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Association between phosphate 
and long‑term outcome in CAD 
patients underwent coronary 
intervention
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Phosphate has been linked to higher cardiovascular (CV) risk. However, whether phosphate is 
associated with poor outcomes for patients with coronary artery disease (CAD) after percutaneous 
coronary interventions (PCIs) remained undetermined. 2,894 CAD patients (2,220 male, aged 
71.6 ± 12.2), who received PCI at TVGH from 2006 to 2015, with phosphate measurement, were 
enrolled. The primary outcome was the composite of major adverse CV events [MACE, comprising of 
CV death, nonfatal MI, and nonfatal stroke] and heart failure hospitalization (HHF). The key secondary 
outcome was MACE. There was a J-curve association between phosphate and CV events after adjusted 
for comorbidities and renal function. Phosphate around 3.2 ± 0.1 mg/dL was associated with the 
lowest CV risk. In Cox analysis, each 1 mg/dL increases in phosphate was associated with a higher risk 
of MACE + HHF (HR: 1.12, 95% CI: 1.05–1.21): CV death (HR: 1.37, 95% CI: 1.22–1.55) and HHF (HR: 
1.12, 95% CI: 1.02–1.23). Subgroup analyses showed more prominent association between phosphate 
and MACE + HHF in male, age > 65, bare-metal stents (BMSs), LVEF < 50%, eGFR < 60, LDL > 70 mg/dL, 
and emergent PCI. Phosphate has a significant association with the risk of CV events in CAD patients 
undergoing PCI that was independent of comorbidities and renal function.

The serum phosphate level is tightly regulated in order to maintain various aspects of human physiology, includ-
ing energy metabolism, neurotransmission, endothelial function, bone formation, and cardiovascular (CV) 
function1. Although abnormal phosphate metabolism is considered the hallmark of chronic kidney disease 
(CKD), studies have shown that abnormal serum phosphate levels are associated with vascular calcification, 
atherosclerosis, all-cause, and CV mortality, regardless of renal function2–4.

Phosphate was also reported to take part in the pathogenesis of the CV disease process5. Hormone and 
markers related to the regulation of phosphate metabolism, such as serum parathyroid hormone (PTH), alkaline 
phosphatase (ALKP), fibroblast growth factor 23 (FGF-23), and 1.25-(OH)2-D3 (VitD3) levels as all being linked 
to the development and progression of CV disease through vascular calcification or systemic inflammation6–8. 
Percutaneous coronary intervention (PCI) is the main method of coronary revascularization. However, the 
prognosis of patients with CKD undergoing PCI is unsatisfactory9–12. Previous studies have shown that increased 
serum levels of phosphate were associated with poor revascularization outcomes13. However, they only investi-
gated patients undergoing regular dialysis with a short follow-up period. Furthermore, there is limited informa-
tion about the interaction between serum phosphate and future adverse risk in situations, such as the choice 
of stent type, the underlying left ventricular ejection fraction (LVEF), and whether the patient presented with 
acute coronary syndrome (ACS). As such, we conducted this retrospective Asian CAD cohort study to assess 
the association of serum phosphate and future CV events in CAD patients with PCI.
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Methods
We retrospectively reviewed patients who had received PCI for CAD from 2006 to 2015 at the Taipei Veterans 
General Hospital. Patients with a measured serum phosphate level at enrollment, who underwent successful PCI, 
were enrolled. The demographic characteristics, biochemical data, procedural details, and clinical outcomes of 
these patients were collected from the electronic medical record review. This study followed the Declaration 
of Helsinki and was approved by the Internal Research Board of Taipei Veterans General Hospital (IRB No. 
2016-03-014CC).

It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or 
dissemination plans of our research. The patient data used in this study was untraceable and anonymous before 
entering the analysis. According to the Internal Research Board of Taipei Veterans General Hospital, patient 
informed consent formed was not required.

PCI procedures were performed in conformity with the 2010 ESC/EACTS guidelines on myocardial 
revascularization14. In brief, coronary angiography was performed with standard procedures. Unfractionated 
heparin was administered to achieve an activated clotting time of > 300 s. After successful wire-crossing, lesion 
modification was usually performed by balloon dilatations. Rotablations were performed for heavily calcified 
or balloon-uncrossable lesions. Following dilatation and/or lesion modification, a stent was deployed for most 
lesions. Successful PCI was defined as residual stenosis < 30% with thrombolysis in MI (TIMI), grade 3 flow at 
the end of the procedure. Following the procedures, all patients received aspirin (100 mg/d) indefinitely and a 
P2Y12 inhibitor for at least one month if a bare-metal stent (BMS) was deployed, or at least one year if a drug-
eluting stent (DES) was deployed. All patients were observed for a minimum of 8 h and then discharged under 
stable conditions.

Baseline information such as body mass index (BMI) and smoking status were collected. We obtained a 
detailed medical history for comorbid conditions such as hypertension (HTN), diabetes mellites (DM), dys-
lipidemia, stroke, chronic kidney disease (CKD), heart failure (HF), and the medication history transcribed 
from electronic medical records. Procedure details of the PCI, including indication for the procedure [acute 
coronary syndrome (ACS) or elective), the type of deployed stents [bare metal stent (BMS) or drug eluting stent 
(DES)], were collected from the procedure notes. ACS procedures were defined as procedures arranged for 
acute ST-elevation myocardial infarction (STEMI), Non–ST-elevation myocardial infraction (NSTEMI) and 
Unstable angina. All the non-emergent procedures were classified as elective. Biochemical parameters, includ-
ing serum phosphate, serum calcium, serum creatinine, uric acid, hemoglobin, low-density lipoprotein (LDL), 
and high-density lipoprotein (HDL), were measured using a TBA-c16000 automatic analyzer (Toshiba Medical 
Systems, Tochigi, Japan) following an overnight fast before the index procedure. The ejection fraction from the 
left ventriculography and echocardiographic study were also evaluated when available.

The primary endpoint was the composite of CV deaths, nonfatal MIs, nonfatal strokes, or HF hospitali-
zations. The key secondary outcome was major adverse CV events [MACE, defined as the composite of CV 
deaths, nonfatal MIs, and nonfatal strokes]. Other secondary outcomes included the individual components of 
MACE, HF hospitalizations, and repeat revascularization. CV death was defined as deaths that result from an 
MI, sudden cardiac death, death due to HF, death due to stroke, death due to CV procedures, death due to CV 
hemorrhage, and death due to other CV causes. MI was defined by the in-charge cardiologist according to the 
third definition of MI. Stroke was defined as the combination of ischemic and hemorrhagic stroke. Heart failure 
hospitalization was defined as any hospitalization with a primary diagnosis of HF or with one of the first two 
secondary diagnoses being HF.

The data was expressed as mean ± standard deviation for continuous variables and mean ± 95% confidence 
interval (CI) for categorical variables. Demographic characteristics and biochemical variables were compared 
using the Student’s t-test to compare continuous variables when appropriate, with chi-square tests used for 
categorical variables. The association between the serum phosphate level and clinical and biochemical vari-
ables was evaluated sequentially with multiple linear regression. To evaluate the association between serum 
phosphate and clinical outcomes, the serum phosphate was categorized into four quartiles. Survival to the 
primary and secondary endpoints of the four groups was compared with the stepwise Cox proportional hazards 
models, while backward selection was used to calculate hazard ratios (HRs) and 95% CI for serum phosphate 
categories. To adjust for confounding variables, a second Cox hazard ratio was performed with adjustment for 
age, gender, hypertension, DM, smoking status, and estimated glomerular filtration rate (eGFR). Subgroup and 
sensitivity analyses were also performed. Prespecified subgroups in these analyses were defined according to 
age (< 65 years of age, or > 65 years of age or older), gender, DM, hypertension (HTN), smoking, BMI (< 22 kg/
m2, or 22 kg/m2 or more), LDL (< 70 mg/dL, 70 mg/dL or more), HDL (< 40 mg/dL, 40 mg/dL or more), ACS, 
eGFR (< 60 ml/min/1.732, 60 ml/min/1.732 or more), LVEF (< 50%, 50% or more), DES use, and dialysis status. 
Statistical significance was set as p < 0.05. All statistical analyses were carried out with SPSS 20.0 software (IBM, 
Inc. Chicago, IL, USA).

Results
Patient demographics.  Among 8,794 consecutive patients who received PCI for CAD between 2006 to 
2015, a total of 2,894 patients (2,220 male, aged 71.6 ± 12.2) with a baseline phosphate value recorded were 
enrolled. The average follow-up duration was 65.1 ± 32.1 months. The demographic characteristics of the par-
ticipants are shown in Table 1. Serum phosphate ranged from 0.5 to 12.1 mg/dL (mean 3.6 ± 1.1 mg/dL). There 
were 270 (9.3%) patients with hypophosphatemia, defined as a phosphate level < 2.5 mg/dL while 356 (12.3%) 
patients had hyperphosphatemia, defined as phosphate level > 4.5 mg/dL. Patients with a higher phosphate level 
were more likely to be younger and female. They also had a higher prevalence of DM and CKD, demonstrated 
in Table 1. Yet, patients within the second quartile of phosphate levels tended to have higher eGFR, lower serum 
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calcium, and a lower prevalence of heart failure. There was a J-curved association between the eGFR and serum 
phosphate levels, as shown in supplement Fig. 1. In linear correlation analysis, age, female gender, HF, CKD, 
serum uric acid, calcium, and creatinine were significantly associated with serum phosphate levels, shown in 
supplement Table 1.

Clinical events.  During a median follow-up of 65.1 ± 32.1 months, 770 (26.6%) patients met the primary 
endpoint, while 443 (15.3%) patients met the key secondary endpoint of MACE. For the other secondary end-
points, there were 173 (6.0%) CV deaths, 91 (3.1%) nonfatal strokes, 211 (7.3%) nonfatal MIs, 416 (14.4%) HF 
hospitalizations, and 579 (20.0%) repeated revascularization procedures in the follow-up period. Compared with 
the 1st, 3rd, and 4th quartiles of phosphate levels, patients within the second quartile phosphate level (between 
3.0–3.4 mg/dL) had the lowest risk for the primary endpoint, MACE, CV death, and HF hospitalizations, dem-
onstrated in Table 2. Kaplan–Meier curves and log-rank analyses also showed that patients in the second quartile 
of serum phosphate levels had a significantly lower risk for the primary endpoint and MACE (Fig. 1A,B). Spline 
curve analysis showed a J-shaped relationship between serum phosphate levels and the odds of the primary end-
point, with MACE as the lowest point between phosphate levels of 3.0–3.4 mg/dL as well (Fig. 2A,B).

Table 2 showed an association between serum phosphate values and future CV risks, according to quartiles 
(the second quartile was the reference category) and continuous values. The unadjusted Cox-regression (model 
1 of Table 2) showed there was a higher risk for the primary endpoint: MACE, CV death, MI, and HF hospitali-
zation for every 1 mg/dl increase in serum phosphate. The unadjusted model (model 1 of Table 2) also showed 
the risk of the primary endpoint, with MACE significantly higher in patients in the first and fourth quartiles 
of the phosphate levels, while MI, CV death, and HF hospitalization was significantly higher in patients within 
the fourth quartile of phosphate levels. However, the risk of ischemic stroke and repeat revascularization was 
not associated with serum phosphate levels. After adjustment for age, gender, HTN, DM, smoking, and eGFR, 
Cox-regression (model 2 of Table 2) showed that there was a higher risk of the primary endpoint (HR: 1.12, 
95% CI:1.05–1.21, p = 0.001), MACE (HR: 1.13, 95% CI: 1.03–1.24, p = 0.007), CV death (HR: 1.37, 95% CI: 
1.22–1.55, p < 0.001), MI (HR: 1.07, 95% CI: 0.94–1.23, p = 0.298), and HF-related hospitalization (HR: 1.12, 
95% CI: 1.02–1.23, p = 0.023) for every 1 mg/dl increase in serum phosphate. However, the higher risk was only 
seen in patients with phosphate levels in the fourth quartile after adjustment.

Subgroup analysis.  Results of the prespecified subgroup analysis were demonstrated in Table 3, showing 
the risk associated with the phosphate level, which appeared different for several subgroups. A J-shaped associa-

Table 1.   Baseline clinical characteristics among quartiles of serum phosphate. ACEI/ARB = angiotensin 
converting enzyme inhibitor/angiotensin receptor blockers; DES = drug eluting stent; CKD = chronic kidney 
disease, HDL = high density lipoprotein-cholesterol; LDL = low density lipoprotein-cholesterol.

Overall (n = 2894)
1st quartile (IP 0 ~ 3 mg/
dL) (n = 765)

2nd quartile (IP 
3 ~ 3.4 mg/dL) (n = 790)

3rd quartile (IP 
3.5 ~ 4 mg/dL) (n = 762)

4th quartile (IP > 4 mg/
dL) (n = 667) p value p for trend

IP 3.56 ± 1.08 2.49 ± 0.41 3.21 ± 0.14 3.72 ± 0.17 5.01 ± 1.16 <0.0001 <0.0001

Male gender (n, %) 2220 (74.4) 627 (82.0) 639 (80.9) 559 (73.4) 395 (59.2) < 0.001 <0.0001

Age (y/o) 71.59 ± 12.20 74.54 ± 11.20 71.28 ± 12.00 71.16 ± 12.52 69.08 ± 12.52 < 0.001 <0.0001

BMI 25.06 ± 3.98 24.69 ± 3.92 25.24 ± 3.98 25.10 ± 3.74 25.21 ± 4.27 0.040 0.031

Smoking (n, %) 1149 (38.5) 314 (41.1) 317 (40.1) 296 (38.9) 222 (33.3) 0.0136 0.004

Dyslipidemia (n, %) 696 (23.3) 115 (15.0) 95 (12.0) 78 (10.2) 84 (12.6) 0.0413 <0.0001

Diabetes (n, %) 1341 (44.9) 298 (39.0) 336 (42.5) 337 (44.2) 370 (55.5) <0.0001 <0.0001

Hypertension (n, %) 2543 (85.2) 653 (85.4) 682 (86.3) 647 (84.9) 561 (84.1) 0.6829 0.403

Heart failure (n, %) 593 (19.9) 148 (19.4) 124 (15.7) 141 (18.5) 180 (27.0) <0.0001 <0.0001

Stroke (n, %) 230 (7.7) 52 (6.8) 47 (6.0) 75 (9.8) 56 (8.4) 0.0218 0.028

CKD (n, %) 351 (11.8) 66 (8.6) 67 (8.5) 69 (9.1) 149 (22.3) <0.0001 <0.0001

ACS (n, %) 1318 (44.2) 144 (18.8) 178 (22.5) 163 (21.4) 153 (22.9) 0.929 0.654

DES (n, %) 1517 (50.8) 340 (44.4) 417 (52.8) 383 (50.3) 377 (56.5) 0.001 0.197

Creatinine 2.06 ± 2.23 1.63 ± 1.48 1.59 ± 1.40 1.69 ± 1.66 3.39 ± 3.35 <0.0001 <0.0001

eGFR 53.20 ± 29.34 56 ± 24 59.14 ± 29.76 57.04 ± 28.21 38.17 ± 30.38 <0.0001 <0.0001

Hemoglobin 12.23 ± 2.12 12.34 ± 2.05 12.64 ± 2.05 12.44 ± 2.01 11.38 ± 2.19 <0.0001 <0.0001

Uric acid 6.60 ± 2.08 6.19 ± 2.01 6.49 ± 1.96 6.66 ± 1.99 7.13 ± 2.30 <0.0001 <0.0001

Calcium 8.90 ± 0.72 9 ± 0.76 8.91 ± 0.61 8.96 ± 0.69 8.97 ± 0.87 <0.0001 <0.0001

HDL 42.20 ± 12.47 41.87 ± 12.34 43.10 ± 12.53 42.29 ± 12.59 41.38 ± 12.36 0.070 0.3337

LDL 104.10 ± 34.76 102.11 ± 35.24 103.34 ± 32.51 107.06 ± 34.72 103.78 ± 36.70 0.042 0.053

Beta blockers 1246 (41.8%) 289 (37.8%) 329 (41.7%) 336 (44.1%) 292 (43.8%) 0.05 0.011

Statins 1386 (46.4%) 327 (42.8%) 376 (48.0%) 402 (52.8%) 281 (42.1%) < 0.0001 0.489

ACEI/ARB 1378 (46.2%) 348 (45.5%) 386 (48.9%) 338 (44.4%) 306 (45.9%) 0.099 0.245

Thiazide diuretics 313 (10.8%) 76 (9.9%) 89 (11.3%) 76 (10.0%) 72 (10.8%) 0.820 0.968
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tion between poor outcome and phosphate level was more pronounced among the male gender, age > 65 years, 
using BMS, LVEF < 50%, eGFR < 60, LDL > 70 mg/dL, and the presence of MI at enrollment. (Fig. 3, supplement 
Fig. 2) The association between CV risk and phosphate level appeared to be linear for those with CKD.

Discussion
In this retrospective cohort study of 2894 Asian patients with CAD undergoing PCI, we demonstrated that (1) 
serum phosphate is an independent risk factor of adverse clinical outcomes after PCI; (2) the association between 
phosphate level and clinical outcomes is J-shaped, with the lowest future CV event risk observed for phosphate 

Table 2.   Association between serum phosphate level in quartiles and clinical outcomes. Adjusted*(Model 2) 
was adjusted for Age, Gender, HTN, DM, Smoking and eGFR. MI = myocardial infraction, HF = hospitalization 
for decompensated heart failure, MACE = major adverse cardiovascular events including cardiovascular deaths, 
nonfatal stroke and nonfatal MI.

Events, n (%)

Unadjusted (model 1) Adjusted* (model 2)

HR (95% CI) p value HR (95% CI) p value

Primary endpoint

Q1 (0 ~ 3 mg/dL) 190 (24.8) 1.28 (1.04–1.57) 0.021 1.15 (0.93–1.41) 0.194

Q2 (3 ~ 3.4 mg/dL) 173 (21.9) Reference – Reference –

Q3 (3.5 ~ 4 mg/dL) 193 (25.3) 1.20 (0.98–1.47) 0.084 1.15 (0.94–1.41) 0.185

Q4 (> 4 mg/dL) 214 (32.1) 1.89 (1.54–2.31) 0.000 1.55 (1.25–1.92) 0.000

Cont – 1.18 (1.11–1.26) 0.000 1.12 (1.05–1.21) 0.001

MACE

Q1 (0 ~ 3 mg/dL) 116 (15.2) 1.40 (1.07–1.84) 0.015 1.31 (1.00–1.72) 0.053

Q2 (3 ~ 3.4 mg/dL) 95 (12.0) Reference – Reference –

Q3 (3.5 ~ 4 mg/dL) 107 (14.0) 1.21 (0.91–1.59) 0.185 1.16 (0.88–1.53) 0.292

Q4 (> 4 mg/dL) 125 (18.7) 1.94 (1.49–2.54) 0.000 1.53 (1.15–2.03) 0.004

Cont – 1.21 (1.11–1.31) 0.000 1.13 (1.03–1.24) 0.007

MI

Q1 (0 ~ 3 mg/dL) 54 (7.1) 1.39 (0.94–2.07) 0.101 1.37 (0.92–2.04) 0.118

Q2 (3 ~ 3.4 mg/dL) 45 (5.7) Reference – Reference –

Q3 (3.5 ~ 4 mg/dL) 50 (6.6) 1.18 (0.79–1.77) 0.419 1.15 (0.76–1.72) 0.510

Q4 (> 4 mg/dL) 62 (9.3) 2.11 (1.43–3.09) 0.000 1.51 (1.00–2.27) 0.049

Cont – 1.22 (1.09–1.38) 0.001 1.07 (0.94–1.23) 0.298

Stroke

Q1 (0 ~ 3 mg/dL) 29 (3.8) 1.54 (0.88–2.67) 0.129 1.47 (0.84–2.57) 0.177

Q2 (3 ~ 3.4 mg/dL) 22 (2.8) Reference – Reference –

Q3 (3.5 ~ 4 mg/dL) 25 (3.3) 1.22 (0.69–2.16) 0.505 1.21 (0.68–2.15) 0.521

Q4 (> 4 mg/dL) 15 (2.3) 1.06 (0.55–2.05) 0.861 1.03 (0.52–2.05) 0.935

Cont – 0.98 (0.78–1.23) 0.842 0.99 (0.78–1.26) 0.934

CV death

Q1 (0 ~ 3 mg/dL) 36 (4.7) 1.22 (0.76–1.97) 0.406 1.07 (0.66–1.73) 0.780

Q2 (3 ~ 3.4 mg/dL) 32 (4.1) Reference – Reference –

Q3 (3.5 ~ 4 mg/dL) 40 (5.3) 1.31 (0.82–2.09) 0.251 1.24 (0.78–1.97) 0.372

Q4 (> 4 mg/dL) 65 (9.8) 2.73 (1.79–4.17) 0.000 2.17 (1.39–3.39) 0.001

Cont – 1.38 (1.25–1.53) 0.000 1.37 (1.22–1.55) 0.000

HF

Q1 (0 ~ 3 mg/dL) 101 (13.2) 1.20 (0.91–1.59) 0.200 1.03 (0.78–1.36) 0.832

Q2 (3 ~ 3.4 mg/dL) 96 (12.2) Reference – Reference –

Q3 (3.5 ~ 4 mg/dL) 106 (13.9) 1.17 (0.89–1.54) 0.272 1.11 (0.84–1.46) 0.464

Q4 (> 4 mg/dL) 113 (16.9) 1.77 (1.35–2.33) 0.000 1.51 (1.13–2.01) 0.005

Cont – 1.15 (1.05–1.26) 0.002 1.12 (1.02–1.23) 0.023

Revascularization

Q1 (0 ~ 3 mg/dL) 148 (19.4) 1.05 (0.84–1.31) 0.676 1.09 (0.87–1.36) 0.476

Q2 (3 ~ 3.4 mg/dL) 160 (20.3) Reference – Reference –

Q3 (3.5 ~ 4 mg/dL) 163 (21.4) 1.09 (0.88–1.36) 0.435 1.09 (0.87–1.35) 0.449

Q4 (> 4 mg/dL) 108 (16.2) 0.97 (0.76–1.24) 0.831 0.93 (0.72–1.20) 0.568

Cont – 1.00 (0.92–1.09) 0.977 0.97 (0.89–1.07) 0.541
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levels at approximately 3.0–3.4 mg/dL. Even adjusted for comorbidities and renal function, the serum phosphate 
level is independently associated with future risk of CV mortality, major CV events, and HF hospitalization. (3) 
Subgroup analyses further show the association between serum phosphate level and CV risk as more prominent 

Figure 1.   (A) The Kaplan–Meier curve for survival to the primary outcome divided by quartiles of serum 
phosphate level. p values are for the overall comparison among the groups using the log rank test. IP = serum 
phosphate. (B) The Kaplan–Meier curve for survival to MACE divided by quartiles of serum phosphate level. 
p values are for the overall comparison among the groups using the log rank test. MACE = major adverse 
cardiovascular events.
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in the male gender, age > 65 years old, using BMS, LVEF < 50%, eGFR < 60, LDL > 70 mg/dL with the presence of 
MI at enrollment; this indicates the importance of phosphate serum level in determining future CV outcomes 
in high-risk patients after a coronary PCI.

Phosphate homeostasis is essential for the maintenance of normal CV function. An abnormal phosphate 
balance and phosphate modulating hormones can damage the CV system. In cell and animal models, research-
ers found that phosphate plays a pivotal role in vascular calcification by inducing vascular smooth muscle 
cells (VSMCs) to undergo phenotypic changes in the osteochondrogenic phenotype15,16. Under the influence 
of phosphate, VSMCs lose the normal expression of calcification inhibitors and begin to express osteogenic 
markers17. A high phosphate level can also inhibit Vitamin D production. Without adequate vitamin D, the 
renin–angiotensin–aldosterone system activates in an unopposed manner, and results in dysregulated cardio-
myocyte proliferation, inflammation, and atherosclerosis progression18,19. The association between phosphate 
exposure and calcification are both time- and dose-dependent, leading to diffuse medial calcification, the hall-
mark of CKD-related CV disease16. In addition to the cellular impact of phosphate to vessel walls, elevated serum 
phosphate is an independent risk factor for the development of CAD, progression of atherosclerotic plaques, MI, 
and CV death2,4,5,20,21. Phosphate dysregulation was observed to be associated with atrial fibrillation, left ven-
tricular hypertrophy, heart failure, and stroke22–25. Moreover, many studies show the association between poor 
CV outcomes and phosphates, which are significant for patients without CKD, as the link extends beyond the 
commonly-recognized abnormal zone4,21. The Framingham offspring registry and the Cholesterol and Recurrent 
Events Study (CARE) registry show that for patients with normal renal function, phosphate levels > 3.5 mg/dL 
correlate with a higher risk of CV events4,26.

In the current study, subgroup analysis demonstrated the association of serum phosphate levels and future 
adverse outcomes in patients who underwent PCI; this showed that the J-shaped relationship was more signifi-
cant in the male gender, age > 65 years, using BMS, LVEF < 50%, eGFR < 60, LDL > 70 mg/dL and the presence 
of MI at enrollment. Aronson et al. reported an independent association between serum phosphate, all-cause 

Figure 2.   (A) Cubic spline analysis. The plot describes the relationship between serum phosphate as a 
continuous variable and the probability of the primary endpoint. The grey area indicates the 95% confidence 
interval. (B) Cubic spline analysis. The plot describes the relationship between serum phosphate as a continuous 
variable and the probability of MACE. The grey area indicates the 95% confidence interval. MACE = major 
adverse cardiovascular events.
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mortality, and heart failure in patients after acute myocardial infarction (AMI). The risk for mortality appears 
to increase with serum phosphate levels within the normal range and becomes even more prominent in the 
presence of CKD. Our current study expanded the association to all CAD patients, including those receiving 
elective PCI27. It also coincided with Kestenbaum’s observation that serum phosphate levels > 3.5 mg/dl were 
associated with a significantly increased risk of death28. Furthermore, our study reported a significant association 
between serum phosphate levels, higher risk of HF hospitalization, and total CV events (especially those using 
BMS, LVEF < 50%, eGFR < 60, LDL > 70 mg/dL and the presence of MI at enrollment); this suggests that higher 
phosphate carries a generally higher risk in high-risk patients. There is limited information explaining why a 
more prominent association between phosphate level and risk of total CV events was observed with BMSs than 
DESs. Although DES and BMS were reported to have no significant difference in the outcome of CV death or 
MI, DES use reduces the risk of revascularization and stent thrombosis29. Moreover, Sung et al. reviewed 966 
patients receiving PCI in Taiwan and reported that DES was related to better outcomes (reducing MI and mor-
tality) than BMS30. This may suggest that elevated serum phosphate adds more risk for vulnerable patients. A 
similar association between serum phosphate and future risk in the heart failure population was observed [42]. 
Our subgroup analysis provides insight about patients with high CV risk at baseline, particularly vulnerable to 
the additional risk from phosphate imbalance, and how intervention can reduce CV risk with DES use, while 
lipid lowering may mitigate these problems.

Our study has several limitations. First, this study was designed as a retrospective observation cohort: the 
timing and indication for phosphate level collection was not controlled. There is also potential for selection bias, 
as phosphate levels were probably only checked in patients with certain characteristics, such as renal function 
alteration or electrolyte imbalance. Second, we could only recruit patients receiving PCI, thus the association 
between phosphate and coronary artery bypass graft (CABG) was not explored. Third, we were unable to collect 
all information about medications and patient diets—which may have significantly affected phosphate levels. 
Forth, our study enrolled patients between 2006 to 2015, a time during which a large shift toward DES use in 
PCI have occurred in Taiwan. Thus, there may be some limitation in the generalizability of our results. However, 
in our subgroup analysis, DES use has no interaction with the prognostic value of serum phosphate. Fifth, we 
could only find 2984 patients who have a recorded phosphate level among the 8794 patient cohorts. In general, 

Table 3.   Subgroup analysis of phosphate and clinical outcome.
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phosphate level is more frequently measured for patients who have higher risks. Thus, there may be some poten-
tial selection bias. Sixth, phosphate level can be influence by diet and medication (including diuretics) and may 
indicate co-existing factors such as dietary indiscretion or fluid overload. Thus, our results derived from pre-PCI 
phosphate level are best interpreted as correlation while causal association should be the subject of future studies.

In conclusion, our study showed that high serum phosphate levels are significantly associated with poor 
outcomes in CAD patients receiving PCI. The association between phosphate level and clinical outcome is 
J-shaped, with the lowest future CV risk observed for levels around 3.0–3.4 mg/dL after adjustment for comor-
bidities and renal function. The association between serum phosphate level and CV risk was more obvious in 
the male gender, age > 65 years, using BMS, LVEF < 50%, eGFR < 60, LDL > 70 mg/dL, and the presence of MI 
at enrollment, indicating the importance of serum level of phosphate in determining future CV outcomes in 
vulnerable patients after PCI.
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