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Simple Summary: The reasons for the development of diseases in the transition period of dairy cows
are manifold and highly farm- and cow-specific. Nevertheless, links exist between the degree of
negative energy balance (NEB) and disease susceptibility, which suggest a mutual adverse relationship
between immune and productive functions. Glucose is the most essential fuel and precursor for
both immune cells and mammary epithelial cells (MEC). While the delivery of glucose by the
intermediary metabolism is not always able to keep up with whole-body demands, trade-offs between
mammary and immune cells emerge. The prioritization of mammary supply during early lactation
is a physiologic principle in all mammals. In contrast, tremendous increases in milk yield and the
specific demand for glucose in high-yielding dairy cows resulting from decades of selection for milk
production override the evolutionary principles of nutrient partitioning. Therefore, high-producing
dairy cows face an increased risk of glucose shortages in their immune cells, particularly during
early lactation.

Abstract: Immune cell functions such as phagocytosis and synthesis of immunometabolites, as well
as immune cell survival, proliferation and differentiation, largely depend on an adequate availability
of glucose by immune cells. During inflammation, the glucose demands of the immune system may
increase to amounts similar to those required for high milk yields. Similar metabolic pathways are
involved in the adaptation to both lactation and inflammation, including changes in the somatotropic
axis and glucocorticoid response, as well as adipokine and cytokine release. They affect (i) cell
growth, proliferation and activation, which determines the metabolic activity and thus the glucose
demand of the respective cells; (ii) the overall availability of glucose through intake, mobilization and
gluconeogenesis; and (iii) glucose uptake and utilization by different tissues. Metabolic adaptation to
inflammation and milk synthesis is interconnected. An increased demand of one life function has
an impact on the supply and utilization of glucose by competing life functions, including glucose
receptor expression, blood flow and oxidation characteristics. In cows with high genetic merits for
milk production, changes in the somatotropic axis affecting carbohydrate and lipid metabolism as
well as immune functions are profound. The ability to cut down milk synthesis during periods when
whole-body demand exceeds the supply is limited. Excessive mobilization and allocation of glucose
to the mammary gland are likely to contribute considerably to peripartal immune dysfunction.

Keywords: glucose metabolism; immune dysfunction; production diseases; lactational physiology;
trade-offs

1. Introduction

Animal welfare concerns, as well as the economic implications of the high prevalence of production
diseases [1-3] and increasing rates of involuntary culling in dairy farming [4], emphasize the need
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to address possible conflicts of aims between these impacts and the level of milk production. Many
scientific investigations are based on the assumption that individual genomic and/or metabolomic
differences are able to explain why some cows are both high producing and healthy while others fail
to cope [5-8]. These approaches try to identify cows that are more efficient in digestion, absorption,
synthesis and mammary utilization of nutrients. However, they disregard the limitations in the
capacity to deal with deficiencies in a highly heterogeneous and dynamically changing environment
that is elusive to deterministic approaches. They disregard that immune functionality is fundamental
to ensure health, longevity and productivity of dairy cows, as it is not only essential for pathogen
elimination but is part of the coordinated reaction of the organism to all kinds of stressors.

After parturition, high-producing dairy cows generally enter a negative energy balance (NEB),
because their level of dry matter intake (DMI) does not meet the demands imposed by the onset of
milk production [9]. Consequently, they mobilize body tissue to overcome this shortage. Excessive
mobilization can lead to a hypercatabolic response described as metabolic stress, associated with
the occurrence of subclinical and clinical diseases [10]. The overall energy budget of an organism
includes various energy sources, metabolic pathways and interactions between subsystems of nutrient
trafficking that make it difficult to evaluate the consequences of sustained overall NEB on metabolic
disorders and health. In fact, plasma concentrations of single metabolites vary substantially between
individual cows with similar status of NEB in early lactation [11-14]. Thus, it has been emphasized
that we must move “from joules to moles of molecules or groups of molecules” to advance animal
nutrition concepts [15].

In dairy cows, the amount of glucose required to fuel milk production outreaches by far energy
expenditures of other life functions like reproduction or maintenance [16]. Besides being a precursor
for the synthesis of lactose, which is the osmotic regulator of milk volume [17,18], glucose-derived
carbon is also found in milk fat and protein [19,20]. Moreover, reduction of nicotinamide adenine
dinucleotide phosphate (NADP*) through pentose phosphate pathway as well as the production of
ATP, which are required for the synthetic processes depend on the availability of glucose. During peak
lactation, mammary epithelial cells (MEC) are able to retrieve up to 2.7 kg of glucose per day from the
plasma pool at a milk level of 40 kg [16]. On the other hand, cells of the innate and adaptive immune
system rely largely on the uptake of glucose and the storage of glycogen, because glucose supports
proliferation, survival and differentiation as well as essential functions like phagocytosis and reactive
oxygen species (ROS) production [21]. Recent data about dairy cows exposed to lipopolysaccharide
(LPS) challenges showed that a fully activated immune system needs 2.5 to 3.1 kg of glucose per
day [22]. In other words, immunoactivities in dairy cows can amount to degrees of glucose demands
similar to those required for high milk yields. In contrast to monogastric species, ruminants cover their
glucose demand almost exclusively through hepatic gluconeogenesis, which seems limited to about
3 kg of glucose at a milk yield level of ~40 kg/day [23]. These considerations and the quantities at hand
clearly indicate a competitive situation between milk production and immune defense and give rise to
the question of how allocation of nutrients between different tissues and life functions is regulated
when essential nutrients become scarce.

2. Resource Allocation between Maintenance and Productive Life Functions in Early Lactating
High-Producing Dairy Cows

2.1. Resource Allocation Theory

According to the resource allocation theory [24], resources including energy and essential nutrients
have to be partitioned between all life functions. Common differentiations of life functions that an
animal has to fuel include productive processes such as growth, gestation and lactation as well as
maintenance functions. However, definitions of maintenance and the requirements of regulatory
systems are essentially conceptual, of a qualitative nature and are also imprecise and contradictory
throughout the scientific literature [25,26]. However, activities like thermoregulation and immune
function are known to impose high demands [27].
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As for the relationship between productive and other life functions in dairy cows it was
hypothesized that cows with high genetic merit for milk production cover their demand by an
increase in feed intake, while cows with low genetic merit—if they do consume more feed—accumulate
body reserves [28]. Consequently, maintenance requirements would be unaffected by milk yield,
and differences in milk yield could be due to differences in the efficiency of energy and nutrient
utilization—a phenomenon that was described as “dilution of maintenance” [28]. Although correlations
between yield and intake ranging from 0.46 to 0.65 [29] indicate the strong relationship between
these variables, they reveal as well that the increase in feed intake does not keep pace with the
increased demand imposed by an increased number of lactocytes in the mammary gland. Accordingly,
increases in body weight associated with selection for milk production have been shown to increase
maintenance requirements as well [30]. While energy expenditures by visceral organs represent 0.4-fold
of the maintenance requirements for nonproductive adults, they increase to 1.2-fold for lactating
ruminants [31]. Moreover, increased energy and nutrient demands for milk synthesis may also lead to
time constraints since eating and rumination time has to be traded off against all other activities. In fact,
there is little sign that high genetic merit cows digest feed more efficiently than low genetic merit
cows. It has been shown decades ago that digestive efficiency decreases as feed intake increases [32].
Accordingly, the nonlinear character of the relationship between milk yield and body weight suggest an
optimum body weight beyond which the feed-efficiency decreases in specialized breeds [33]. Loncke et
al. (2020) recently showed a similar pattern for the efficiency of hepatic glucose synthesis (conversion
rate of precursors to glucose), which decreases at high levels of precursor supply [34]. As a result,
high-producing dairy cows show increased rates of energy mobilization from body tissues to bridge the
gap between the supply of energy from feedstuffs and the energy needed to support milk production
along with all other energy-demanding life functions [35].

2.2. Homeorhetic and Allostatic Control of Nutrient Partitioning

Because most organs and tissues lack autonomy to control their nutrient access, the organism
needs prioritization rules that coordinate nutrient partitioning between different life functions in all
situations where demand exceeds supply. In this regard, different concepts of regulation have been
established and adapted to dairy cow physiology. In the concept of homeorhesis, nutrient partitioning is
described as a function of biological needs that alternates cyclically between storing and mobilization of
energy from body tissues and the associated prioritization of reproductive and productive functions [9].
Following this approach, it is a fundamental biological principle that after parturition, mammalian
organisms prioritize mammary tissues to provide an adequate supply to the neonate. Dairy production
is based on, and takes advantage of, this principle through a performance-oriented selection of animals.

However, environmental and nutritional stressors associated with varying quality and quantity
of feedstuffs, social stress, climate variability and extremes, poor hygiene, technical failure, etc. also
affect supply and demand of nutrients independent of the physiological state [27,36]. In this regard,
it has been emphasized that systematically reviewing the literature from epidemiological studies is
unlikely to support understanding of the effects of metabolic imbalances of each cow in her specific
genetic and environmental circumstance due to the fact that intricate biological correlations—besides
within- and between-herd confounding effects—exist [37].

The concept of allostasis goes beyond the concepts of homeostasis and homeorhesis by assuming
dynamic set points emerging from the integration of both the requirements of different tissues at
different physiological states and current nutritional, social and housing conditions [38]. In dairy cows,
various genotype x environment interactions have been described, including a reduced ability to adapt
to unfavorable conditions (plasticity) in cows with high genetic merit for milk production [39]. This
suggests that the process of adaptation to such conditions imposes a certain demand for energy itself,
which has been described qualitatively as the “allostatic load” of the animal [40]. If the allostatic load
becomes too big (allostatic overload), the capacity to cope with additional stressors is reduced and the
animal enters a pre-pathological state [41]. However, by considering maintenance functions as costs,
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they have to be traded off against productivity goals. Following this approach, resource availability for
immune cells provided through a balanced resource allocation is a prerequisite for an organism to be
able to cope with internal and external stressors.

3. Glucose Metabolism to Fuel Milk Synthesis and Immune Functions in Dairy Cows

Proinflammatory signaling promotes similar metabolic adaptations, as does the lactational
“reprogramming” with the aim of maximizing glucose availability to the respective cell types (Figure 1).
These changes are mediated by a network of hormones and affect both mobilization and allocation,
including specific regulation of blood flow and receptor expression patterns in peripheral, mammary
and immune tissues. In the following chapters, the metabolic processes associated with the onset of
lactation (Section 3.1) and those occurring during inflammation (Section 3.2) are discussed separately.
Subsequently, trade-offs for glucose between MEC and immune cells in dairy cows are evaluated in
Section 4.
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Figure 1. Schematic representation of metabolic pathways related to the glucose balance of dairy
cows during lactation and inflammation. Milk synthesis and immune defense rely on an adequate
supply with glucose, as it is an important energy source and precursor for lactocytes and leukocytes.
To increase overall glucose availability to the respective cell type, inflammatory signals (cytokines)
as well as peripartal fluctuation of hormones associated with the somatotropic axis such as growth
hormone (GH), insulin and insulin-like growth factor 1 (IGF-1) enhance (+) the rate of gluconeogenesis
and affect the level of intake (solid lines, thin), and increase the mobilization of body reserves (dashed
arrows). Lipolysis and proteolysis provide endogenous glucose precursors such as alanin and glycerol
as well as alternative energy sources like non-esterified fatty acids (NEFA) that help spare glucose in
peripheral tissues, where insulin sensitivity is reduced. Because glucose uptake is non-dependent on
insulin in both leukocytes and lactocytes, trade-offs for glucose allocation (solid arrows, bold) may
arise in situations where inflammation and lactation impose high demands. Limitations may also arise
from negative effects (-) of adipokines and cytokines on the hypothalamic regulation of intake and
from hepatic accumulation of triglycerides (TG) and NEFA when lipolysis is excessive.
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3.1. Adaptation to Lactation

Morphological changes required for mammary growth, morphogenesis, and milk synthesis are
created during gestation, with ductal elongation and lobulo-alveolar development being mediated
through high plasma concentration of prolactin, growth hormone (GH) and gonadotropic steroids
progesterone and estrogen before parturition [42,43]. Subsequently, high concentrations of GH are
known to stimulate galactopoiesis, while prolactin and Insulin-like growth factor 1 (IGF-1) are involved
in establishing and maintaining milk synthesis through their effect on epithelial cell differentiation and
survival [44,45].

To meet the sudden increase in demand during early lactation, further alterations in the endocrine
setup support dairy cows to metabolically adapt to lactation. Besides the above-mentioned hormones,
insulin, thyroid hormones, glucocorticoids and the gonadotropic axis are main effectors of the new
catabolic physiology and plasma concentrations of these hormones typically fluctuate at the transition
from a pregnant to a lactating physiology [46]. Especially changes in the somatotropic axis; i.e.,
decreased pancreatic secretion of insulin and reduced GH-receptor (GHR) expression in the liver [47]
are thought to be major levers of the new catabolic physiology [48-50]. Subsequently, hepatic GH
resistance and hypoinsulinemia mitigate stimulating effects on hepatic IGF-1 production [51]—a
condition that has been described as the “uncoupling of the somatotropic axis” [48].

Insulin signaling is particularly essential for a successful adaptation to lactation by affecting the
rate of lipolysis, the rate of uptake and transport of glucose and fatty acids to different tissues, and the
expression of key enzymes at the metabolic crossroads of glucose and fatty acid metabolism [52,53]. A
main effect of peripartal hypoinsulinemia is the reduction in insulin’s antilipolytic properties, which
facilitates the mobilization of nutrients from body reserves by increasing the rates of lipolysis and
proteolysis [54]. These processes are accompanied by increased rates of gluconeogenesis, reflected
by an increased mRNA amount of the important rate-limiting enzymes pyruvate carboxylase (PC)
and phosphoenolpyruvatecarboxykinase (PEPCK) postpartum [55]. Precursors for gluconeogenesis
include rumen-derived volatile fatty acids, mainly propionate and, to a lesser extent, circulating
C3-bodies like glycerol, alanine and lactate from intermediary metabolism [23]. Increased levels of
circulating non-esterified fatty acids (NEFA) resulting from adipose tissue remodeling are taken up
proportionally to their plasma level by the liver. Together with a simultaneous lack of oxaloacetate,
which is highly used for gluconeogenesis, increased NEFA lead to an accumulation of acetyl-CoA
in the liver. Subsequently, hepatocytes are forced to switch acetyl-CoA utilization from complete
(Krebs cycle) towards incomplete oxidation (ketogenesis) and/or to re-esterification with subsequent
storage of triglyceride in the liver [56]. Besides negative effects of hepatic TG accumulation on general
hepatic function, increased levels of 3-hydroxybutyrate (BHB) were shown to impair gluconeogenic
capacity [57,58]. In cultured bovine hepatocytes, increasing levels of NEFA gradually decrease mRNA
levels and catalytic activity of PC and PEPCK [59]. Thus, glucose balance is challenged severely when
lipolysis becomes excessive. Although the usefulness of plasma glucose as an indicator of a cow’s
metabolic status is particularly contentious due to the tight regulation of glucose homeostasis [60],
hypoglycemia is associated with the onset of ketosis, higher first test-day milk production and milk
production at 100 days in milk [61].

Moreover, allocation patterns that regulate the flow of nutrients between different tissues within
the organism change according to the new dominant physiological state of lactation. Again, these
changes are related to the “uncoupled’ somatotropic axis and in particular, to the phenomenon of
reduced insulin sensitivity in peripheral tissues of postpartum dairy cows [62-65]. Because glucose
receptors prevailing in the mammary gland are mostly non-dependent on insulin while muscle and
adipose cells are highly insulin-responsive cell types [66], reduced peripheral insulin sensitivity favors
the glucose supply of lactocytes. Simultaneously, mRNA encoding insulin-independent glucose
transporter (GLUT) with the highest affinity to glucose (GLUT1) increases strongly in mammary
tissues at the onset of milk synthesis [67]. As lactation advances, the mammary gland becomes more
insulin-sensitive and insulin-dependent while glucose uptake via GLUT4 increases [68]. In contrast,
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GLUT1 decreases about 6-fold in mRNA and protein levels in adipose tissue of early lactating cows
compared with dried off or late lactating cows [67]. However, the extraction of great amounts of glucose
from circulation is promoted primarily through a greater blood flow to the mammary gland, which
was found to be stimulated by the characteristic endocrine regulation of lactation [69,70]. In particular,
thyroxine is thought to enhance mammary nutrient extraction by increased heart rate and subsequent
increases in blood flow [71]. This was identified decades ago as a main determinant of quantitative
udder metabolism [16,72]. In more recent studies, blood sampling techniques comparing glucose
concentrations from the jugular and mammary vein showed a lower jugular/mammary quotient for
glucose concentration in dry and low-yielding cows, while revealing significantly higher levels in high
yielding cows [73].

In peripheral tissues, modest reductions [74,75] or no significant changes [67] in the expression
of insulin-dependent GLUT 4 in peripheral tissues have been reported in early lactating dairy cows.
However, these tissues are aligned to save glucose during that period by shifting their glucose
metabolism from complete oxidation towards lactate production. Accordingly, irreversible losses of
glucose excluding the loss in milk lactose decreases significantly in the first days after parturition [76].
Together with alanine and glycerol derived from muscle resp. adipose tissue, lactate can recirculate to
the liver, where it is supposed to have a higher proportional contribution to gluconeogenesis during
early lactation [23].

In summary, a complex endocrine network develops to increase glucose availability to the
mammary gland. If precursor supply or hepatic synthetic capacity are inadequate, the sudden increase
in mammary demand for glucose at the onset of lactation is the main driver of the hypermetabolic
reaction that affects a variety of metabolic pathways, tissues and organs within the organism.

3.2. Adaptation to Inflammation

Immune cell activity and inflammation are not only essential for pathogen elimination but are
part of the coordinated reaction of the organism to all kinds of stressors, including infective and
non-infective, metabolic and environmental stressors. After parturition, dairy cows experience an
inflammatory-like status, which is systemically linked to the inherent stress of parturition, social and
nutritional changes and the endotoxin-releasing processes of ruminal adaptation and uterine tissue
reorganization [77,78]. The response is characterized by a marked increase in plasma concentration
of positive acute phase proteins [79]. Their plasma level has been associated with the occurrence of
retained placenta, other diseases and impaired reproductive and productive performance during early
lactation [80,81]. However, the necessity of some degree of “physiological inflammation” is illustrated
by the action of anti-inflammatory drugs that inhibit the synthesis of prostaglandins required to expel
the placenta [82]. Following administration of an anti-inflammatory drug after calving, dairy cows
have an increased risk of retained placenta (2.5-fold) and metritis (1.5-fold) [83].

Whatever the origin of inflammation, the accumulation of proinflammatory processes implies
a supply with energy that adequately meets the requirements of immune response. Qualitatively,
the costs of immune activation include (1) a general elevation of metabolic rates due to a rise in
body temperature, (2) reduced nutrient availability following anorexic effects of proinflammatory
signaling, (3) the precursors and energy needed to fuel the synthesis of acute-phase proteins and
immunoglobulins, (4) altered priorities for nutrient utilization in other tissues, (5) the costs associated
with the repair of damaged tissues and (6) increased turnover rates of the leukocyte pool [27]. Although
an almost infinite number of possible combinations between metabolic and environmental stressors
make it impossible to estimate the current degree and duration of inflammation and immunoactivation
and to determine the energy demand of immune cells, some quantification has been performed. For
instance, it has been shown that the demand for oxygen, glucose and glutamine increases two- to
three-fold during lymphocyte activation [84]. By examining the effect of an infection with nematode
larvae on the energy requirement of merino sheep, it was estimated that infection increased the
requirement for metabolizable energy by 28% [85]. Even more impressively, Kvidera and colleagues
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combined an intravenous LPS challenge, a euglycemic clamp and measurement of milk yield reduction
in cows of parity 2 or 3 that were at 69 + 7 days in milk to calculate the demand of a fully activated
immune system. The authors estimated that dairy cows may require up to 3.1 kg of glucose per day to
mount an acute inflammatory response (Figure 2) [22].
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Figure 2. Milk or total glucose deficit from zero to 360, 360 to 720, and accumulated over 720 min
in cows administered a bolus of saline (CON), lipopolysaccharide (LPS-C), or lipopolysaccharide
accompanied with a euglycemic clamp (LPS-Eu). Different letters (x,y) represent differences between
milk glucose deficits (p < 0.05). Different letters (a—c) represent differences between total glucose deficits
(p < 0.05; total glucose deficit = milk glucose deficit in CON and LPS-C cows; total deficit = milk glucose
deficit + infused glucose in LPS-Eu cows). Results are expressed as least square means + standard
error of means. Reprinted from Kvidera et al. (2017), Copyright (2017) with permission from Elsevier.

In fact, cells of the innate and adaptive immunity rely largely on the uptake of glucose and the
storage of glycogen, because glucose supports proliferation, survival and differentiation as well as
essential functions like phagocytosis and ROS production [21]. Moreover, an activation of apoptotic
pathways in response to limited glucose uptake in cultured hematopoietic cells was reported [86].
In dairy cows, reduced glycogen concentrations in circulating neutrophils at calving indicate a depletion
of glucose depots during this challenging period and are associated with the occurrence of subclinical
endometritis and metritis [87]. Although immune cells are able to use alternative energy sources like
glutamine and ketone bodies to some extent [88-90], the importance of glucose as their main fuel
was corroborated by Noleto et al., who found that supplying increasing amounts of glutamine in
the absence of glucose was not sufficient to raise the inflammatory response to LPS in endometrial
monocytes and macrophages of dairy cows, whereas supplying more glucose was able to increase
inflammation in the absence of glutamine [91].

Not surprisingly, leukocytes trigger a number of metabolic pathways that increase the glucose
supply to these cells while reducing consumption of glucose by other tissues. First references describing
the link between inflammation and insulins actions date far back [92]. By now it is clear that the interplay
between proinflammatory and insulin signaling is common to all the mammals [93]. In dairy cows, the
effect of continuous and increasing LPS-infusion on whole-body insulin-resistance has recently been
demonstrated [94]. T-cells were shown to shift glucose transporter expression from insulin-dependent
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GLUT4 towards GLUT1 and GLUT3, which are non-dependent on insulin, to maintain glucose disposal
during activation [95-97]. Inflammatory pathways also promote the transcription of gluconeogenic
genes via toll-like receptor 4 (TLR-4) [98]. Macrophages and neutrophils undergo a metabolic switch
from oxidative phosphorylation towards glycolysis during activation, thereby increasing their demand
for glucose as well as their lactate production [99]. Metabolic reactions to the alterations induced by
proinflammatory cytokines further encompass increased rates of lipolysis and proteolysis, that could
provide energy for leukocyte functions as well as substrates for gluconeogenesis [100,101]. However,
the inflammation-mediated metabolic reprogramming appears very similar to the reprogramming
mediated by lactation, both aiming at a maximum supply of glucose for the respective cell functions.
On a systemic level, this includes increased rates of gluconeogenesis and reduced glucose consumption
in peripheral tissues.

4. Trade-Offs for Glucose between Lactocytes and Leukocytes

All mammals favor the supply of nutrients to the mammary gland during early lactation.
In contrast, the increases in milk yield and the specific demand for glucose required for high milk
yields override evolutionary principles of nutrient partitioning [102]. Because nutritional supply is
limited through various factors, e.g., percentage of concentrate in the diet, time to eat, turnover rates
in the rumen as well as the synthetic capacity of the liver during this period, most high-producing
dairy cows experience a period of glucose shortage. In such situations, trade-offs for glucose between
MEC and immune cells are unavoidable as they both rely on this essential substrate. Therefore, a
special focus on the allocation dynamics of glucose is necessary during periods when both lactation
and inflammation impose high demands.

4.1. Peripartal Immune Dysfunction

The phenomenon of reduced immune cell competence is well established in peripartal dairy
cows. It is broadly characterized by a dysfunction of PMN, macrophages and lymphocytes, including
an impairment of viability, survival, phagocytosis and respiratory burst capacity [103]. Studying
gene expression profiles in the bovine mammary gland during stage I and II of lactogenesis, it was
found that most of the genes associated with immune response were downregulated at the end
of gestation [104]. This is in line with the interpretation of Goff and Horst, who suggested that
neutrophil phagocytosis and lymphocyte proliferation begin to be impaired around three weeks before
parturition [105]. Moreover, significant changes in lymphocyte subsets occur. Overall number and
proliferation of circulating lymphocytes are reduced, while mammary cell number and proliferation
peaks around calving [43,106-108]. Accordingly, altered immune functions during the dry period are
associated with the development of metabolic disease during early lactation [106]. Around parturition,
elevated levels of glucocorticoids and decreased plasma levels of oestrogens and progesterone also
affect immune response through altered MHC-expression, cytokine production, diapedesis capacity
and viability of immune cells [109-111]. In summary, the mammary gland prepares for lactation not
only by improving functionality but also by suppression of competitive functions, allowing more
resources to be used for milk synthesis [104].

4.2. Metabolic Stress and the Immune System

The aforementioned relationships suggest that the substantial but transient suppression of immune
functions before parturition is related to the physiological adaptation to lactation. However, not
only cell number and proliferation, but also functionality of immune cells is impaired strongest
when MEC start the abundant synthetic activity of lactogenesis as was demonstrated by the transient
loss of expression of vascular factors and antimicrobial chemokines [104,112-114]. Accordingly,
mastectomized cows had a shorter and less marked immune suppression, including less impairment
of oxidative burst capacity and faster recovery of myeloperoxidase activity in neutrophils at calving
compared to non-mastectomized cows [115,116]. This indicates that some immunosuppressive effects
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may be independent from the endocrine changes associated with parturition but related directly to the
capacity to synthesize milk. In fact, various effects of severe NEB on immunosuppression have been
published and many of them are related to the effects of adipose-tissue remodeling on key molecules
involved in glucose and lipid metabolism [117]. For instance, high plasma levels of BHB are negatively
correlated with DNA replication and repair in leukocytes [118]. Plasma concentration of NEFA correlate
with increased hepatic expression of mRNA encoding proinflammatory cytokines and acute-phase
proteins [119]. Increased hepatic uptake of NEFA may also result in increased production of reactive
oxygen species (ROS) that carry out important tasks of immune defense by facilitating the destruction
of pathogens and enhancing the proinflammatory cascade at physiological plasma concentrations [120].
They can affect the integrity of immune cells, which are very susceptible to peroxidation due to
high concentrations of polyunsaturated fatty acids in their membranes. Additionally, ROS generated
during inflammation have been proposed to play a role in mediating insulin resistance [121]. If NEFA
mobilization and ROS production is excessive, host tissues may fail to mitigate the negative effects
of ROS by activation of antioxidant pathways, resulting in severe tissue damage [122]. Leukocyte
function is also affected by the shift in fatty acid profile resulting from lipomobilization [123]. Altered
concentrations of adipokines postpartum mitigate stimulating effects on chemotaxis and phagocytosis
of neutrophils, proliferation of native T-cells and the secretion of cytokines as well as anti-inflammatory
effects [124,125], presumably via activation of TLR-4 and nuclear factor kappa-B (NFkB) [74,126].

Accordingly, cows with severe NEB have a reduced ability to clear uterine infection postpartum.
The active uterine inflammatory response in these cows was associated with impaired local
insulin-receptor signaling [127]. In the mammary gland of lactating dairy cows subjected to a
dietary-induced NEB, expression of genes related to proinflammatory signaling via NFkB (AKT1,
IRAK1, MAPK9 and TRAF6), IL-8 (e.g., CXCR1/R2) and chemokine signaling (e.g., SOCS2) were
downregulated [128].

Nevertheless, experimentally induced negative energy balance in advanced lactation was
repeatedly shown to be unable to cause alterations of inflammation and immune cell function
that are as severe as those occurring during early lactation [129-131]. With regard to the importance of
glucose for immune cells, a possible mechanism associated with different reactions to similar NEB could
be an increased glucose availability during late lactation, as it was demonstrated that late-lactation
induced NEB evoked less severe proportional decreases in plasma glucose concentrations, compared
to early-lactation NEB [132,133].

4.3. Competition for Glucose between MEC and Immune Cells

As addressed previously, the usefulness of plasma glucose as an indicator of a cow’s metabolic
status is unsure due to the tight regulation of glucose homeostasis [60]. However, Graber and colleagues
differentiated metabolically robust or vulnerable cows based on the occurrence of various metabolic
and (re)productive disorders in previous lactations and identified plasma glucose as the only variable
explaining the differences between those groups at both time points investigated (3 weeks before and
4 weeks after parturition) [12]. In another study, plasma concentrations of glucose and insulin during
lactation were found to be the single most important predictors related to the development of disease,
explaining 36% of the between-cow variability in energy-corrected milk [14].

Generally, dietary energy supply affects glucose oxidation and transport in leukocytes in
ruminants [134,135] and provide hints regarding the special competition for this essential metabolite.
Inversely, elevated plasma concentrations of the acute phase protein haptoglobin are associated with
remarkable decreases in milk yield [81,136]. Anti-inflammatory treatments substantially increase
lactational milk yield [137,138]. This demonstrates that inflammation has some kind of regulatory
potential of on mammary glucose extraction. Still, the question ‘how nutrient partitioning is regulated
when resources become scarce’ remains. In this regard, it was speculated that decreases in monocyte
GLUT1 protein and mRNA expression after calving are due to lactogenesis [135]. In fact, Eger et al.
demonstrated a direct negative correlation between lactose yield and overall expression of GLUT1
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and GLUTS3 as well as a decrease in GLUT3/GLUT1 ratio of monocytes with increasing lactose yield
(Figure 3A-C) [96]. On the other hand, downregulation of some GLUT isoforms in the mammary
gland was observed following LPS-induced mastitis during mid lactation [139]. However, mRNA
abundance of mammary GLUT1 transporter, which is the most important one for lactose synthesis [140],
does not decrease in cows submitted to a hyperinsulinemic-hypoglycemic clamp, not even when
these cows were submitted to an additional intramammary LPS challenge [139]. As described above
(Section 3.1), mammary extraction of glucose from the plasma pool is likely to not be limited by GLUT
expression of these cells and the plasma concentration of glucose but rather depends on the rate of
local blood flow resulting from the metabolic activity of the gland. In contrast to mammary epithelial
cells, circulating immune cells rely on the rate of GLUT expression and increases in types of GLUT that
are insulin-independent to cover their glucose demand.

A) GLUT1 day +21 B) GLUT3 day +7 C) GLUT3/GLUT1 day +7

150,000 500,000- 4.0

400000 5
100,000 o 300000

3.0
200000

100 ng of total RNA

25

a
=)
=3
1=3
=]
=1

Ratio GLUT3/GLUT1

mRNA copy number/
100 ng of total RNA
o
k=]
o
o
o
L]
%
L]
%
L]
L]
mRNA copy number/

T T | T T 1 2.0+ T T |
1.0 1.5 2.0 25 1.0 1.2 1.4 0.8 1.0 1.2 1.4

Lactose (kg/d) Lactose (kg/d) Lactose (kag/d)

o2
3

Figure 3. Peripartal monocyte glucose transporter expression is correlated with lactose production.
glucose transporter 1 (GLUT1) (A) and GLUT3 (B) mRNA expression as well as the GLUT3/GLUT1
ratio (C) atd + 7 and d + 21 relative to parturition were correlated with milk production data of wk
1 (n = 5) and wk 3 (n = 15) of lactation, respectively, using Pearson (GLUT1 and GLUT3/GLUT1) or
Spearman (GLUT3) correlation. Significant correlations with lactose production (at least p < 0.05, r >
—0.50) were followed by nonlinear regression analysis (inverse model: Y = BO + B1/X). (A) GLUT1 d +
21 (R? = 0.314, BO = —30,557, B1 = 107,794), (B) GLUT3 d + 7 (R? = 0.871, BO = —495,507, B1 = 761,265),
and (C) GLUT3/GLUT1 ratio d + 7 (R% = 0.975, BO = —0.432, B1 = 3.549). Reprinted from Eger et al.
(2016), Copyright (2016) with permission from Elsevier.

Decreases in lactose yield as well as decreases in the mRNA-abundance of the ALA-subunit of
lactose synthase were reported in hypoglycemic cows [139,141]. Similarly, reduced lactose content in
milk following intramammary infection was reported [142,143] and could be a mechanism to save
glucose for immune functions or/and to reduce substrate for bacterial growth during infection. On the
other hand, Kreipe et al. showed that fat and protein percentages increased in hypoglycemic cows while
energy-corrected milk did not differ significantly between hypoglycemic and control animals [141].
Thus, the extraction of glucose by the mammary gland might be unchanged during hypoglycemia,
whereas glucose partitioning within the mammary gland is shifted from lactose synthesis towards
glycolysis and pentose phosphate pathway to support protein and fat synthesis as was detected in
bovine MEC exposed to various levels of glucose [144].

In fact, high-producing dairy cows were shown to be unable to reduce milk synthesis during early
lactation in particular, while being able to reduce milk synthesis during induced energy deficiency
at 100 days in milk, even if induced NEB was more severe compared to early-lactation NEB [132].
Accordingly, milk yield reductions following infusion of 100 pg LPS were found to be more pronounced
in late lactation compared to early lactation [145,146]. Milk production of cows challenged with
intramammary infusion of 30 cfu [147], 1 x 10* cfu of diluted E. coli per quarter or 1000 pg LPS [148]
decreased to low levels. In contrast, milk yield was unaffected by chronic and exponentially increasing
intravenous infusions of LPS (0.017-0.148 pg/kg of body weight per hour from day 1 to 7) in a recently
conducted study [149]. Daily subcutaneous injection of 3 pug/kg body weight of bovine tumor necrosis
factor-o during the first week of lactation decreased milk yield only slightly (33.7 to 28.4 kg at highest
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dose) [149]. Osmotic TNFx pumps releasing 14 pg/kg body weight over 7 days implanted in adipose
tissue in late lactation cows had no effect on milk yield [150].

Further evidence for an antagonistic, yet dysbalanced relationship between metabolic pathways
involved in adaptation to lactation and adaptation to inflammation is derived from studies examining
the effect of the characteristic endocrine alterations required for high milk yields. Compared to
low or medium genetic merit cows, high genetic merit cows show lower plasma concentrations of
glucose, insulin and IGF-1, as well as higher plasma concentrations of GH [151,152], while insulin
resistance is increased [63,153-155]. As described above, hypoinsulinemia favors glucose uptake in
both immune cells and MEC because these cells are not dependent on insulin whereas glucose uptake to
insulin-dependent cells like adipose and muscle cells is reduced [67]. However, hypoinsulinemia also
mitigates stimulating effects of insulin on the rate of glucose utilization and phagocytosis in immune
cells [156,157]. Moreover, increased GH-resistance is associated to selection for milk production and
might contribute to the dysbalanced allocation of resources between MEC and immune cells in dairy
cows. While GH exerts its mammogenic and galactopoietic effects directly in the mammary gland, either
through GHR or through mammary IGF-1 production [158,159], many of the immune-stimulating effects
attributed to GH are mediated indirectly through induction of hepatic IGF-1 production [160]. However,
IGF-1 production in the liver is blunted through hepatic GH-resistance during early lactation [47].
Interestingly, it was shown that different breeds selected for milk production (Holstein-Friesian and
Guernsey) showed similar decreases in GHR1A mRNA expression [161], whereas a comparison
between Holstein-Friesian and beef cattle revealed decreases in the expression of GHR1A in dairy
cows only [162].

5. Management of High-Producing Dairy Cows that Risk Glucose Shortage

The management of high-producing dairy cows should aim for a maximal reduction in metabolic
and environmental stress to reduce the energy demand of regulatory systems. Although the specific
demand of an activated immune system is difficult to assess, tendencies may be estimated from plasma
levels of inflammatory markers, as it has been recently suggested by Trevisi and Minuti [163]. Moreover,
the amount of residual glucose left for life functions other than milk synthesis may be estimated by
consideration of the glucose demand of quantifiable processes like milk synthesis on one hand and the
amount of glucose supply from precursors (derived from feedstuffs and body tissue mobilization) and
the hepatic gluconeogenic potential on the other.

Furthermore, dry off feeding and heifer management should be optimized, as it was repeatedly
shown that nutrition during these life stages affects availability and allocation of nutrients during
early lactation [164]. For instance, overfeeding cows by 50% of predicted requirements decreased
postpartum plasma glucose and insulin while increasing glucagon, BHB, and NEFA concentrations after
calving compared with cows fed a balanced energy diet during the dry period [165]. During lactation,
feeding should be more adapted to meet the need of individual cows in their specific physiological
and environmental condition. In particular, supply with glucogenic precursors should be optimized.
Although Lucy et al. demonstrated the key role of glucose by showing that infusions of substantial
daily doses of glucose (8500 to 1500 g/day) into early postpartum cows were able to completely reverse
the hypercatabolic reaction (significant increases in blood concentrations of insulin and IGF-1 along
with significant decreases in the concentrations of NEFA and BHB) [166], feeding glucogenic diets is
unlikely to significantly reverse lactational energy partitioning, although controversial results can be
found in the literature [167-169]. Certainly, nutritional interventions are limited through, e.g., careful
use of grain in the diet, time to eat, rumen volume and liver function. There are reasonable doubts
whether dairy feeding regimes can further optimize the supply with precursors and the potential of
gluconeogenesis and thus increase total glucose availability. For the sake of animal health and welfare
and the economic implications of production diseases, dairy farmers should consider a modest but
precise reduction on the other side of the equation, i.e., apply management measures that decrease
glucose output via milk during periods when dairy cows are challenged simultaneously by both high
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yields and infectious or non-infectious stressors. Possible management tools include a reduced milking
frequency at the onset of lactation [170-172]. In fact, it has been demonstrated that reduced milking
frequency reduces both milk yield and inflammation simultaneously [173]. Moreover, instead of
implementing general strategies for a very heterogeneous target group, dairy cows should be assessed
individually according to their status of NEB. Dairy cows with a high NEB should be allocated to a
risk group and dealt with appropriately. In the long term, breeding should be redefined to include
increased selection for persistence, lifetime performance and longevity while reducing emphasis on
selection for milk yield and early-lactation performance in particular.

6. Conclusions

NEB is commonly thought to identify metabolically instable situations associated with increased
risk of disease in dairy cows. However, overall energy balance disregards the reliance of immune
cells on glucose as their essential metabolite and synthetic precursor. Although both proinflammatory
signaling and lactational reprogramming promote several similar metabolic pathways with the aim
of maximizing glucose availability to the respective cell types (lactocytes or leukocytes), adaptation
to lactation clearly shifts nutrient partitioning to the favor of the mammary gland. Adaptations are
mediated primarily by hormones of the somatotropic axis and affect both mobilization and allocation,
including specific regulation of blood flow and receptor expression patterns in peripheral, mammary
and immune tissues. Additionally, decades of performance-oriented selection of dairy cows enhanced
these patterns substantially by increasing the amount of mammary epithelial cells as well as the
metabolic and endocrine setup required to support the demand of these cells. Due to the central role
of glucose for milk production and immune cell function, glucose balance is especially submitted
to competitive allocation dynamics and is at risk of being overstressed in the early postpartum,
high-producing dairy cow, as indicated by reduced responsiveness of lactose synthesis and milk yield
to energy or glucose restriction, or other stressors. Therefore, we hypothesize that the uncoupling of
the somatotropic axis in cows with high genetic merit for milk production implies, at least in part,
an uncoupling of the mammary gland from life function trade-offs. To address possible impacts of
glucose shortage on the immune defense, research should focus on the dynamics of glucose supply
and demand of immune cells in high producing dairy cows during different periods of lactation.
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