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Abstract: Postprandial hypotension (PPH) is an important and under-recognised disorder resulting
from inadequate compensatory cardiovascular responses to meal-induced splanchnic blood pool-
ing. Current approaches to management are suboptimal. Recent studies have established that the
cardiovascular response to a meal is modulated profoundly by gastrointestinal factors, including
the type and caloric content of ingested meals, rate of gastric emptying, and small intestinal transit
and absorption of nutrients. The small intestine represents the major site of nutrient-gut interactions
and associated neurohormonal responses, including secretion of glucagon-like peptide-1, glucose-
dependent insulinotropic peptide and somatostatin, which exert pleotropic actions relevant to the
postprandial haemodynamic profile. This review summarises knowledge relating to the role of
these gut peptides in the cardiovascular response to a meal and their potential application to the
management of PPH.

Keywords: postprandial hypotension; glucagon-like peptide-1; glucose-dependent insulinotropic
polypeptide; somatostatin; diabetes mellitus; autonomic failure

1. Introduction

Postprandial hypotension (PPH) is defined as a fall in systolic blood pressure (SBP)
of ≥20 mmHg, or a decrease to ≤90 mmHg if normotensive at baseline, within 2 h of a
meal [1]. It is under-recognised, despite occurring frequently in the elderly (prevalence
~20–30%) and individuals with type 2 diabetes mellitus (T2D) (~40%) and chronic neu-
rological disorders, such as Parkinson’s disease (40–100%) [1]. PPH is associated with
substantially increased morbidity and mortality, and predisposes to syncope, falls, angina,
transient ischaemic attacks and stroke [2]. The pathophysiology underlying PPH remains
incompletely understood, but emerging evidence has revealed the fundamental role of
gastrointestinal function in the regulation of cardiovascular responses to a meal [1], partic-
ularly the secretion and action of gut-derived peptides including glucagon-like peptide-1
(GLP-1) [3], glucose-dependent insulinotropic polypeptide (GIP) [4,5] and somatostatin [6].
Indeed, therapeutic strategies that modulate gastrointestinal hormone secretion or sig-
nalling have been shown to influence postprandial blood pressure substantially, although
few, if any, studies have assessed whether the available therapies have a sustained effect on
postprandial blood pressure or can prevent complications of PPH [1]. This review discusses
the relevance of gastrointestinal function to the regulation of postprandial blood pressure,
with an emphasis on the role of gut peptides in the pathophysiology and management
of PPH.

2. Gastrointestinal Regulation of Postprandial Blood Pressure

The onset of PPH reflects inadequate cardiovascular compensation to meal-induced
splanchnic blood pooling, which results from complex interactions between ingested nutri-
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ents and the gastrointestinal tract. There is now compelling evidence that gastrointestinal
factors, including meal composition, the rate of nutrient delivery to the small intestine (i.e.,
gastric emptying), nutrient absorption, the specific region of the small intestine exposed to
nutrients, and the consequent neurohormonal responses, are integral to the postprandial
blood pressure response (Figure 1) [1].
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Figure 1. Proposed model by which the gut modulates the postprandial haemodynamic response.
The composition of the meal ingested, rate of small intestinal nutrient exposure and subsequent
absorption of nutrients, region of small intestine exposed to nutrients and neurohormonal responses
all affect postprandial haemodynamics, with the potential to influence the blood pressure response
to a meal. Gut peptides, notably GLP-1 [7], GIP [8] and somatostatin [9], may have profound effects
on postprandial haemodynamic responses.

Carbohydrate, fat and protein have all been shown to induce variable haemodynamic
responses. For example, in hypertensive older individuals, oral carbohydrate, but not fat or
protein, reduced mean blood pressure [10]. In “healthy” older individuals, intraduodenal
administration of glucose (3 kcal/min) led to a more rapid decline in SBP when compared
with intraduodenal isocaloric fat and protein [11], and the increase in superior mesenteric
artery blood flow, a surrogate measure of splanchnic blood pooling, in response to in-
traduodenal protein was less when compared with glucose and fat [11]. In individuals with
T2D, intraduodenal infusion of glucose (2 kcal/min), but not lipid, reduced diastolic blood
pressure (DBP) [12]. The variable haemodynamic responses to macronutrients may reflect
differences in neurohormonal profiles; for example, fat, relative to isocaloric glucose, is a
more potent stimulus for secretion of the two incretin hormones, GLP-1 and GIP [12,13].

The rate of nutrient delivery into the small intestine is tightly controlled by gastric
emptying, which exhibits substantial inter-individual, but much less intra-individual,
variation [14]. Along with the observation that gastric emptying predicts postprandial
glucose excursions [14], changes in postprandial blood pressure have also been found
to be related to the rate of gastric emptying. There is now compelling evidence that
gastric emptying represents a major determinant of the blood pressure response to a meal,
such that the postprandial fall in SBP is greater when gastric emptying is relatively more
rapid [15,16], reflecting enhanced small intestinal nutrient interaction and splanchnic blood
pooling [17]. However, the relationship between gastric emptying and postprandial blood
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pressure does not appear to be linear; in healthy older individuals, the fall in blood pressure
increased with escalating rates of intraduodenal glucose infusion between 1–2 kcal/min
but did not differ between 2 and 3 kcal/min [17]. This apparent “threshold” may reflect
concurrent changes in the secretion of gut-derived peptides involved in the regulation
of postprandial cardiovascular function. Interventions that slow gastric emptying, either
dietary (e.g., co-ingestion of dietary fibre, guar gum) or pharmacological (e.g., acarbose
and GLP-1 receptor agonists), have been shown to attenuate the fall in SBP in response to a
carbohydrate meal in “healthy” older individuals and those with T2D [18–20].

The interaction of nutrients with the small intestine results in splanchnic vasodilata-
tion to facilitate the absorption of nutrients via the portal circulation. In parallel with this
phenomenon, interventions that slow the rate of small intestinal carbohydrate absorption,
such as ingestion of an alpha-glucosidase inhibitor, acarbose [21], or small intestinal infu-
sion of a viscous polysaccharide, guar gum [22], are associated with reduced splanchnic
blood pooling and attenuation of the fall in SBP in “healthy” older individuals. Variations
in nutrient absorption along the small intestine affect the region of the intestine exposed to
nutrients, and this may also influence postprandial haemodynamics. In a recent study, a
standardised glucose infusion (2 kcal/min over 60 min) was delivered into the duodenum
(13 cm post-pylorus) or ileum (190 cm post-pylorus) in individuals with T2D, and changes
in blood pressure, heart rate and superior mesenteric artery flow were evaluated. Duodenal
glucose exposure was shown to result in a much greater decline in SBP and rise in superior
mesenteric artery flow than ileal [23], in association with more rapid glucose absorption,
greater GIP release, and less GLP-1 secretion [24]. The latter observation supports the
influence of gut-derived peptides in the regulation of postprandial cardiovascular function
(as discussed in Sections 3.1, 4.1 and 5.1).

The fall in systemic blood volume secondary to splanchnic vasodilatation is normally
compensated for by a combination of enhanced cardiac output via increases in heart rate
and/or stroke volume, and increased systemic vascular resistance [25]. Multiple neurohor-
monal mechanisms have been implicated in the cardiovascular response to a meal. Gastric
distension, such as with meal ingestion, triggers a “gastrovascular reflex,” involving the
stimulation of noradrenaline secretion, which enhances sympathetic nervous activity. This
response is often blunted in the elderly, particularly those with PPH [2]. A number of
vasoactive gut peptides have recently been implicated in the regulation of postprandial
cardiovascular function, most notably GLP-1, GIP and somatostatin. Early interventional
studies suggest that modulation of the secretion or signalling of these gut peptides may
have a profound impact on the blood pressure response to meals, providing potential novel
targets for the management of PPH (as discussed in Sections 3.1, 4.1 and 5.1) [24,26]. Other
gut peptides, including amylin, calcitonin-gene-related peptide, neurotensin, vasoactive-
intestinal peptide, bradykinin and substance P are conceivable targets for modulating
postprandial cardiovascular function, either via slowing of gastric emptying [27] or vasoac-
tive actions [1]. However, there is a lack of evidence to support their role in postprandial
cardiovascular function [1,28].

3. Glucagon-Like Peptide-1 (GLP-1)

GLP-1 is secreted by enteroendocrine L-cells which are located most densely in the
ileum and colon. The secretion of GLP-1 is minimal during fasting, but is increased
markedly following intestinal nutrient stimulation, particularly when the distal gut is ex-
posed [29]. The majority of GLP-1 is inactivated prior to reaching the peripheral circulation
by dipeptidyl peptidase-4 (DPP-4), an enzyme located on the surface of endothelial cells in
close proximity to enteroendocrine cells [30], as well as in the liver and within the circula-
tion [31]. Despite its rapid degradation, GLP-1 mediates considerable postprandial insulin
secretion via the “incretin effect”, i.e., enhanced insulin secretion following oral or enteral
glucose loads, when compared with an “isoglycaemic” intravenous glucose infusion [24].
In addition, GLP-1 slows gastric emptying and suppresses glucagon secretion [24]. Accord-
ingly, both the DPP-4 resistant GLP-1 receptor agonists (GLP-1RAs) and DPP-4 inhibitors
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have been developed for glycaemic control in T2D. It is noteworthy that augmented GLP-1
secretion may also underlie the anti-diabetic effect of older anti-diabetic agents, such as
metformin [32,33] and alpha-glucosidase inhibitors [34–36], since they delay intestinal
glucose absorption and, hence, increase stimulation of the enteroendocrine L-cells in more
distal gut regions (Table 1). Since its discovery in 1987 [37,38], numerous extra-glycaemic
actions of GLP-1 have been appreciated, including effects on the cardiovascular system.
The clinical implications of the latter remain to be explored comprehensively.

Table 1. Pharmacotherapies with GLP-1 based actions and the mechanisms of their effects [24,33–36,39].

Drug Class Example Drugs GLP-1 Associated Effect(s)

Biguanide Metformin
↑ secretion

(directly/indirectly)
↓ DPP-4 activity (modest)

Alpha-glucosidase inhibitor
Acarbose
Miglitol

Voglibose

↑ secretion
↓ DPP-4 activity (voglibose)

Short-acting GLP-1RA Exenatide BD
Lixisenatide Activation of GLP-1 receptors

Long-acting GLP-1RA

Dulaglutide
Exenatide QW

Liraglutide
Semaglutide

Activation of GLP-1 receptors

DPP-4 inhibitor

Alogliptin
Linagliptin
Sitagliptin
Saxagliptin
Vildagliptin

↑ intact GLP-1 plasma half-life

↑: increase; ↓: decrease; GLP: glucagon-like peptide; DPP: dipeptidyl peptidase.

3.1. Effects of GLP-1 on Postprandial Haemodynamics

In rodents, intravenous administration of GLP-1 was shown to increase sympathetic
activation, evidenced by a thermogenic effect attenuated by adrenalectomy or pre-treatment
with pharmacological antagonists of sympathetic nervous activity [40]. In humans, GLP-
1RAs do not affect preprandial blood pressure acutely [41], but have been shown to reduce
SBP modestly in the long-term, an effect attributed to enhanced natriuresis and weight
loss [42]. Few studies however, have attempted to discriminate between the cardiovascular
profiles of GLP-1 in the fasting and postprandial states [43]. Intravenous GLP-1 adminis-
tration at a pharmacological dose (0.9 pmol/kg/min) attenuates the fall in SBP and DBP
(~5 mmHg at 60 min) in response to a carbohydrate meal in T2D (Figure 2) and does so
variably in “healthy” older individuals [3,7]. This occurs in association with slowing of
gastric emptying, a reduction in superior mesenteric artery blood flow, and a variable
increase in heart rate [3,7]. GLP-1 may have direct effects on cardiac pacemaker cells given
that cardiac GLP-1 receptors appear to be localised to the atria, where the sinoatrial and
atrioventricular nodes reside [24]. Accordingly, the release of GLP-1 from the distal gut may
logically serve as a “negative feedback” mechanism to prevent an exacerbated hypotensive
response to increased delivery of nutrients into the small intestine.

Paradoxically, in one study, higher plasma GLP-1 levels were associated with PPH in
patients with multiple system atrophy, but it remains uncertain as to whether increased
GLP-1 levels were a cause of PPH or secondary to multiple system atrophy. Notably, the
individuals with PPH in this study had sympathetic failure which may have attenuated
the effect of GLP-1-signalling on blood pressure [44].
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3.2. Interventional Strategies Utilising GLP-1 for Postprandial Blood Pressure Control

The potential for GLP-1 to modulate postprandial cardiovascular function has rendered
it an attractive target for maintaining postprandial blood pressure. Several antidiabetic
agents, including GLP-1RAs, DPP-4 inhibitors, metformin and alpha-glucosidase inhibitors,
have been investigated for their effects on postprandial blood pressure and GLP-1.
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error of the mean. Intravenous GLP-1 increased DBP in “healthy” older subjects (p < 0.001), and SBP and DBP in T2D
subjects (p < 0.05 for both), postprandially [7].

The short-acting GLP-1RAs, such as exenatide BD and lixisenatide, have demonstrated
similar effects to administration of exogenous GLP-1 on the postprandial haemodynamic
profile. In individuals with and without T2D, administration of lixisenatide (10ug, by
subcutaneous injection) markedly slowed gastric emptying and attenuated the increase
in superior mesenteric artery flow and fall in SBP and DBP postprandially (Figure 3) [20].
Acute administration of exenatide BD increased heart rate and attenuated the fall in
SBP and DBP in response to intraduodenal glucose infusion (2 kcal/min) in patients
with T2D [45]. In contrast, the effects of long-acting GLP-1RAs, such as exenatide QW
and semaglutide, on postprandial haemodynamics are less well-studied. Even though
sustained stimulation of the GLP-1 receptor is known to be associated with tachyphylaxis
for the slowing of gastric emptying by GLP-1 [46], there is recent evidence that exenatide
QW [47] and semaglutide [48] may retain some capacity to slow gastric emptying in health
and T2D with prolonged use. Hence, even long-acting GLP-1RAs may have the potential
to attenuate the postprandial fall in blood pressure.
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Figure 3. Effects of lixisenatide (10 µg subcutaneously), compared with placebo, on SBP (A,B) and
DBP (C,D) immediately before and after a 75 g glucose drink, in individuals with (B,D) and without
T2D (A,C). Data are mean values ± standard error of the mean. Lixisenatide attenuated the fall in
SBP and DBP in both groups [20].

The cardiovascular effects of DPP-4 inhibitors (“gliptins”) are of increasing interest [49].
There is limited information about the effects of DPP-4 inhibition on postprandial blood
pressure. Reported benefits of DPP-4 inhibitors on PPH relate primarily to case studies,
as well as a small cohort of overweight T2D patients receiving metformin therapy [50–52].
For example, in a comparative study in overweight patients with T2D, 8 weeks treatment
with the DPP-4 inhibitor, linagliptin, while achieving comparable glucose-lowering to
glimepiride (a sulphonylurea anti-diabetic drug which does not affect haemodynamics),
was reported to attenuate the fall in blood pressure after a meal (0.7 ± 2.3 mmHg) without
impacting preprandial blood pressure [50]. In contrast, when another DPP-4 inhibitor,
vildagliptin, was administered acutely with an intraduodenal glucose infusion in T2D, post-
prandial SBP and DBP were lower when compared with placebo [53]. In T2D, sitagliptin
administration did not significantly impact blood pressure after a potato meal [54]. The
discrepancy in the studies of vildagliptin and sitagliptin, compared with linagliptin, may
relate to differences in study design, including the study duration and method of carbo-
hydrate administration. Perhaps the most important difference in the studies was the
concomitant use in the former of metformin, a drug known to moderate cardiovascular
outcomes with DPP-4 inhibitors and potentially act to augment DPP-4 inhibition to enhance
plasma active GLP-1 levels [55,56].

The impact of metformin on postprandial blood pressure has only been evaluated
in a small cohort of T2D patients. In this study, intraduodenal infusion of metformin 1g
attenuated the fall in blood pressure after 50 g oral glucose substantially (by almost 10
mmHg 60 min after a meal) (Figure 4), an effect associated with an increase in plasma GLP-1
and slowing of gastric emptying [57]. Metformin has also been shown to slow intestinal
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glucose absorption and increase noradrenaline secretion [58], which may contribute to the
attenuation of the fall in blood pressure after enteral glucose.
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Observations on the postprandial haemodynamic effects of alpha-glucosidase inhi-
bition have focused primarily on acarbose, with minimal study of the other drugs of this
class [59]. Acarbose administration in “healthy” individuals leads to enhanced plasma
GLP-1, although this is inconsistent in individuals with T2D [19,36,60]. Several small
cohorts [61–63] and case studies [64–67] support the potential for acarbose to modulate
postprandial haemodynamics. In one such case study, a 58-year-old individual with T2D,
complicated by microvascular disease and severe symptomatic postprandial hypotension,
received acarbose (300 mg/day), octreotide and midodrine on separate days, undergoing
24 h ambulatory blood pressure monitoring. Postprandial blood pressure, along with
orthostatic dizziness and postprandial vertigo, were attenuated after acarbose, but not
octreotide or midodrine [64]. The acute effect of a single oral dose of acarbose (50–100 mg)
on blood pressure and heart rate after a standardised meal has been studied in cohorts
of “healthy” elderly (Figure 5) [19,63], T2D with PPH [62], and subjects with pure auto-
nomic failure [61]. In each case, the fall in postprandial blood pressure was attenuated
significantly (by 15–20 mmHg SBP). Postprandial heart rate was affected by acarbose in a
single study (Figure 5). The effect of sustained, relative to acute, acarbose administration
on postprandial blood pressure is less well-studied, although case studies suggest it is
maintained [67,68]. Slowing of gastric emptying, which may result from enhanced GLP-1
concentrations, and attenuation of postprandial splanchnic vasodilation with acarbose, are
likely to contribute to its effects on postprandial haemodynamics [21,69]. Practically, the
widespread use of acarbose is not limited by safety or cost, but by gastrointestinal adverse
effects, including flatulence and diarrhoea, which are common but tend to subside with
continued treatment, and can be minimised through stepwise dose increments and dietary
modifications (consuming complex carbohydrate over simple sugars) [70,71].
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These therapies, originally introduced as glucose-lowering agents, offer exciting
therapeutic potential for the management of PPH, but further studies in larger cohorts of
patients with and without T2D are warranted.

4. Glucose-Dependent Insulinotropic Polypeptide

GIP is the first of the two “incretin hormones” identified in the 1970s [72]. It is released
from the enteroendocrine K-cells which predominate in the proximal small intestine. Like
GLP-1, GIP has a short half-life in the systemic circulation due to prompt inactivation by
DPP-4. Plasma GIP concentrations are low in the fasting state and increase promptly in
response to nutrient stimulation [24]. As an incretin hormone, GIP has a well-established
effect to stimulate postprandial insulin secretion in a glucose-dependent manner [73].
Unlike GLP-1, GIP has little effect on gastric emptying, and can augment glucagon secretion
in the face of falling glycaemia. It is increasingly recognised that GIP exhibits numerous
extraglycaemic functions mediated by GIP receptors identified in diverse tissues [24].

4.1. Effects of GIP on Postprandial Haemodynamics

GIP has been reported to induce splanchnic blood pooling and increase heart rate, with
variable effects on blood pressure [4,5]. Pre-clinical studies have delineated the variable
profile of GIP in the splanchnic, compared with systemic, circulation. Intravenous adminis-
tration of GIP at supraphysiological doses consistently increased splanchnic blood flow
in multiple animal studies [74–76]. In contrast, intravenous GIP in dogs reduced hepatic
artery blood flow [76]. In humans, the postprandial rise in plasma GIP in individuals with
T2D receiving sitagliptin concurrently with enteral glucose infusion was proportional to the
increase in heart rate [5]. In patients with type 1 diabetes who underwent hyperglycaemic
and hypoglycaemic clamps, intravenous GIP infusion was associated with an elevation in
heart rate (10.1 ± 2.6 and 16 ± 4.7 bpm respectively), with a concurrent reduction in DBP
(5.4 ± 4.5 and 9.7 ± 6.6 mmHg respectively), although SBP was observed to be increased
during the former (5.6 ± 3.1 mmHg), and unaffected in the latter, setting [8]. During a hy-
perglycaemic clamp in T2D patients, GIP infusion led to a reduction in mean arterial blood
pressure (10–15 mmHg) and increase in heart rate (~8 bpm) [4]. Splanchnic blood flow
was not assessed in these studies but, conceivably, the increase in heart rate represented a
compensation for GIP-induced splanchnic blood pooling. Alternatively, given the presence
of GIP receptors in the heart [24], GIP could have a positive chronotropic action either
directly, or mediated via anti-cholinergic activity [8]. Overall, GIP has been associated with
a decline in postprandial blood pressure in most settings, an effect likely mediated via
splanchnic blood pooling, at times compensated for by an increase in heart rate.

4.2. Interventional Strategies Utilising GIP for Postprandial Blood Pressure Control

Given that GIP enhances splanchnic blood pooling, the impact of GIP agonists and
antagonists on PPH would be of interest. A dual GLP-1/GIP agonist, tirzepatide, has been
developed for the treatment of T2D [77,78], while GIP antagonism, utilising a selective
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competitive inhibitor (GIP fragment GIP(3–30)NH2), has been examined in a pre-clinical
setting for potential benefits in T2D [79]. Conceivably, GIP agonism could aggravate, and
antagonism could benefit, postprandial blood pressure control. Further studies evaluat-
ing the effects of such drugs on the cardiovascular system pre- and postprandially are
warranted.

5. Somatostatin

Originally named “growth-hormone release-inhibiting hormone” upon its discov-
ery in 1973 [80], the hormone now known as somatostatin comprises two main forms—
somatostatin-14 and somatostatin-28. The former is dominant in the CNS, arising from
the arcuate and anterior periventricular nuclei of the hypothalamus, as well as pancreatic
islet delta-cells. The latter is dominant in the gastrointestinal tract, which is the predomi-
nant source of somatostatin in humans, being secreted by D-cells throughout the length
of the gastrointestinal mucosa [81,82]. The half-life of somatostatin is only 1–3 min and,
as a result, it has been considered to act locally to inhibit secretion of various hormones
(e.g., insulin, glucagon, secretin, growth hormone) and gastrointestinal fluids (e.g., gastric
acid, bile, colonic fluid) [83]. Synthetic analogues of somatostatin with longer half-lives
are utilised in clinical practice, including first-generation (octreotide and lanreotide) and
second-generation (pasireotide) agents, for a variety of indications (e.g., acromegaly, neu-
roendocrine tumours, bleeding oesophageal varices) given the effects of somatostatin to
inhibit secretion of other hormones and influence splanchnic blood flow (as discussed in
Section 5.1) [82]. The relatively high cost and rates of gastrointestinal adverse effects with
somatostatin analogues limit their use, although the latter tend to subside with continued
use [84].

5.1. Interventional Strategies Utilising Somatostatin for Postprandial Blood Pressure Control

Increasing evidence over the past two decades supports a therapeutic role for so-
matostatin in postprandial hypotension. Octreotide attenuates the postprandial fall in
blood pressure in normotensive and hypertensive elderly (by 7–15 mmHg SBP) [9], and
autonomic failure with and without diabetes (by 15 ± 2 mmHg SBP) [85,86]. This effect
has been attributed primarily to splanchnic vasoconstriction. However, the mechanism(s)
by which somatostatin, or its analogues, induce splanchnic vasoconstriction remain poorly
understood. This effect is unlikely to be mediated via the autonomic nervous system given
that it occurs independently of changes in plasma catecholamine concentrations, and is
maintained in autonomic failure [87]. Splanchnic vasoconstriction was shown to occur
concurrently with increasing forearm vascular resistance when octreotide was administered
to patients with autonomic failure, such that a direct vasopressor effect of the drug appears
likely [6,26], although this finding was not replicated in another study [86]. Alternatively,
the underlying mechanism for splanchnic vasoconstriction could be neurohumoral. So-
matostatin and its analogues inhibit the secretion of a number of gut peptides, including
glucagon [88] and GIP [89], both of which are known to induce splanchnic blood pool-
ing. However, markedly greater glucagon concentrations than those occurring following
octreotide are required to induce this effect [88].

While octreotide is one of the most well-studied agents for PPH, few studies have
examined the effect of sustained exposure. Ludwig et al. reported a reduction in splanchnic
vasoconstriction after 48 h of octreotide use in “healthy subjects,” raising concern of
tachyphylaxis [88]. However, attenuation of the fall in postprandial blood pressure was
sustained with use of octreotide over a 6 month period in patients with multiple system
atrophy [88,90].

6. Conclusions

PPH is an important and under-recognised clinical phenomenon associated with
increased morbidity and mortality, and intrinsically linked to gastrointestinal function. Gut
peptides, most notably GLP-1, GIP and somatostatin, are of particular interest as potential
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pharmacotherapy targets for PPH. GLP-1 receptors are the target of several existing drugs
prescribed for glucose-lowering in T2D which, based on studies of small-cohorts, offer
potential as therapies for PPH, extending their application beyond the management of T2D.
Clinical trials involving sustained administration of these medications in large cohorts,
with or without T2D, to document their effects on postprandial blood pressure, and the
complications of PPH, are warranted. GIP may both contribute to the fall in postprandial
blood pressure, and the haemodynamic effects of GIP receptor agonists and antagonists
postprandially should also be examined. Somatostatin attenuates the fall in postprandial
blood pressure, and its analogue, octreotide, has already been studied as a pharmacological
therapy for PPH. Discrimination of the cardiovascular effects of gut peptides and their
signalling pathways before and after meals may refine the therapeutic approach to PPH.
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