rejected. 
Some of the datasets that showed the large amount of data rejection were excluded in the 
later stage from the final analysis as a quality control. Adaptive Mixture Independent 
Component Analysis (AMICA) was applied to the entire time series data decompose mul-
tivariate scalp electrode signals into temporally maximally independent components (ICs) 
[28–30,40,41]. 

 
Figure 2. The flow chart of the current data analysis. 

After ICA, the rejected data windows by clean_rawdata() were recovered by applying 
symmetric padding to both ends that used a mirrored signal. This preprocess is to recover 
continuous data for the subsequent wavelet transform. The process of detecting and re-
jecting the ‘bad electrode’ was included in this process, which was based on the spatial 
correlation of the time-series data. For more detail, see [38,39]. Morse wavelet (γ = 3, 
known as ‘airy’) was applied using Matlab Wavelet Toolbox to obtain the time-frequency 
decomposition of IC activations. The 62 frequency bins logarithmically distributed from 
0.9 to 56.1 Hz. The obtained scalogram was log-converted using 10 × log10 and epoched 
to −2 to +2 s relative to onset of Holdings event, i.e., showing the updated price of the stock 
to obtain a single-trial ensemble of the event-related spectral perturbation (ERSP). At this 
point, the dimensions of the obtained data for each subject were 14 (ICs) × 62 (frequencies) 
× 512 (time points) × 30 (epochs). Similarly, the baseline value, that was defined as the 
mean power from 0 to 2 s relative to baseline event averaged across all events, was calcu-
lated. Then, the baseline values were subtracted from ERSP. 

  

Figure 2. The flow chart of the current data analysis.

After ICA, the rejected data windows by clean_rawdata() were recovered by applying
symmetric padding to both ends that used a mirrored signal. This preprocess is to recover
continuous data for the subsequent wavelet transform. The process of detecting and
rejecting the ‘bad electrode’ was included in this process, which was based on the spatial
correlation of the time-series data. For more detail, see [38,39]. Morse wavelet (γ = 3,
known as ‘airy’) was applied using Matlab Wavelet Toolbox to obtain the time-frequency
decomposition of IC activations. The 62 frequency bins logarithmically distributed from
0.9 to 56.1 Hz. The obtained scalogram was log-converted using 10 × log10 and epoched to
−2 to +2 s relative to onset of Holdings event, i.e., showing the updated price of the stock
to obtain a single-trial ensemble of the event-related spectral perturbation (ERSP). At this
point, the dimensions of the obtained data for each subject were 14 (ICs) × 62 (frequencies)
× 512 (time points) × 30 (epochs). Similarly, the baseline value, that was defined as
the mean power from 0 to 2 s relative to baseline event averaged across all events, was
calculated. Then, the baseline values were subtracted from ERSP.

2.5. Linear Regression Analysis with Stock-Price Changes on IC ERSP

The obtained single-trial ERSP was uniformly subsampled in the time-frequency
dimensions to 14 (ICs) × 31 (frequencies) × 64 (time points) × 30 (epochs). The epochs that
contain rejected window period by clean_rawdata() were replaced with NaN. Finally, we
applied a linear mixed effect (LME) model analysis using the time-series data of the stock
price changes for each pixel of 14 (ICs) × 31 (frequency) × 64 (time points) × 49 (datasets).
The t-statistics obtained from the LME analysis were stored for the final group-level analysis.
At this point, datasets with <20 trials were removed to control the quality of the data. As
a result, 5 datasets were removed. The final datasets showed average 27.1 (SD 3.0, range
20–30) trials of Holdings available.

2.6. Group-Level IC Clustering for the Final T-Test for Time1 and Time 2

Scalp topographies defined by values in columns mixing matrix obtained by ICA
were collected from all datasets and submitted for k-means clustering. The Silhouette
Index ([42]) and Davis–Boldin methods ([43]) both suggested 18 to be the optimum cluster
number, while the Calinski–Harabasz method suggested 16 ([44]). We determined to
generate 18 IC clusters. Note that these IC clusters were generated based on the spatial
information of EEG, which allows one to perform statistical analysis on EEG time-series
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data without causing double dipping ([45,46]). For each IC cluster, t-statistics obtained
from the regression analysis in the time-frequency domain were submitted to one-sample
t-test for each pixel to obtain the final group-level t-statistics and p-values for Time 1 and
Time 2 separately. We set the electrode of interest at FC5; thus, we investigated the IC
cluster that captured FC5 most dominantly.

3. Results
3.1. Behavioral Data

During the trading sessions, subjects earned on average 512 CASH units during the
first experimental run and 580 CASH units during the second experiment. The difference
reached statistical significance; mean Time 1 = 891 (SD 137, range 478–1189) vs. mean
Time 2 = 1032 (SD 109, range 745–1198), t(50) = −4.1, p < 0.0001. The result indicated that
the participants took advantage of the information obtained from the first trial in repeating
the task in the second trial.

3.2. EEG Results

Clustering analysis on the scalp topographies of the independent components (ICs)
generated 18 IC clusters (Figure 3). One of the IC clusters—Cluster 4—has the peak of the
topography in the left frontal regions which overlaps with electrode FC5. Based on our
hypothesis that the cognitive processes involved in financial decision-making should be
related to the lateral frontal functions, we examined this left frontal IC cluster for further
analysis. We also examined Cluster 7 as the nearby area and Clusters 1 and 8 as the
corresponding sites in the contralateral hemisphere, but we did not find a significant result
to be reported.
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Note that the power spectral density (PSD) of typical eye-related IC clusters, such
as IC 17 for eye blinks and vertical eye movement and ICs 13 and 16 for horizontal eye
movements, is qualitatively different from that of IC4 and other non-eye-artifactual IC
clusters in the way that the left-hand slope of the 1/f curve is heavy-tailed. This confirms
that eye-related artifacts are successfully decomposed, and ICs clustered in Cluster 4 is
generally expected to be independent (i.e., free) of the same kind of artifact.

Linear regression analysis between the single-trial event-related spectral perturbation
(ERSP) of IC Cluster 4 and the changes of the stock price was performed for the first
(Time 1) and the second (Time 2) experimental sessions separately (Figure 4B). The results
revealed that during Time 1, the delta range (1–4 Hz) of the EEG power showed negative
correlation with the stock price, which reached statistical significance (Figure 4C). The
timing of this ERSP modulation was centered at around latency zero, which is the onset of
displaying the updated stock price. When the average was taken across the frequency bins
within the time-frequency window of interest (−1 to 1 s and from 2 to 6 Hz), the resulting
time-series data showed the negative peak at 62.5 ms (t = −3.062), closely followed at
125 ms (t = −3.024). However, this modulation became much weaker during Time 2, which
was not statistically significant. Thus, we confirmed the main effect within Time 1 in
this analysis.
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Figure 4. (A) The mean IC scalp topography of Cluster 4 that captures the electrode of interest
FC5. (B) The group-level t-test results for Time 1 (left) and Time 2 (right). Note the decrease in
the t-statistics around time 0 in Time 1, which indicates negative correlation between single-trial
EEG power and the stock price. (C) The bar graph showing the average t-statistics within the time-
frequency of window from −1 to 1 s and from 2 to 6 Hz. One-sample t-test was performed on Time 1
and Time 2 separately. ***, p-Value < 0.005.

4. Discussion

The goal of the current study is to test whether the trial-by-trial EEG signal change
corresponding to stock price dynamics in a financial bubble can be detected in the lateral
frontal regions, as predicted in the neuroimaging literature. We used a BCI-friendly
low-cost recording environment and a realistic stock trading task to provide a proof
of concept for desk-top neuroeconomics in near future. We applied advanced signal
processing and statistical techniques to ask for the neural signature that follows single-trial
stock price changes leading up to the financial bubble formation and crash. We found
that the left lateral frontal region showed EEG power modulation negatively correlated
with the stock prices. Below, we discuss the interpretation of the main finding and its
neuroscientific significance.

4.1. Latency of the EEG Power Modulation and Relation to Stimulus-Preceding Negativity (SPN)

In the main time-frequency result (Figure 4B), we found a negative correlation with
the stock price peaked at 60–120 ms, which is immediately after the onset of the updated
stock price on the computer monitor. Obviously, this delta power decrease cannot be
the response to the visual stimulus because the latency would be to too early for that.
Typically, such visual responses take at least a few hundreds of milliseconds of delay with
the earliest around 100 ms poststimulus, which is well-established as the early visual
evoked potentials [47]. Given the absence of the expected delay for the visual evoked
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potential, the observed delta power decrease must be related to predictive functions. We
propose that the observed power modulation relates to stimulus-preceding negativity
(SPN) in the time-frequency domain, an electrophysiological index of reward anticipation
and delivery as well as motivational intensity [48,49]. This is especially likely given
the fact that the time interval between the prior gains period and the Holdings period
(Figure 1B) was fixed so the onset timing could be predicted exactly. It is known that the
higher the amplitude of SPN toward negative polarity, the higher subject’s anticipation
to the reward [50,51]. SPN is also larger in tasks where anticipation to fulfillment is
envisioned [52]. The underlying generative mechanism of SPN involves the dopaminergic
system that is engaged in reinforcement learning [53,54]. As such, SPN has been used
as a neuroeconomics paradigm involving monetary rewards as an ERP index. The early
example can be found in [55]. If the peak latency of this negative correlation of the
delta power observed in the current study is the reflection of anticipation, it makes sense
that the negativity peak at 60–120 ms overlaps the latency of the early visual evoked
potentials. In other words, this is the latency around which anticipation is replaced with
the updated information via visual input, as if the brain experiences ‘the moment of
truth’ to verify the expected future. Probably the most well-known stimulus preceding
ERP is the contingent negative variation (CNV) [56]. However, SPN is distinguished
from CNV on the points that CNV is primarily related to the motor preparation and the
maximal potential is observed at the vertex (Cz), while SPN is related to motivation and
the maximal potential is observed in the frontal area [49]. Hence, it seems difficult to
explain the observed result as CNV. The motivational and reward-dependent aspects of
SPN seem to explain the stock price dynamics forming a bubble. It also makes sense that
the effect was observed for Time 1 but not for Time 2 as unpredictability was removed,
which is in line with the general understanding of the dopaminergic system being related
to both motivation and learning [57]. The results from the current study can inform policy
makers on how individual decision making translates at an aggregate level such as financial
markets [58–60].

4.2. Polarity of the Modulation and Relation to the Default Mode Network

The results from the present study showed that the stock price change correlated
negatively with single-trial delta power change. Just in case, let us make it clear that the
negativity of the polarity in SPN as an ERP component does not imply power decrease.
EEG power is proportional to the square of EEG amplitude, and polarity of the signal does
not matter after taking the square. The task-negative power modulation in the frontal
lobe is reported in the literature of default mode network [61–63]. Probably, the most well-
known cortical nodes of the default mode network are the medial prefrontal cortex (mPFC)
and the posterior cingulate cortex (PCC). However, these studies also reported some
smaller portions of the lateral frontal also showed corresponding BOLD signal patterns
synchronous to that of the mPFC and PCC. We interpret that the negative correlation we
found in the present study is related to the dis-inhibition of the default mode network
(i.e., reduction in the task-negative network) in the lateral frontal region. In the context
of neuroimaging of the default mode network, Nakano and colleagues [64] reported that
eye blinking is related to momentary attention release by the activation of the default
mode network while deactivating the dorsal attention network [65]. The cortical network
associated with eye blinks included some of the lateral frontal regions, similar to the
definition of the default mode network. Due to the relatively poor spatial resolution of
scalp EEG measurement, it is impossible for us to determine whether the corresponding
cortical source of the delta power decrease spatially overlaps with the lateral frontal regions
reported [64]. The question about the detail of the localization requires future investigation
with a high-density EEG recording system. Another supportive evidence to this view is
that in a recent study using EEG and fMRI, it was reported that a sub-anesthetic dose of
ketamine caused a reduction in vigilance in behavior and increase in EEG delta power
within the lateral frontal regions, which was associated with a reduction in the frontal
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connectivity [66]. If the reduction in vigilance and the corresponding delta power increase
within the lateral frontal region can be interpreted as the activation of the default mode
network introduced by ketamine, the reduction in the delta power within the same region
may indicate the dis-inhibition of the resting state network and may cause an increase in
vigilance. The neuroeconomics paradigm of the boom-and-bust task used in the current
study is likely to be representative of increased arousal and vigilance. Taken together, we
conclude that the observed negative correlation between the single-trial EEG delta-band
power and stock price dynamics may reflect the dis-inhibition of the (task-negative) default
mode network that responds to the anticipatory and motivational function that increases
arousal in response to the financial bubble.

4.3. Limitation

As designed to be a proof-of-concept study, we used an inexpensive wearable EEG
recording system to demonstrate the possibility of a current neuroeconomics paradigm
in financial decision-making as a future non-laboratory desk-top environment. As such,
we could not argue details of spatial location of the estimated ICs. Another limitation is
that the quality of the power spectral density of the ICs was not as high as that obtained
from standard laboratory data using research-grade EEG recording machines. Due to
these limitations, we could not use some of the critical EEG preprocessing approaches,
such as automated probabilistic IC labeling solution ([67]). It is desirable to conduct a
future study to replicate the current study with more research-oriented set ups with an
extended analysis design that includes subgroups of the participants, namely good vs.
poor performers, which requires a larger subject sample size. Comparing the two groups
with different performances allows one to determine the neural correlates of successful
traders, which is one of the key questions in the field of neuroeconomics.

5. Conclusions

We conducted a neuroeconomics study on financial bubble dynamics with a stock-
trading task and a low-cost BCI-friendly desktop environment. We found that trial-by-trial
stock price changes in a simulated asset bubble market were reflected by the delta-band (1–4
Hz) EEG power decrease within the left frontal region. We interpreted the result as stimulus-
preceding negativity (SPN) occurring as a dis-inhibition of the lateral frontal resting state
network. We conclude that the combination of the financial decision-making task and the
inexpensive desk-top BCI-friendly set up was effective in detecting the targeted lateral
frontal brain signal expected from the literature of neuroimaging studies. We contribute
to the neuroeconomics literature by introducing a complementary EEG measure as a
predictor of financial bubbles. At the same time, the methodology and the results can
serve as bases for future EEG research on decision making under risk. Hence, we envision
future developments of similar studies aiming at cognitive neuro-augmentation. Such
studies would then serve as platforms integrating behavioral and brain data with artificial
intelligence and machine learning algorithms to better understand decision-making, by
calibrating biases and thus optimizing behavior ([68,69]).
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