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Tryptanthrin is one of the most important members of indoloquinoline alkaloids. We obtained this alkaloid from Isatis. Two novel
FeII and CoII complexes of tryptanthrin were first synthesized. Single-crystal X-ray diffraction analyses show that these complexes
display distorted four-coordinated tetrahedron geometry via two heterocyclic nitrogen and oxygen atoms from tryptanthrin ligand.
Binding with G-quadruplex DNA properties revealed that both complexes were found to exhibit significant interaction with G-
quadruplex DNA.This studymay potentially serve as the basis of future rational design ofmetal-based drugs from natural products
that target the G-quadruplex DNA.

1. Introduction

G-quadruplexes is regarded as four-stranded structures that
are made up of guanine (G) bases in a purine-rich DNA
duplex [1, 2]. Considerable evidence suggests that these struc-
tures are found at the telomeric ends of chromosomes and
regulate the expression of several important oncogenes [3,
4]. Based on these observations, G-quadruplexes have been
proposed as a potential target for anticancer drug design [5–
7]. Detailed investigations have been carried out for human
telomeric and c-myc, c-kit, k-ras, and bcl-2 quadruplexes
[8–12]. The first example of a small-molecule TMPyP4 was
found to reduce the transcriptional activity of a gene (c-
myc) with a promoter-G-quadruplex motif as a target [13].
An isoalloxazine small-molecule G-quadruplex ligand that
binds both c-kit G-quadruplexes was shown to reduce the
levels of c-kit mRNA in c-kit expressing cell line [14]. Studies
have also confirmed the presence of a G-quadruplex-forming
sequence within the promoter of k-ras [15], which is also
sensitive to a reduction in transcriptional activity induced

by the G-quadruplex interactive ligand TMPyP4. A zinc(II)
isopropylguanidinium-phthalocyanine complex was shown
to be of very high affinity and selectivity for c-myc, H-telo,
and Kras mutation [16]. Quindoline derivatives show that
turning off transcription of the bcl-2 Gene by stabilizing the
bcl-2 promotes quadruplex structure [17]. Metal complexes
from alkaloids with a large planar 𝜋-aromatic conjugated sys-
tem would be beneficial to increase affinity to the grooves of
the quadruplex by 𝜋-𝜋 stacking and electrostatic interactions
[18–20].

Tryptanthrin (Figure 1) is one of the most important
members of indoloquinoline alkaloids [21]. This alkaloid
is found in a number of plants like Isatis [22], Calanthe
[23], Strobilanthes [24], Couroupita [25], and Wrightia [26].
Tryptanthrin exhibits diverse biological effects, such as anti-
microbial, antitumor, and anti-inflammatory activities [24,
27, 28]. Tryptanthrin has been used as Chinese medicine and
folkmedicine for treatment of anti-inflammatory, antipyretic,
and analgesic effects [29]. Studies have shown that alkaloids
such as cryptolepine [30], berberine [31], liriodenine [32],
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Figure 1: The chemical structure of tryptanthrin.
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Figure 2: The crystal structures of complexes 1 and 2.

sanguinarine [33], and nitidine [34] exhibit G-quadruplex
strong stabilization activities and structure-dependent inter-
actions. However, relatively less attention has been paid to
tryptanthrin and its derivatives that bind to and stabilize G-
quadruplex DNA. We conceive that tryptanthrin derivatives
would be of interest for G-quadruplex DNA binding due to
the planar structure and large 𝜋-conjugated system.

Therefore, we synthesized the first example of metal-
mediated natural product tryptanthrin complexes of iron(II)
(Figure 2, complex 1) and cobalt(II) (Figure 2, complex 1)
as the G-quadruplex binders and investigated their abilities
to act as selective and effective G-quadruplex binders. The
approach is based on 𝜋-conjugation planar of indoloquino-
line alkaloids, the remarkable biological effects, and the
photophysical, magnetic, or catalytic properties of metal
complexes. It would be anticipated that the formation of
metal complexes with the planar tryptanthrin ligand does
have the potential to stack on or intercalate with guanine
of G-quadruplex, and the charged molecules as a whole can
bind to the grooves and loops in the negatively charged sugar-
phosphate backbone of the DNA.

2. Experimental

2.1. Materials and Methods. Infrared spectra were obtained
on a PerkinElmer FT-IR spectrometer. Fluorescence mea-
surements were performed on a Shimadzu RF-5301/PC
spectrofluorophotometer. The X-ray diffraction data were
collected on a Bruker Smart Apex II and a Rigaku Saturn
CCDdiffractometer equippedwith graphitemonochromated
Mo-Ka radiation (𝜆 = 0.71074 Å).

All chemical reagents were commercially available and
received without further purification, unless noted specifi-
cally. Tryptanthrins were isolated from the Chinese plants of

Isatis according to the literature methods [24]. G-quadruplex
DNA HTG21 (5-GGGTTAGGGTTAGGGTTAGGG-3,
stored at 4∘C; long-term storage at –20∘C) are obtained
from Shanghai Sangon Biological Engineering Technology &
Services (Shanghai, China).The DNA concentration per pair
was determined based on the absorbance value at 𝜆 = 260 nm
(𝜀
260

= 3.81 × 105M (strand)−1 cm−1) for DNA oligomers by
using UV/Vis absorption spectroscopy. Unless otherwise
stated, spectroscopic titration experiments were carried out
in 10mM Tris-HCl (pH 7.35) containing 100mM KCl. All
tumor cell lines were obtained from the Shanghai Institute
for Biological Science (China).

Stock solutions of all the compounds (2mM) were
made in DMSO. Further dilutions to working concentrations
were made with corresponding buffer. The formation of all
intramolecular G-quadruplexes was analyzed as follows: the
oligomers samples, dissolved in Tris-KCl-HCl buffer, were
heated to 95∘C for 10min, gently cooled to room temperature,
and then incubated at 4∘C overnight. All the spectroscopic
experiments were performed at room temperature.

2.2. Spectra Characteristics Analysis. Absorption titrations
and fluorescence emission titration were performed by using
a fixed compounds concentration (2.0 × 10−3M) and varying
the concentration of G4-HTG21 (1.0 × 10−5M, 5 𝜇L per
scan). While measuring absorption titrations, the solutions
were allowed to incubate for 10min before the spectra
were recorded and an equal amount of G4-HTG21 was
added to both the compound solution and the reference
solution to eliminate the absorbance of G4-HTG21 itself
[35, 36]. Fluorescence quenching spectra of ethidium bro-
mide (EthBr) bound with G4-DNA were performed with
increasing amounts of complexes 1 and 2, ranging ratios
of [complex]/[EthBr] from 0 : 1 to 10 : 1, when the ration
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Table 1: The X-ray crystal data collection for complexes 1 and 2.

Identification code 1 2
Empirical formula C

60
H
32
FeN
8
O
8

C
30
H
16
Co
0.5
N
4
O
4
⋅CH
3
OH

Formula weight 1016.79 541.97
Temperature/K 122(3) 296.15
Crystal system Monoclinic Monoclinic
Space group C2/c C2/c
𝑎/Å, 𝑏/Å, 𝑐/Å 22.1273(20), 16.2600(9), 15.7165(14) 22.010(18), 18.811(16), 15.132(12)
𝛼/∘, 𝛽/∘, 𝛾/∘ 90.00, 120.361(12), 90.00 90.00, 117.842(8), 90.00
Volume/Å3 4879.1(7) 5540(8)
𝑍 4 8
𝜌calc/mgmm−3 1.384 1.300
𝜇/mm−1 0.373 0.373
𝐹(000) 2088 2236
Crystal size/mm3 0.30 × 0.15 × 0.08 0.35 × 0.25 × 0.11
2Θ range for data collection 5.82 to 50.24∘ 3.02 to 50.06∘

Index ranges −26 ≤ ℎ ≤ 26, −19 ≤ 𝑘 ≤ 18, −18 ≤ 𝑙 ≤ 18 −26 ≤ ℎ ≤ 26, −22 ≤ 𝑘 ≤ 22, −17 ≤ 𝑙 ≤ 18
Reflections collected 11653 19705
Independent reflections 4357 [𝑅(int) = 0.0739] 4867 [𝑅(int) = 0.1359]
Data/restraints/parameters 4357/0/340 4867/0/378
Goodness-of-fit on 𝐹2 1.021 1.633
Final 𝑅 indexes [𝐼 > 2𝜎 (𝐼)] 𝑅

1
= 0.0724, 𝑤𝑅

2
= 0.1286 𝑅

1
= 0.1712, 𝑤𝑅

2
= 0.4443

Final 𝑅 indexes (all data) 𝑅
1
= 0.1345, 𝑤𝑅

2
= 0.1555 𝑅

1
= 0.2737, 𝑤𝑅

2
= 0.5060

Largest diff. peak/hole/𝑒 Å−3 0.559/−0.541 0.803/−0.997

of [DNA]/[EthBr] remained 10 : 1, excited at 453 nm. The
quenching constant, 𝐾SV, was calculated according to the
classic Stern-Volmer equation.

2.3. Synthesis of Complexes

2.3.1. Synthesis of [Fe(Try)2] (1). 1 was synthesized in a mix-
ture of Try (0.05mmol, 0.0124 g), FeCl

2
⋅4H
2
O (0.06mmol,

0.0119 g), CH
3
OH (1mL), andDMF (1.5mL) placed in a thick

Pyrex tube.The sealed tubewas heated at 100∘C for 3 d to yield
brown prismatic-shaped crystals. The crystals were washed
with ethanol, dried, and stored under vacuum suitable for X-
ray diffraction analysis. Yield: 89.6%. Elemental analysis for
C
30
H
14
N
4
O
4
Fe: calcd (%). C 65.48,H 2.56, N 10.18; found (%)

C 65.11, H 3.00, N 9.83; IR (KBr, cm−1): 2929.0, 1685.3, 1594.5,
1498.5, 1441.1, 1349.7, 1233.1, 1188.8, 1062.1, 8874.9, 764.1 cm−1.

2.3.2. Synthesis of [Co(Try)2] CH3OH (2). 2 was synthesized
in a mixture of Try (0.05mmol, 0.0124 g), CoCl

2
⋅6H
2
O

(0.06mmol, 0.0158 g), CH
3
OH (0.5mL), and DMF (2mL)

placed in a thick Pyrex tube. The sealed tube was heated at
100∘C for 3 d to yield brown prismatic-shaped crystals. The
crystals were washed with ethanol, dried, and stored under
vacuum suitable for X-ray diffraction analysis. Yield: 89.6%.
Elemental analysis for C

31
H
20
N
4
O
5
Co: calcd (%). C 63.38,

H 3.43, N 9.54; found (%) C 63.19, H 3.20, N 9.23; IR (KBr,
cm−1): 3468.0, 1674.0, 1592.0, 1438.0, 1362.0, 1232.0, 1188.0,
744.0, 586.0 cm−1.

3. Results and Discussion

3.1. X-Ray Crystal Structures Analysis. Complexes 1 and 2
were prepared via the reaction of Try with FeCl

2
⋅4H
2
O or

CoCl
2
⋅6H
2
O in the presence of CH

3
OH and DMF under

solvothermal conditions. Single-crystal X-ray diffraction
analyses for their structure revealed that in each case the
metal ion(II) center is coordinated by Try ligand via two het-
erocyclic nitrogen and oxygen atoms to form a tetrahedron
geometry. One of the major differences is that complex 2
contain a CH

3
OH molecule in the unit cell (Figure 2). The

X-ray crystal data collection for two complexes is shown in
Table 1.

3.2. Selectivity for Binding of G-Quadruplex by Spectroscopic
Methods. UV-visible absorption titration was performed to
determine the binding affinity of the complexes to G-
quadruplex. The HTG21-G-quadruplex sample was added
sequentially to the complexes of Tris/KCl buffer solutions.
UV-vis absorbance spectra were recorded after each addition.
As shown in Figure 3, with increasing concentration of
HTG21-G-quadruplex, the absorbance at the ligand absorp-
tion band region, as well as the MLCT (metal-to-ligand
charge transfer) band, decreased with 35% hypochromism
at 286 nm for complex 1 and 35% at 286 nm for com-
plex 2. This hypochromic phenomenon is attributed to the
strong interaction between the complexes and G-quadruplex
DNA.
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Figure 3: UV-Vis absorption titration of complexes 1 and 2 in Tris/KCl buffer (100mM KCl, 10 mM Tris-HCl, and pH 7.35) with a fixed
compound concentration (2.0 × 10−3M) and increasing the amounts of G4-HTG21 (1.0 × 10−5M, 5 𝜇L per scan).
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Figure 4: Emission spectra of complexes 1 and 2 in Tris/KCl buffer (100mM KCl, 10mM Tris-HCl, and pH 7.35) with a fixed compound
concentration (2.0 × 10−3M) and varying the amounts of G4-HTG21 (1.0 × 10−5M, 5𝜇L per scan), excited at 453 nm.

In order to compare the affinities of the two complexes
quantitatively, the Scatchard equation has been applied to
evaluate the binding to DNA [37]:

𝐷

Δ𝜀ap
=

𝐷

Δ𝜀

+

1

(Δ𝜀 + 𝐾)

. (1)

Binding constants,𝐾, were determined from a reciprocal
plot of 𝐷/Δ𝜀ap versus 𝐷. In (1), DNA is expressed in
base pairs; the apparent molar extinction coefficients 𝜀

𝐴
=

𝐴obs/[complex],Δ𝜀ap = |𝜀𝐴−𝜀𝐹|, andΔ𝜀 = |𝜀𝐵−𝜀𝐹|with 𝜀𝐵 and
𝜀
𝐹
representing themolar extinction coefficients of bound the

complex that is intercalatedwithinG-quadruplex and the free
complex that is in solution, respectively. The plot of 𝐷/Δ𝜀ap
versus 𝐷 revealed that the binding constant 𝐾 of complexes
1 and 2 was 4.29 × 104 dm3mol−1 and 3.40 × 104 dm3mol−1,
respectively, at 20.0∘C (Figure 3 inset).

The binding constant 𝐾 of complex 1 is larger than that
of complex 2. It indicated that complex 1 bound to the DNA
more tightly than complex 2 did.The two complexes have the
same intercalative ligand. This is most likely due to the less
solubility of complex 2 than complex 1 in water at the same
condition.

Emission spectral measurements were used to further
clarify the binding of complexes to G-quadruplex DNA [38].
The results of the fluorescence titration for these complexes
with DNA are shown in Figure 4. Both of the complexes dis-
played a weakly emissive photoluminescence around 534 nm.
The addition of HTG21-quadruplex resulted in an increase
in emission intensity. It is worth noting that the increasing
extent of the fluorescence intensity of complex 1 shows
stronger ability to bind DNA than complex 2.

For further proof of intercalation, an ethidium bromide
(EthBr) competitive binding studywas undertaken. Ethidium
bromide (EtBr) is a very fluorescent dye which has been
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Figure 5: Fluorescence emission spectra of EthBr bound with G4-DNA ([DNA]/[EthBr] = 10 : 1) in the absence (- - - -) and presence (—) of
increasing amounts of complexes 1 and 2 with [complex]/[EthBr] ratios ranging from 0 : 1 to 10 : 1, excited at 453 nm.

shown to intercalate with nucleotides. EtBr showed charac-
teristic fluorescent emission around 610 nm when it bound
to DNA and EtBr fluorescence emission exhibited quenching
when complexes 1 and 2 were added slightly, indicating that
the intercalatedmodes between the base pairs ofDNAand the
compounds exist just similar to EtBr.The quenching constant
(𝐾SV) for complexes 1 and 2was calculated to be 7.96× 103 and
4.95 × 103, respectively, as shown in Figure 5. Results from
these studies further confirm the ability to bind or stabilize
G-quadruplex DNA.

4. Conclusion

In summary, we first synthesized and characterized FeII and
CoII complexes of natural product tryptanthrin and their G-
quadruplex binding properties. Both complexes were found
to display significant interaction with G-quadruplex. This
study may potentially serve as the basis of future rational
design of metal-based drugs from natural products that
target the G-quadruplex. Consequently, future biological
activities and the structure-activity relationships studies will
be investigated.
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