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Abstract

Availability of genome sequence, molecular, and clinical phenotype data for large patient

cohorts generated by recent technological advances provides an opportunity to dissect the

genetic architecture of complex diseases at system level. However, previous analyses of

such data have largely focused on the co-localization of SNPs associated with clinical and

expression traits, each identified from genome-wide association studies and expression

quantitative trait locus mapping. Thus, their description of the molecular mechanisms behind

the SNPs influencing clinical phenotypes was limited to the single gene linked to the co-

localized SNP. Here we introduce PerturbNet, a statistical framework for learning gene net-

works that modulate the influence of genetic variants on phenotypes, using genetic variants

as naturally occurring perturbation of a biological system. PerturbNet uses a probabilistic

graphical model to directly model the cascade of perturbation from genetic variants to the

gene network to the phenotype network along with the networks at each layer of the biologi-

cal system. PerturbNet learns the entire model by solving a single optimization problem with

an efficient algorithm that can analyze human genome-wide data within a few hours. Per-

turbNet inference procedures extract a detailed description of how the gene network modu-

lates the genetic effects on phenotypes. Using simulated and asthma data, we demonstrate

that PerturbNet improves statistical power for detecting disease-linked SNPs and identifies

gene networks and network modules mediating the SNP effects on traits, providing deeper

insights into the underlying molecular mechanisms.

Author summary

We describe PerturbNet, a statistical framework for learning a gene network that modu-

lates the influence of genetic variants on phenotypes, using genetic variants as naturally

occurring perturbation of a biological system. PerturbNet directly models the cascade of

perturbation from genetic variants to the gene network to the phenotype network, thus

integrating the existing computational tools for eQTL mapping, GWAS, co-localization

analysis of eQTL and GWAS variants, and gene network discovery under SNP perturba-

tion within a single statistical framework. We demonstrate that PerturbNet improves
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statistical power for detecting disease-linked SNPs and uncovers gene networks mediating

the SNP effects on traits, with computational efficiency that allows for human data analy-

sis within several hours.

Introduction

One of the key questions in biology is how genetic variants perturb gene regulatory systems to

influence disease susceptibility in population. Leveraging the naturally-occurring perturbation

of gene expression by genetic variants to study gene regulatory systems has many advantages

over experimental perturbation methods such as gene knockdown [1] and genome editing

techniques [2], as it is more cost effective, is more easily applicable to humans, and can lead to

more meaningful discoveries via subtle perturbations that occur in nature [3]. Several compu-

tational methods have been proposed to learn gene networks perturbed by single nucleotide

polymorphisms (SNPs) given expression quantitative trait locus (eQTL) data [4–9]. Further

combining eQTL data with clinical phenotype data to study how this gene network perturbed

by SNPs in turn influences disease phenotypes has the potential to reveal the complex molecu-

lar mechanisms that explain the link between genetic variants and diseases.

However, the existing computational methods for integrating eQTL and clinical phenotype

data lack the ability to learn a gene network as a mediator that receives SNP perturbation and

then passes the perturbation effects onto clinical traits. Many of these methods have disre-

garded gene networks entirely, focusing on the co-localization of an eQTL and a trait-associ-

ated SNP [10–13], each of which was identified in a separate eQTL mapping [7, 14–16] and a

genome-wide association study (GWAS) [17, 18]. Thus, their description of the regulatory role

of the trait-associated SNPs was limited to the single gene whose eQTL co-localized with the

GWAS SNP. Other works have used a known gene network to evaluate GWAS SNPs [19–21]

or have looked for correlated associations to a trait module in a post processing step only after

identifying the links between individual SNPs and traits [22, 23], thus missing out on the

opportunity to discover gene networks via SNP perturbation. Bayesian networks have been

used to learn gene regulatory networks and to form a predictive model for diseases with this

network [24]; however, this approach relied on an elaborate pipeline of data analysis to identify

disease-related gene modules and genetic variants, leading to loss of statistical power.

Here, we introduce PerturbNet, a computational framework for learning a gene network

that underlies clinical traits, using genetic variants as a source of perturbation. PerturbNet uni-

fies eQTL mapping, GWAS, co-localization analysis of eQTLs and GWAS SNPs, and gene net-

work recovery within a single statistical framework.

PerturbNet consists of three components: a probabilistic graphical model, learning algo-

rithms, and inference methods. The PerturbNet model represents the cascade of perturbation

from SNPs to gene network and from gene network to phenotype network by stacking two

sparse conditional Gaussian graphical models (sCGGMs) [4, 5], previously developed for

learning gene networks perturbed by SNPs (Fig 1A). PerturbNet learning algorithm estimates

the entire model from data by solving a single optimization problem that is convex with glob-

ally optimal solution, achieving high accuracy and minimal loss of statistical power. We intro-

duce Mega-sCGGM, an sCGGM learning algorithm that is orders-of-magnitude faster with

no memory restriction compared to the previous Newton coordinate descent (NCD) [25], and

use it as a key module of the PerturbNet learning algorithm to allow for large human data anal-

ysis. The probabilistic graphical model framework [26] of PerturbNet naturally leads to a set of

inference methods for revealing perturbations and regulatory relationships that are not
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explicitly represented as edges but only implicitly present in the model (Fig 1B). Given the

model estimated from data, PerturbNet uses these inference methods to characterize how the

gene network and modules mediate the SNP effects on clinical traits, uncovering the molecular

mechanisms that underlie the link between SNPs and traits.

We demonstrate PerturbNet using simulated and patient cohort data from the Childhood

Asthma Management Program (CAMP) [27–29]. Compared to the existing methods that com-

bine eQTL and GWAS data [12, 13], we show PerturbNet provides higher sensitivities for

detecting trait-perturbing variants and for identifying genes that mediate the genetic effects on

traits, as it learns and leverages gene networks rather than individual genes as mediators. We

show the PerturbNet inference methods extract rich information on the role of the gene net-

works as mediators.

Results

Methods overview

We briefly describe the model, learning algorithms, and inference methods for PerturbNet

(see Methods for detail). The PerturbNet model represents the cascaded perturbation from

SNPs to gene network to trait network as a Gaussian chain graph model obtained by threading

two sCGGMs, each modeling a network and perturbation of this network at the given layer

(Fig 1A). The PerturbNet learning algorithm obtains a sparse estimate of the model with few

edges in the network by minimizing the negative log-likelihood of data with L1-regularization.

Since the PerturbNet learning algorithm uses an sCGGM learning method as a key module,

we introduce Mega-sCGGM, an efficient sCGGM learning algorithms for reducing computa-

tion time and for removing memory constraint of the previous algorithm.

PerturbNet provides three inference methods for extracting detailed information on the

cascaded network perturbation from the estimated model: INF-I for inferring SNP effects on

Fig 1. Overview of PerturbNet. (A) PerturbNet model as a cascade of two sCGGMs. The blue sCGGM for p(y|x) models a gene network

perturbed by SNPs and the green sCGGM for p(z|y) models a clinical trait network perturbed by gene expression levels. (B) PerturbNet

inference methods. Given the PerturbNet model in (A), the PerturbNet inference methods infer SNP effects on phenotypes mediated by the

gene network (gray and tan dashed arrows), a decomposition of SNP effects on phenotypes into component SNP effects mediated by each gene

module (yellow and orange modules for gray dashed arrow and pink module for tan dashed arrow), and the posterior gene network with

additional edges between the gene modules influencing the same phenotypes (blue dashed edge). PerturbNet also inherits the inference

methods of sCGGMs for inferring indirect perturbation effects resulting from the direct perturbation effects propagating through the networks

(blue and green dashed arrows).

https://doi.org/10.1371/journal.pcbi.1007940.g001

PLOS COMPUTATIONAL BIOLOGY Learning gene networks underlying clinical phenotypes using SNP perturbation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007940 October 23, 2020 3 / 24

https://doi.org/10.1371/journal.pcbi.1007940.g001
https://doi.org/10.1371/journal.pcbi.1007940


traits mediated by gene network (gray and tan dashed arrows in Fig 1B), which in turn can be

used to reveal the co-localization of the inferred trait-associated SNPs and the eQTLs; INF-II

for decomposing SNP effects on traits into components mediated by each gene module (yel-

low, orange, and pink modules in Fig 1B) within the network, uncovering the mediator genes

and modules for SNP effects on traits and revealing the pathways underlying these SNP-trait

links; and INF-III for obtaining the posterior gene network after accounting for correlated

clinical traits (blue dashed edge in Fig 1B). Additionally, PerturbNet inherits the inference

methods of sCGGMs [5] for inferring indirect perturbation effects that arise from another

direct perturbation exerting its influence through the network (blue and green dashed edges in

Fig 1B).

Using simulated data and asthmatic patient cohort data from the CAMP [29], we evaluate

PerturbNet against eCAVIAR [13], PrediXcan [12], and two-layer Lasso (S1 Text). All of these

previous methods combined eQTL and GWAS data to identify genes underlying GWAS

SNPs, but none considered a gene network as a mediator of SNP effects on traits.

Simulation experiments

Using data simulated from real genotypes in the CAMP study and the known ground-truth

models, we evaluated PerturbNet and other methods on the accuracy of detecting trait-per-

turbing SNPs and mediator genes, and on the accuracy of gene network recovery (see Meth-

ods). We simulated datasets with 5, 000 genes and 100 clinical traits, given 10, 000 SNPs on

chromosome 1 of 540 non-Hispanic Caucasians from the CAMP study.

For the tasks of identifying trait-perturbing SNPs and mediator genes, PerturbNet had the

highest sensitivities across all false discovery rates (FDRs), regardless of the model types used

to simulate data, and regardless of whether a gene is a mediator acting independently or coop-

erating with other genes in the network Figs (2A–2C). Unlike other methods, PerturbNet has

the ability to distinguish between direct and indirect perturbation of a network. This enables a

categorization of the role of the mediator gene into four possible combinations, based on

whether the perturbation effect the mediator gene receives from SNPs and passes onto clinical

trait network is direct or indirect. PerturbNet identified these categories for each mediating

gene with high accuracy (Fig 2B).

On gene network recovery, PerturbNet had higher accuracy on data simulated with SNP

perturbation, compared to sparse Gaussian graphical models (GGMs) [30, 31], a popular sta-

tistical method for learning gene networks (Fig 2D). PerturbNet’s accuracy did not suffer on

data simulated without SNP perturbation. PerturbNet achieved higher accuracy by estimating

the entire model of cascaded network perturbation in a single statistical analysis.

Analysis of CAMP data

PerturbNet is scalable for human data analysis. We compared the computation time of

PerturbNet against eCAVIAR, PrediXcan, and two-layer Lasso. We also compared the scalabil-

ity of Mega-sCGGM, the key subroutine of PerturbNet, against Lasso and NCD [25], the previ-

ous state-of-the-art optimization method for learning an sCGGM. We used all CAMP data for

11,598 genes and 35 phenotypes, while varying the number of SNPs from 40,056 SNPs in chro-

mosome 1 to 212,757 SNPs in chromosomes 1-6 and to 495,597 SNPs in all autosomal

chromosomes.

PerturbNet analyzed all CAMP data in less than four hours and scaled similarly to other

methods that are not concerned with gene networks (Fig 3A). On expression and SNP data,

Mega-sCGGM scaled similarly to Lasso [32], a computationally efficient but less powerful

method, as it only learns eQTLs but not the gene network (Fig 3B). Mega-sCGGM was also
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Fig 2. Results on simulated data. The accuracy of PerturbNet, eCAVIAR, PrediXcan, and two-layer Lasso is shown

for (A) the recovery of SNPs perturbing traits, (B) the recovery of genes mediating the effect of each SNP on each trait

(for PerturbNet, categories for the role of each mediator gene are shown for four possible combinations of direct vs.

indirect perturbations that the mediator gene receives from SNPs and passes onto clinical trait network), and (C) the

recovery of genes mediating the overall SNP effects on each trait. Ground-truth models with two-layer sCGGMs (left)

and two-layer linear regression models (right) were used to simulate data. (D) The accuracy of PerturbNet and GGM

on gene network recovery. Networks with SNP perturbation (left) and without SNP perturbation (right) were used as

the ground-truth models. Sensitivities at FDR = 0.05 are shown.

https://doi.org/10.1371/journal.pcbi.1007940.g002
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significantly more efficient than NCD in terms of both memory requirement and computation

time: it analyzed all 495, 597 SNPs within three and a half hours, whereas NCD spent the same

amount of time on 1,000 SNPs and ran out of memory on SNPs from chromosome 1. When

an estimate from NCD could be obtained on the dataset with 1, 000 SNPs, NCD and Mega-

sCGGM obtained an identical estimate, as was expected since they solve the same convex opti-

mization problem with a single global optimum using an exact method without

approximation.

PerturbNet asthma gene network and gene modules. PerturbNet has the unique ability

to determine the gene network perturbed by SNPs underlying clinical traits. To demonstrate

this, we first examine the PerturbNet model estimated from the CAMP data (S1 Fig), focusing

on the asthma gene network. In the gene network, out of 11,598 genes, 6,102 genes had at least

one neighbor in the network, while the rest of the genes were singleton nodes in the network.

To characterize the module structure in this network for further functional analysis, we post-

processed the estimated gene network by excluding the singleton nodes and clustering the part

of the network corresponding to the 6,102 genes into 20 modules, using the k-way network

clustering algorithm METIS [33]. We tried a variety of settings for the number of clusters k
and chose k = 20 modules as it produced modules that map to dense subnetworks within the

full network from visual inspection (S1(B) Table).

A close examination of the 20 modules in the PerturbNet gene network revealed that a sub-

set of those modules, modules 13-20, are likely to be involved in asthma. To determine the

functional role of the 20 gene modules, we performed GO gene set enrichment analysis [34].

For each module, we performed a Fisher’s exact test to find significantly enriched GO catego-

ries in biological processes (p-value< 0.05 after Bonferroni correction for multiple testing),

using the GO database with annotations for 21,002 genes. Modules 13-15 had statistically sig-

nificant enrichment of GO terms related to immune system function (S1 Table), suggesting

these modules are likely to play a role in asthma, since asthma is an immune disorder. Even

though modules 16-20 did not have any significant enrichment of the same GO categories, the

set of 374 genes in these modules that are connected to genes in modules 13-15 in the posterior

gene network from the PerturbNet inference method INF-III (S2 Fig) were significantly

enriched for several GO categories related to immune system processes (p-value < 0.05 after

Bonferroni correction; S2 Table). These genes with immune system GO annotations formed

sub-clusters within each of modules 13-20. Overall, the enrichment of immune-related genes

Fig 3. Comparison of computation time. (A) Computation time for analysis of SNP, expression, and clinical trait data from the

CAMP study. (B) Computation time for analysis of eQTL data from the CAMP study. NCD, the previous algorithm for sCGGMs,

ran out of memory at chromosome 1. The expression levels of 11,598 genes, 35 traits, and varying numbers of SNPs were used.

https://doi.org/10.1371/journal.pcbi.1007940.g003
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in modules 13-20 suggests that these modules are likely the network components involved in

the disease process of asthma.

Furthermore, in the overall PerturbNet model, while all gene modules were perturbed by

SNPs in the SNP-to-gene sCGGM (S3(A) Fig), modules 13-20 had substantially larger effects

on the asthma phenotypes in the gene-to-trait sCGGM (S3(B) Fig), providing additional evi-

dence that modules 13-20 are likely to be implicated in asthma.

PerturbNet finds gene modules 13-20 mediate most of the genetic effects on asthma

traits. Another unique feature of PerturbNet is its inference methods for uncovering how

SNP effects on traits are mediated by the gene network and modules. Given the estimated Per-

turbNet model, we first applied the inference method INF-I to infer the genetic effects on traits

mediated by the network, identifying top 500 SNPs with the largest overall effects on traits (S4

Fig and Fig 4 left).

Then we applied INF-II to infer the decomposition of these SNP effects from INF-I into

component effects mediated by each of the 20 gene modules (Fig 4 right). For 99 out of top

500 SNPs, the primary mediators were modules rather than single isolated genes in the net-

work. Moreover, for all of those 99 SNPs, modules 13-20 mediated nearly all of those genetic

effects (Fig 4 right), providing evidence that the modules enriched with genes involved in

immume system function above (S1 and S2 Tables, S3 Fig) also explain the molecular mecha-

nisms behind the top asthma SNPs. Additionally, the effect of each SNP on traits was mediated

by only one of modules 13-20 (Fig 4 center), except for two SNPs with two mediator modules,

suggesting a SNP influences asthma traits via localized perturbation of the gene network. Our

Fig 4. SNP effects on asthma traits mediated by gene network and gene modules from PerturbNet. SNP effects on traits for top 50 SNPs

from the PerturbNet inference method INF-I (left). The decomposition of these SNP effects into 20 component effects mediated by each gene

module from the PerturbNet inference method INF-II (right). Summary of these component effects by summing over traits (center).

https://doi.org/10.1371/journal.pcbi.1007940.g004
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results demonstrate that PerturbNet inference methods can identify candidate gene modules

that are mediators of SNP effects on traits. Unlike eCAVIAR, PerturbNet explains the molecu-

lar mechanisms behind trait-associated SNPs not simply through an individual gene, whose

eQTLs co-localize with GWAS SNPs, but through gene modules mediating SNP effects on

traits.

Most of these asthma SNPs from the inference co-localized with eQTLs for modules 13-20

in the estimated SNP-to-gene sCGGM component of the PerturbNet model (S5 Fig).

Although a small subset of these trait-perturbing SNPs co-localized with eQTLs for modules 1-

12, the genetic effects mediated by these modules were weak, suggesting these modules do not

propagate the SNP perturbations to the traits and are not likely to play a central role in the

development of the disease.

PerturbNet SNPs are most strongly supported by external annotations. For the top

asthma-associated SNPs identified by PerturbNet, eCAVIAR, PrediXcan, and two-layer Lasso,

we examined the functional annotations in three external resources (see Methods): the Ency-

clopedia of DNA Elements (ENCODE) DNase hypersensitivity sites (GSM1008572) in

GM12878 B-lymphoblastoid cell line [35], a blood cell type as in CD4+ T lymphocytes in the

CAMP study; RegulomeDB [36] integrating ENCODE and other sources of annotations for

diverse cell types; and SNPs in the National Human Genome Research Institute (NHGRI)

GWAS catalog.

PerturbNet SNPs were most strongly supported as functional by all of the three external

resources. PerturbNet SNPs had the largest overlap with the DNase-seq hypersensitivity sites

from the ENCODE B-lymphoblastoid cell-line [35] with statistical significance (Fig 5A), and

also with functionally annotated SNPs in RegulomeDB [36], especially with SNPs in the Regu-

lomeDB category 1, which corresponds to the strongest evidence of being located in the func-

tional region and includes SNPs previously identified as eQTLs (Fig 5B). Furthermore,

PerturbNet had the largest numbers of SNPs located within 10, 20, 50, and 100kb of 557

asthma SNPs in the NHGRI GWAS catalog [37] (Fig 5C and S7 Fig). Applying the PerturbNet

inference method to the PerturbNet asthma SNPs within 20kb of the NHGRI GWAS SNPs

revealed for all except for one SNP the SNP effects on traits were mediated by modules 13-20

(Fig 5D), showing they may be the key modules underlying these SNPs from the GWAS

catalog.

Module 13 mediates the genetic effects of SNP rs12441382 on asthma traits. We exam-

ined module 13 mediating the perturbation of traits by SNP rs12441382, one of the top Per-

turbNet SNPs (Fig 6). This SNP is located 17kb from rs1841128 in the NHGRI catalog [37] for

a lung function trait, forced vital capacity [38]. These two SNPs have normalized linkage dis-

equilibrium coefficient D0 = 1.0 in the 1000 Genomes Project CEU population [39]. Perturb-

Net found two genes, ATF3 and EGR2, that are directly perturbed by this SNP with the

strongest effect sizes. Both genes have been previously linked to allergic asthma. ATF3 is a

known negative regulator of allergic asthma and was recently proposed to be a hub of the cellu-

lar adaptive-response network, playing a key role in immune diseases [40]. The perturbation

of ATF3 by this SNP is also reflected in statistically significant association in univariate regres-

sion analysis (FDR q = 6.851 × 10−5). EGR2 has been linked to migration of CD4+ T cells to

lung and to blood eosinophil levels in asthma [41–43]. Indirectly perturbed genes near ATF3
and EGR2 in the network include C2 [44–46], SERPING1 [47], ZG16B [48], and CEACAM3
[49], all of which have been linked to immune response, asthma, or auto-immune diseases.

PerturbNet provided new insights into the molecular characterization based on ATF3-cen-

tered pathway for the known GWAS SNP whose functional role in asthma has not been fully

elucidated.
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PerturbNet robustness analysis on asthma data. We evaluated the robustness of Per-

turbNet by fitting the model to perturbed CAMP datasets with either fewer samples or samples

with added noise. To generate a modified CAMP dataset with fewer samples, given a desired

fraction of samples, we took a random subset of samples without replacement of the fully-

observed samples and of the partially-observed samples. To generate CAMP datasets with

added noise, given a desired noise standard deviation, we added independent Gaussian noise

to both gene expression and phenotype data. For each of the modified datasets, we fit a Per-

turbNet model. Then, we evaluated the nonzero elements of the estimated parameters in terms

of the area under curve (AUC) of receiver operating characteristic (ROC) curves, assuming the

parameters obtained from the original CAMP dataset is the ground-truth. We found that the

PerturbNet estimates tend to be robust across different fractions of samples and noise levels

and do not show significant changes with small perturbation in data (Fig 7).

Discussion

PerturbNet combined genetic variant, expression, and trait data in a single statistical analysis

to model the cascade of influence from SNPs to gene network to phenotype network in a

Fig 5. Comparison of top asthma SNPs from different methods. Top asthma SNPs identified by PerturbNet, eCAVIAR, PrediXcan, and

two-layer Lasso are compared against external annotations. (A) Overlaps between top asthma SNPs from each method and the ENCODE

DNase hypersensitivity sites for B-lymphoblastoid cell line. Statistically significant enrichments (p-value< 0.05) are highlighted with red.

(B) Overlaps between top 500 asthma SNPs from each method and functionally annotated SNPs in RegulomeDB. Lower scores indicate

more likely to be functional. (C) Overlaps with asthma SNPs in the NHGRI GWAS catalog. An overlap is defined as less than 20kb between

two SNPs. Statistically significant enrichments (permutation test p-value< 0.05) are highlighted with red. (D) PerturbNet gene modules

mediating the effects of NHGRI GWAS SNPs that overlap with PerturbNet asthma SNPs in (C). The colorbar indicates the number of

PerturbNet asthma SNPs overlapping with each NHGRI SNP.

https://doi.org/10.1371/journal.pcbi.1007940.g005
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multi-layered biological system. Our results demonstrated several key advantages of our

approach. First, PerturbNet detected SNPs perturbing traits through gene expression with

higher sensitivity by leveraging gene networks, compared to the existing methods that nar-

rowly focused on detecting the co-localization of eQTLs and GWAS variants with multi-stage

analysis [10–13]. Second, unlike other methods, PerturbNet, using inference methods, could

infer how different parts of the gene network act as mediators of the genetic influence on phe-

notypes, providing insights into the gene regulatory mechanisms underlying the genetic effects

on the phenotypes. Finally, PerturbNet accomplished these without sacrificing the computa-

tion time, allowing for human data analysis within a few hours.

PerturbNet is a flexible tool that can be easily extended to model a more complex biological

system under genetic influence. Because PerturbNet uses sCGGMs as building blocks,

sCGGMs could be threaded in different ways to integrate different data types. To model tis-

sue-specific gene networks underlying genetic effects on clinical traits, a PerturbNet model

could be set up with multiple SNP-to-gene sCGGMs, one for each tissue type, all of which are

linked to the same gene-to-trait sCGGM. Such a model could explain the phenotypic variabil-

ity by the gene expression of the relevant tissue types and enable a discovery of SNPs that affect

Fig 6. PerturbNet module 13 mediating the effects of SNP rs12441382 on asthma traits. The PerturbNet cascade

from SNP rs12441382 to module 13 (outside of yellow box) to trait network (inside of yellow box). Direct SNP

perturbations (red arrows), indirect SNP perturbations of expression levels and phenotypes (node colors), and the

component of the SNP effects mediated by each gene, summed across all traits (gene node sizes) are shown.

https://doi.org/10.1371/journal.pcbi.1007940.g006
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disease phenotypes through specific tissue types. To model genetic perturbation of a biological

system with more than two layers that includes microRNAs, proteomes, and metabolomes,

multiple sCGGMs could be combined in a PerturbNet model by assigning an sCGGM to each

level of the cascaded perturbation. While in this work, we only considered continuous-valued

traits, discrete-valued traits could be modeled with conditional random fields (CRFs) [26, 50],

a discrete counterpart of sCGGMs, where efficient learning and inference algorithms are avail-

able from the huge literature on applications of CRFs to image and text data analysis.

Our study considered genetic variant, expression, and clinical data collected from the same

patient cohort. One future direction is to apply PerturbNet to datasets, where different data

types were collected from different cohorts. Each component sCGGM in the model could be

estimated using data collected from different cohorts, if not all data types are available from

the same cohort.

Another future direction is to extend PerturbNet to account for the characteristics of non-

independent samples such as population structure. Linear mixed effects models (LMMs) have

been widely used in genetics to model non-homogenous samples with population stratifica-

tion. Multi-trait mixed effects models have been proposed to extend an LMM to model multi-

variate traits through matrix normal distribution [51]. A similar strategy could be used to

combine LMMs with sCGGMs in a PerturbNet model.

Finally, PerturbNet could be extended to model non-linear relationships among expres-

sion/clinical traits and between traits genetic variants. The sCGGM component of PerturbNet

assumed that multivariate expression traits are Gaussian distributed. This is essentially equiva-

lent to assuming that the expression of each gene is a linear function of genetic variants and

the expression of other neighboring genes in the gene network. Gaussian graphical models

have been extended to non-parametric models to model non-linear dependencies among mul-

tiple random variables in high-dimensional setting [52]. Our future work includes employing

a similar strategy to extend sCGGMs of PerturbNet to model non-linear dependencies.

The PerturbNet software is available at https://github.com/SeyoungKimLab/PerturbNet.

Fig 7. Robustness of the PerturbNet estimates on perturbed CAMP datasets. ROC AUCs are shown for PerturbNet models fit to the CAMP datasets

modified with (A) fractions of samples and (B) noise added to the expression and clinical trait data. The non-zero elements in the PerturbNet

parameters obtained from the modified datasets were compared against those from the original CAMP data.

https://doi.org/10.1371/journal.pcbi.1007940.g007
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Methods

We describe the probabilistic graphical model, learning algorithms, and inference methods of

our PerturbNet framework.

PerturbNet model

We introduce the probabilistic graphical model of the PerturbNet framework. Let x denote

genotypes at p loci for an individual, given as the number of minor alleles at the loci taking val-

ues from {0, 1, 2}. Let y 2 Rq denote expression levels for q genes and z 2 Rr measurements

for r phenotypes for the same individual. Then, PerturbNet models the cascade of influence

from SNPs to a gene network to a phenotype network as a Gaussian chain graph model (Fig

1A), a factorized conditional probability distribution defined as follows:

pðy; zjxÞ ¼ pðyjxÞpðzjyÞ: ð1Þ

Each probability factor above is modeled as an sCGGM [4, 5, 25]:

pðyjxÞ ¼ exp ð�
1

2
yTΛyy � xTΘxyyÞ=Z1ðxÞ; ð2Þ

pðzjyÞ ¼ exp ð�
1

2
zTΛzz � yTΘyzzÞ=Z2ðyÞ: ð3Þ

The first probability factor in Eq (2) models the gene network perturbed by SNPs, repre-

senting the gene network as a q × q positive definite matrix Λy and the SNP perturbation of

this network as Θxy 2 R
p�q

. The second probability factor in Eq (3) models the phenotype net-

work perturbed by gene expression levels, where the phenotype network Λz is an r × r positive

definite matrix and the perturbation of this network by gene expression levels is modeled as

Θyz 2 R
q�r

. Z1(x) and Z2(y) in Eqs (2) and (3) are constants for ensuring that each sCGGM is a

proper probability distribution that integrates to one. Our model in Eq (1) defines a probability

distribution over the graph shown in Fig 1A. A non-zero value in the (i, j)th element of the net-

work parameters, [Λy]i,j of Λy and [Λz]i,j of Λz, corresponds to presence of an edge between

the ith and jth nodes of the corresponding network. Similarly, a non-zero value in the (i, j)th
element of the perturbation parameters, [Θxy]i,j of [Θxy] and [Θyz]i,j of [Θyz], indicates an

edge between the ith perturbant and the jth node in the network.

This Gaussian chain graph model corresponds to the continuous counterpart of the chain

graph model obtained by threading CRFs for discrete random variables [50]. CRFs and the

chain graph models built from CRFs have been hugely popular in other application areas

of statistical machine learning such as text modeling and image analysis for modeling multi-

ple correlated output features influenced by input features [26, 50, 53]. Here, we explore the

use of a chain graph model constructed with sCGGMs. We develop an efficient learning

algorithm that runs on human data within a few hours and a set of inference algorithms

for dissecting the gene regulatory mechanisms that govern the influence of SNPs on

phenotypes.

PerturbNet inference methods

The probabilistic graphical model for PerturbNet naturally leads to a set of inference methods

for revealing dependencies that are not explicitly represented as edges in the model. In general,

inference methods in probabilistic graphical models are computationally expensive [26].
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However, because the PerturbNet model is built upon sCGGMs, a form of Gaussian distribu-

tions, it is possible to obtain efficient inference methods that involve simple matrix operations.

Below, we describe two inference methods that PerturbNet inherits from sCGGM and intro-

duce three inference methods for the Gaussian chain graph model of PerturbNet.

PerturbNet inherits the following two inference methods directly from the inference

method for an sCGGM [4, 5]. They are used to infer the indirect perturbation effects that arise

from the direct perturbation effects propagating to other parts of the network.

• Indirect SNP perturbation effects on gene expression levels: Bxy ¼ � ΘxyΛ
� 1

y , where

[Bxy]k,i represents the indirect perturbation effect of SNP k on the expression level of gene i
(Fig 1B, blue dashed arrow). This can be seen by re-writing the sCGGM component p(y|x)

of the PerturbNet model as follows:

pðyjxÞ ¼ NðBT
xyx;Λ

� 1

y Þ; ð4Þ

from which the marginal distribution for the expression level [y]i of gene i can be obtained

as pð½y�ijxÞ ¼ Nð½½Bxy�:;i�
Tx; ½Λ� 1

y �i;iÞ, where [Bxy]:,i represents the ith column of Bxy. While

½Θxy�k;i models the direct perturbation effect of SNP k on the expression of gene i, [Bxy]k,i cor-

responds to the overall perturbation effect that aggregates all indirect influence of SNP k on

gene i through other genes. When SNP k does not influence the expression of gene i directly

but exerts influence on gene i through other genes connected to gene i in the network Λy, we

have ½Θxy�k;i ¼ 0 but [Bxy]k,i 6¼ 0.

• Indirect effects of gene expression levels on clinical phenotypes: Byz ¼ � ΘyzΛ
� 1

z , where

[Byz]k,i represents the indirect influence of the expression level of gene k on phenotype i (Fig

1B, green dashed arrow). Similarly as above, this can be seen by deriving the marginal distri-

bution from the sCGGM component p(z|y) of the PerturbNet model as follows:

pðzjyÞ ¼ NðBT
yzy;Λ

� 1

z Þ:

Then, the marginal distribution for [z]i of phenotype i can be obtained as

p([z]i|y) ¼ Nð½½Byz�:;i�
Ty; ½Λ� 1

z �i;iÞ.

PerturbNet builds upon the sCGGM inference methods above and provides the following

three inference methods on the sparse Gaussian chain graph model for characterizing the role

of the gene network as a mediator of SNP effects on clinical traits.

• INF-I for inferring SNP effects on clinical phenotypes mediated by gene network: INF-I

computes Bxz = Bxy Byz, where [Bxz]k,i represents the overall influence of SNP k on pheno-

type i mediated by gene network Λy (Fig 1B, gray and tan dashed arrows). Such SNP effects

on phenotypes are not directly modeled in the PerturbNet model but can be inferred by

deriving the marginal distribution p(z|x) as follows:

pðzjxÞ ¼ NðBT
xz
x; Λ� 1

z þ Λ� 1

z ΘT
yz
Λ� 1

y ΘyzΛ
� 1

z Þ: ð5Þ

From this, the marginal distribution of [z]i for phenotype i given x can be obtained as

pð½z�ijxÞ ¼ Nð½½Bxz�:;i�
Tx; ½Λ� 1

z þ Λ� 1

z ΘT
yzΛ

� 1

y ΘyzΛ
� 1

z �i;iÞ. Eq (5) can also be obtained from the

marginalization of y in the joint distribution p(z, y|x) derived from Eq (1):

pðz; yjxÞ ¼ Nð� Λzy
� 1ΘT

zy;xx;Λzy
� 1
Þ; ð6Þ
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whereΘzy,x = (0p×r,Θxy) with 0p×r for p × r matrix of 0’s andΛzy ¼
Λz ΘT

yz

Θyz Λy þΘyzΛz
� 1ΘT

yz

 !

This joint distribution is an alternative representation of the PerturbNet model in Eq (1) and

corresponds to another sCGGM over y and z conditional on x with network Λzy and pertur-

bation Θzy,x.

• INF-II for inferring SNP effects on clinical phenotypes mediated by a gene module: Let

M1, . . ., Ms be disjoint subsets of q genes, where [m=1,. . ., s Mm is the full set of q genes (Fig

1B, gray and tan gene modules). Then, the overall SNP effects on phenotypes in Bxz can

be decomposed into SNP effects on phenotypes mediated by each gene module BMm
xz as fol-

lows:

Bxz ¼
Xs

m¼1

BMm
xz ;

where

BMm
xz ¼

X

j2Mm

½Bxy�:;j½Byz�j;::

In this decomposition, ½BMm
xz �k;i quantifies the effect of SNP k on phenotype i through the

expression levels of genes in module Mm. If the module size is 1, ½BMm
xz �k;i corresponds to the

SNP effect on the phenotype mediated by the single gene in the module.

• INF-III for inferring posterior gene network after seeing phenotype data: INF-III com-

putes Λyjx;z ¼ Λy þΘyzΛ
� 1

z ΘT
yz for gene network Λy augmented with the component

ΘyzΛ
� 1

z ΘT
yz (Fig 1B, blue dashed edge). In this augmented network, additional edges are

introduced between two genes if their expression levels influence the same trait or if they

both affect traits that are connected in the phenotype network Λz. The posterior gene net-

work Λy|x, z can be obtained by inferring the posterior distribution of expression levels given

phenotypes from the estimated PerturbNet model:

pðyjx; zÞ ¼ Nð� ðzTΘT
yz þ xTΘxyÞΛyjx;z

� 1
; Λyjx;z

� 1
Þ:

This can also be seen from the alternative representation of the estimated model given as the

joint distribution in Eq (6), in which Λy|x,z defines the network over y in the full network

Λzy. This process of introducing additional dependencies via ΘyzΛ
� 1

z ΘT
yz in this sCGGM for

joint distribution is known as moralization in the probabilistic graphical model literature

[26].

SNP perturbation effects on gene modules and trait groups

We summarize the estimated and inferred SNP perturbation effects at the module level and

at the trait-group level, using a score function S([A]I,J) = ∑i2I,j2J|[A]i,j| for perturbation effects

A of R × C matrix and for subsets of rows I� {1, . . ., R} and columns J� {1, . . ., C}, as

follows:

• The effects of SNP i on gene module M: S([Θxy]i,M) for direct effects and S([Bxy]i,M) for

indirect effects. Similarly, we summarize the overall SNP effects on gene module M as

S([Θxy]:,M) for direct effects and S([Bxy]:,M) for indirect effects.
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• The effects of gene module M on trait group T: S([Θyz]M,T) for direct effects and

S([Byz]M,T) for indirect effects.

• The effects of SNP i on trait group T: S([Bxz]i,T). Similarly, we use S([Bxz]:,T) to represent

overall effects of SNPs on trait group T.

• The effects of SNP i on trait group T mediated by module M: Sð½BM
xz�i;TÞ. Overall SNP

effects on trait group T mediated by module M is obtained as Sð½BM
xz�:;TÞ.

PerturbNet learning algorithms

We introduce an efficient algorithm for obtaining a sparse estimate of the PerturbNet model

parameters with few edges in the graph. Given genotype data X 2 Rn�p
for n samples and p

SNPs, expression data Y 2 Rn�q for q genes, and phenotype data Z 2 Rn�r for r phenotypes,

we estimate a sparse Gaussian chain graph model in Eq (1) by minimizing the negative log-

likelihood of data along with sparsity-inducing L1 penalty:

min
Λy�0;Θxy ;Λz�0;Θyz

f ðΛy;ΘxyÞ þ f ðΛz;ΘyzÞ; ð7Þ

where

f ðΛy;ΘxyÞ ¼ � log jΛyjþ tr ðSyyΛyþ2Sxy
TΘxy þ Λ� 1

y ΘT
xySxxΘxyÞ

þ lΛy
k Λyk1 þ lΘxy

k Θxy k1

ð8aÞ

f ðΛz;ΘyzÞ ¼ � log jΛzjþ tr ðSzzΛzþ2Syz
TΘyz þ Λ� 1

z ΘT
yzSyyΘyzÞ

þ lΛz
k Λzk1 þ lΘyz

k Θyz k1;
ð8bÞ

given data covariance matrices Sxx ¼
1

n
~XT ~X, Sxy ¼

1

n
~XT ~Y, Syy ¼

1

n
~YT ~Y, Syz ¼

1

n
~YT ~Z, and

Szz ¼
1

n
~ZT ~Z for mean-centered data matrices ~X, ~Y, and ~Z, and k�k1 for non-smooth element-

wise L1 penalty. The regularization parameters lΛy
; lΘxy

; lΛz
; lΘyz

> 0 are chosen to maxi-

mize the Bayesian information criterion (BIC). We do not penalize the diagonal entries

of Λy and Λz, following the common practice for sparse inverse covariance estimation. Solv-

ing Eq (7) is a convex optimization problem with a guarantee in finding the optimal

solution.

To solve the PerturbNet estimation problem in Eq (7), we introduce Fast-sCGGM and

Mega-sCGGM for an efficient sCGGM estimation to be used as a key subroutine. The problem

in Eq (7) decouples into two subproblems, each containing one of two disjoint sets of parame-

ters {Λy, Θxy} and {Λz, Θyz}, each of which can be solved with an sCGGM optimization algo-

rithm. Below, we introduce Fast-sCGGM for learning an sCGGM that substantially reduces

computation time, compared to the previous state-of-the-art method NCD [25]. Then, we

describe Mega-sCGGM, a modification of Fast-sCGGM, that performs block-wise computa-

tion to learn from a large dataset on a machine with limited memory. Empirically Fast-

sCGGM and Meta-sCGGM led to orders-of-magnitude speedup compared to the existing

state-of-the-art method.

Fast-sCGGM for improving computation time. We discuss Fast-sCGGM for solving the

sCGGM optimization problem in Eq (8a). The same approach can be used to solve Eq (8b).

We drop the subscripts and use Θ for Θxy and Λ for Λy to simplify the notation. We re-write
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the problem in Eq (8a) as

min
Λ�0;Θ

f ðΛ;ΘÞ ¼ gðΛ;ΘÞ þ hðΛ;ΘÞ; ð9Þ

where gðΛ;ΘÞ¼ � log jΛjþ tr ðSyyΛþ2Sxy
TΘþΛ� 1ΘTSxxΘÞ is the smooth negative log-likeli-

hood and h(Λ, Θ) = λΛkΛk1 + λΘkΘk1 is the non-smooth elementwise L1 penalty with regu-

larization parameters λΛ and λΘ.

Fast-sCGGM uses an alternate Newton coordinate descent method and alternately updates

Λ and Θ, optimizing Eq (9) over Λ given Θ and vice versa until convergence. Our approach is

based on the key observation that with Λ fixed, the problem of solving Eq (9) over Θ becomes

simply the well-known Lasso optimization, which can be solved efficiently using a coordinate

descent method [32]. On the other hand, optimizing Eq (9) for Λ given Θ requires forming a

quadratic approximation to find a generalized Newton direction and performing line search to

find a step size. However, this computation is significantly simpler than performing the same

type of computation on both Λ and Θ jointly as in the previous approach NCD [25]. Our algo-

rithm iterates between the following two steps until convergence:

• Coordinate descent optimization for Θ given Λ: With Λ fixed, the optimization problem

in Eq (9) becomes

argmin
Θ

gΛðΘÞ þ lΘk Θ k1; ð10Þ

where gΛ(Θ) = tr(2Sxy
TΘ + Λ−1ΘT SxxΘ). Since gΛ(Θ) is a quadratic function, Eq (10) corre-

sponds to the Lasso problem and the coordinate descent method can be used to solve this

efficiently.

• Coordinate descent optimization for Λ given Θ: With Θ fixed, the problem in Eq (9)

becomes

argmin
Λ�0

gΘðΛÞ þ lΛk Λ k1; ð11Þ

where gΘ(Λ) = −log |Λ| + tr(Syy Λ + Λ−1 ΘT Sxx Θ). To solve this, we first find a generalized

Newton direction that minimizes the L1-regularized quadratic approximation �gΛ;ΘðDΛÞ of

gΘ(Λ):

DΛ ¼ argmin
DΛ

�gΛ;ΘðDΛÞ þ lΛk Λþ DΛ k1; ð12Þ

where �gΛ;ΘðDΛÞ is obtained from a second-order Taylor expansion and is given as

�gΛ;ΘðDΛÞ ¼ vec ðrΛgðΛ;ΘÞÞ
T vec ðDΛÞ þ

1

2
vec ðDΛÞ

T
r2

ΛgðΛ;ΘÞ vec ðDΛÞ:

In the above equation,rΛ g(Λ, Θ) = Syy − S −C andr2
ΛgðΛ;ΘÞ ¼ S� ðSþ 2CÞ, where

S = Λ−1 and C = SΘTSxx ΘS, are the components of the gradient and Hessian matrices cor-

responding to Λ. The problem in Eq (12) is again equivalent to the Lasso problem, which

can be solved efficiently via coordinate descent. Given the Newton direction for Λ, we

update Λ Λ+ αDΛ, where step size 0< α� 1 is set by line search on the objective in Eq

(11) to ensure sufficient decrease in Eq (9) and positive definiteness of Λ.

In order to further reduce computation time, we adopt the following strategies that have

been previously used for sparse GGM and sCGGM optimizations [25, 54]. First, to improve
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the efficiency of coordinate descent for the Lasso problem in Eqs (10) and (12), we restrict the

updates to an active set of variables given as

SΛ ¼ f½DΛ�i;j : j½rΛgðΛ;ΘÞ�i;jj > lΛ _ ½Λ�i;j 6¼ 0g

SΘ ¼ f½DΘ�i;j : j½rΘgðΛ;ΘÞ�i;jj > lΘ _ ½Θ�i;j 6¼ 0g:

Because the active set sizes mΛ ¼ jSΛj;mΘ ¼ jSΘj approach the number of non-zero entries in

the sparse solutions for Λ and Θ over iterations, this strategy yields a substantial speedup. Sec-

ond, to further improve the efficiency of coordinate descent, we store intermediate results for

the large matrix products that need to be computed repeatedly. We compute and store U ≔
ΔΛS and V ≔ ΔΘS at the beginning of the optimization. Then, after a coordinate descent

update to [ΔΛ]i,j, rows i and j of U are updated. Similarly, after an update to [ΔΘ]i,j, row i of V

is updated. Finally, in each iteration, we warm-start Λ and Θ from the results of the previous

iteration and make a single pass over the active set. This ensures decrease in the objective in Eq

(9), while reducing the overall computation time in practice. The pseudocode for Fast-

sCGGM is provided in S2 Text.

Mega-sCGGM for removing memory constraint. Fast-sCGGM as described above is still

limited by the space required to store large matrices during coordinate descent computation.

Solving Eq (12) for updating Λ requires precomputing and storing q × q matrices, S and C =

SΘTSxxΘS, and solving Eq (10) for updating Θ requires S and a p × p matrix Sxx. A naive

approach to reduce the memory footprint would be to recompute portions of these matrices

on demand for each coordinate update, which would be very expensive.

Here, we describe Mega-sCGGM that combines the alternating Newton coordinate descent

algorithm in Fast-sCGGM with block coordinate descent to scale up the optimization to very

large problems on a machine with limited memory. During coordinate descent optimization,

Mega-sCGGM updates blocks of Λ and Θ so that within each block, the computation of the

large matrices can be cached and re-used. These blocks are determined automatically by

exploiting the sparse stucture. For Λ, we extend the block coordinate descent approach in

BIG&QUIC [31] developed for sparse GGMs to take into account the conditioning variables

in sCGGMs. For Θ, we describe a new approach for block coordinate descent update. The

block-wise update in Mega-sCGGM is described in detail in S2 Text and illustrated in S8 Fig.

Our algorithm can, in principle, be applied to problems of any size on a machine with limited

memory.

The previous method NCD, Fast-sCGGM, and Mega-sCGGM solve the same optimization

problem and produce nearly identical estimate. However, Fast-sCGGM reaches this estimate

more efficiently than the NCD and Mega-sCGGM finds the estimate without running out of

memory.

Parallelization in Fast-sCGGM and Mega-sCGGM. We parallelize some of the expensive

computations in Fast-sCGGM and Mega-sCGGM on multi-core machines. For both methods,

we parallelize all matrix-matrix and matrix-vector multiplications. In addition, we parallelize

the computation of columns of S and C in Fast-sCGGM and the same computation within

each block in Mega-sCGGM. In Mega-sCGGM, we parallelize the computation of each row of

Sxx whenever it is recomputed.

Semi-supervised learning. We introduce a modification of our learning algorithm for

semi-supervised learning, to handle the situation where expression data are available only for

a subset of individuals because of the difficulty of obtaining tissue samples. Our strategy is to

use an EM algorithm [55] that imputes the missing expression levels in the E-step and per-

forms our Fast-sCGGM or Mega-sCGGM optimization in the M-step. Given a dataset

D ¼ fDo;Dhg, where Do ¼ fXo;Yo;Zog for the fully-observed data and Dh ¼ fXh;Zhg for the
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samples with missing gene-expression levels, our EM algorithm [55] maximizes the expected

log-likelihood of data:

LðDo;ΘÞ þ E½LðDh;Yh;ΘÞ�;

combined with L1-regularization, where LðDo;ΘÞ and LðDh;ΘÞ are the log-likelihood of data

Do and Dh with respect to the model in Eq (1) and the expectation is taken with respect to:

pðyjz; xÞ ¼ Nðmyjx;z;Syjx;zÞ;

myjx;z ¼ � Syjx;zðΘyzzþΘT
xyxÞ and Syjx;z ¼ ðΛy þΘyzΛzΘ

T
yzÞ
� 1
:

ð13Þ

In E-step, a naive inversion of Λy þΘyzΛ
� 1

z ΘT
yz to obtain Sy|x,z is expensive and requires a

storage for this dense matrix that may exceed computer memory for large gene expression

datasets. To make the EM algorithm efficient in terms of both time and memory, we assume

that the number of phenotypes r is relatively small compared to the number of genes (i.e.,

r� q), which is typical for most studies. Then, instead of explicitly performing the E-step, we

embed the E-step within the M-step by representing the E-step results implicitly to fit in mem-

ory and computing them explicitly on-demand as needed in the M-step. Specifically, we

implicitly represent Λy þΘyzΛ
� 1

z ΘT
yz as Λy+ KKT, using low-rank component K ¼ ΘyzL

T
z and

the sparse Cholesky factorization of trait network LzL
T
z ¼ Λzz. Then, during M-step, we invert

Λy+ KKT, one column at a time as needed, using the conjugate gradient method. This modi-

fied EM algorithm produces the same estimate as the original EM algorithm that iterates

between an M-step and an E-step.

Simulation experiments

Simulated data. To assess the accuracy of the computational methods, we generated sim-

ulated data from the known ground-truth models and SNPs in the CAMP data. For each type

of models, we obtained sensitivities at different FDRs averaged over 10 simulated datasets. To

assess accuracy on the recovery of trait-perturbing SNPs and mediator genes, we simulated

data from two types of ground-truth models: a two-layer sCGGM as in PerturbNet to mimic

the SNP perturbations of clinical traits modulated by gene networks and a two-layer linear

regression model to mirror the assumptions of mediator genes acting independently of other

genes as in the existing methods. To assess the accuracy of gene network learning, we again

simulated data from two types of ground-truth models: a two-layer sCGGM with a gene net-

work perturbed by SNPs and a two-layer GGM [56] with no perturbation of networks.

We set the ground-truth two-layer sCGGM as follows. We assumed gene network Λy of

size q = 5, 000 and trait network Λz of size r = 100. In both networks, we assumed 50 nodes in

each module, leading to 100 modules in Λy and two modules in Λz. Then, the algorithm

described in [57] was used to generate scale-free networks with average degree 3 and with 90%

of the edges within modules and 10% of the edges across modules. Edge weights were ran-

domly generated from normal distribution N ð0:5; 0:12Þ. The diagonal elements of Λz and Λy

were set to ensure the minimum eigenvalue of the matrix is 0.3. The perturbation parameters

Θyz and Θxy were set to represent perturbation of modules. For Θyz, 10 out of 50 gene modules

were set to have no influence on the traits. Each half of the other 40 modules were set to influ-

ence primarily each of the two trait modules, 90% of the edges connecting to one trait module

and 10% to the other trait module. For Θxy, 25 gene modules were perturbed by 1,000 ran-

domly-selected SNPs and the other 25 modules were not perturbed by any SNPs. In both per-

turbation parameters, each expression and clinical trait was perturbed by three perturbants.
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The magnitudes of perturbations were sampled from normal distribution N ð0:5; 0:12Þ, with

edge signs randomly assigned with probability 0.5 to positive or negative.

For simulation from a two-layer linear regression model, the regression parameters were

set using the same approach as Θxy and Θyz above and the noise variances were set to 0.5. For

comparison on the task of gene network recovery, we generated data from a model assuming

no SNP perturbations, using a two-layer GGM [30] with the same parameters as in the

sCGGM network parameters.

Comparison of methods on simulated data. Using simulated data, we compared the

accuracy of PerturbNet, PrediXcan [12], eCAVIAR [13], and two-layer Lasso (S1 Text) on the

tasks of identifying SNPs perturbing clinical traits and identifying genes mediating these per-

turbations. PrediXcan tests for an association between a trait and an imputed gene expression

value obtained as an elastic-net prediction given SNPs, providing a list of genes mediating

overall genetic effects on each trait (p-value < 0.01). From these mediator genes for overall

SNP effects, we obtained the mediator genes for an individual SNP by further weighting −log

(p- value) for the given gene/trait pair with the elastic-net regression coefficient for each SNP/

gene pair. To obtain SNPs with the strongest effects on each trait, we further aggregated these

scores by summing over all genes for each SNP/trait pair. eCAVIAR assigns a colocalization

posterior probability (CLPP) score, the posterior probability of a GWAS SNP and an eQTL in

the same genomic region of M SNPs co-localizing, to each triplet of SNP, gene, and trait, given

statistically significant GWAS SNPs and eQTLs (FDR q< 10−3). To find SNPs with the stron-

gest effects on traits, we collapsed the CLPP scores for triplets into scores for SNP/trait pairs by

taking the maximum CLPP score across all genes for each SNP/trait pair. Then, we identified

the corresponding gene as the strongest mediating gene for each SNP/trait pair. To identify

genes that are the strongest mediators of overall SNP effects on a trait, we collapsed the CLPP

scores for triplets into scores for gene/trait pairs by summing CLPP scores over all SNPs for

the given/trait pair and selected the highest-scoring gene. For PerturbNet and two-layer Lasso,

we selected the regularization parameters that maximize the BIC.

Analysis of CAMP asthma data

Asthma dataset. We preprocessed the genotype, gene expression, and clinical phenotype

data, collected from asthma patients participating in the CAMP study [27–29] for our analysis.

We used 174 non-Hispanic Caucasian subjects for whom both genotype and clinical pheno-

type data were available. For a subset of 140 individuals, gene expression data from primary

peripheral blood CD4+ lymphocytes were also available. After removing SNPs with minor

allele frequency less than 0.1 and those with missing reference SNP ids, we obtained 495,597

SNPs for autosomal chromosomes. Given expression levels for 22,184 mRNA transcripts pro-

filed with Illumina HumanRef8 v2 BeadChip arrays [29], we removed transcript levels with

expression variance less than 0.01, which resulted in the 11,598 transcript levels to be used in

our analysis. Then, we converted the expression values to their z-scores. The clinical phenotype

data comprised 35 phenotypes (S3 Table), including 25 features related to lung function and

10 features collected via blood testing. The phenotypes were verified to be well-approximated

by normal distributions: with the exception of rescue_bd_7day and prevent_bd_7day, which

are counts and skewed right, all the other variables represented continuous measurements dis-

tributed roughly symmetrically in quantile-quantile (QQ) plots (S7 Fig). The clinical pheno-

types were converted to their z-scores within each phenotype so that all phenotypes have equal

variance. We then imputed missing values using low-rank matrix completion [58].

Comparison of methods on asthma data. We compared PerturbNet with PrediXcan,

eCAVIAR, and two-layer Lasso on the asthma data. We applied PerturbNet with semi-
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supervised learning to all samples, including the samples with only genotype and clinical trait

data. In PerturbNet and two-layer Lasso, we selected the regularization parameters using the

BIC. With PrediXcan, we mimiced semi-supervised learning by fitting elastic net to the sam-

ples with both expression and genotype data, imputing the missing expression data, and using

all samples to perform association tests between the imputed gene expression values and traits.

To obtain top trait-associated SNPs, we scored each SNP by first scoring SNP-trait pairs as in

the simulation study above and summing these scores across all traits. For eCAVIAR, GWAS

SNPs were found using all samples, while eQTLs were found using only the samples with

expression data. Then, top asthma-associated SNPs were found by summarizing CLPP scores

of all triplets into scores of each SNP by taking maximum over all mediator genes and sum-

ming over all traits. We applied the two-layer Lasso only to the samples with all data and

obtained top SNPs perturbing asthma traits using the same strategy as in PerturbNet.

Comparison of computation time. To assess the computation time of Mega-sCGGM,

PerturbNet, and other existing methods, we used the same hardware setup with comparable

software implementations. For Lasso, we used the implementation in GLMNET [59] with a

backend written in Fortran. For NCD, we took the implementation written in C++ provided

by the authors [25] and sped up this implementation with the Eigen matrix library [60], by

employing low-rank matrix representations and using sparse matrix multiplications. For

Mega-sCGGM and NCD, we used the same regularization parameters to ensure the resulting

estimates are identical, and for Lasso, we chose the regularization parameters so that the L1-

norm of the regression coefficients roughly matched that of inferred indirect SNP effects in

PerturbNet. We used the C++ implementation of eCAVIAR provided by the authors [13], and

used PrediXcan [12] with elastic-net as implemented in GLMNET [59]. For all methods, the

code was compiled and run with OpenMP multi-threading enabled on the same machines

with 20Gb memory and 16 cores.

Comparison of SNPs with external annotations. For comparison with the DNase hyper-

sensitivity sites, we used the UES tool [61] to identify the sites enriched in top asthma SNPs

from each method and to compute the enrichment p-values for these overlaps with 100 Monte

Carlo simulations. For comparison with annotations in RegulomeDB [36], we scored the top

500 asthma SNPs from each method into six categories: category 1 for overlaps with previously

reported eQTLs with additional functional annotation on TF binding; categories 2-5 for over-

laps with TF binding sites in ChIP-seq, DNase-seq, and motif hits, where lower scores indicate

stronger evidence for being functional; and category 6 for little evidence of being functional.

Finally, we compared the asthma SNPs found by each method with the previously reported

asthma-associated SNPs in the NHGRI GWAS catalog [37]. Out of 557 SNPs in the NHGRI

GWAS catalog for asthma, we examined how many of these SNPs are within 10, 20, 50, and

100kb of top k SNPs from each method, k ranging from 1 to 500. To assess the statistical signif-

icance of the overlap between two sets of SNPs, we performed a permutation test: for top k
SNPs from the given method, we generated 10,000 random sets of k SNPs from the SNPs

employed in the analysis to find the distribution of overlaps under the null hypothesis and

reported the overlaps with p-value < 0.05.
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