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ABSTRACT

The identification of disease-causal variants is non-
trivial. By mapping population variation from over
448,000 exome and genome sequences to over
81,000 experimental structures and homology mod-
els of the human proteome, we have calculated both
regional intolerance to missense variation (Missense
Tolerance Ratio, MTR), using a sliding window of 21–
41 codons, and introduce a new 3D spatial intoler-
ance to missense variation score (3D Missense Tol-
erance Ratio, MTR3D), using spheres of 5–8 Å. We
show that the MTR3D is less biased by regions with
limited data and more accurately identifies regions
under purifying selection than estimates relying on
the sequence alone. Intolerant regions were highly
enriched for both ClinVar pathogenic and COSMIC
somatic missense variants (Mann–Whitney U test P
< 2.2 × 10−16). Further, we combine sequence- and
spatial-based scores to generate a consensus score,
MTRX, which distinguishes pathogenic from benign
variants more accurately than either score sepa-
rately (AUC = 0.85). The MTR3D server enables easy
visualisation of population variation, MTR, MTR3D
and MTRX scores across the entire gene and pro-
tein structure for >17,000 human genes and >42,000
alternative alternate transcripts, including both En-
sembl and RefSeq transcripts. MTR3D is freely avail-
able by user-friendly web-interface and API at http:
//biosig.unimelb.edu.au/mtr3d/.

GRAPHICAL ABSTRACT

INTRODUCTION

Advancements in our ability to distinguish between
pathogenic and benign variants using both experimental
and computational methods have proven greatly beneficial
in our ability to diagnose genetic diseases. In silico predic-
tors of deleteriousness have been successfully used to priori-
tise likely disease-causative variants (1–3), and have proven
greatly beneficial in a number of disease cohorts, such as
epilepsy, to identify genes enriched for pathogenic variation
(4). Despite the accuracy of these methods improving, it re-
mains challenging to identify causative variants due to the
diverse effects that a mutation can have on the resulting pro-
tein.

Large publicly available datasets of observed variation
within the population provide the means to identify re-
gions under purifying selection that are intolerant to ge-
netic change. Several methods have been used to measure
this using sequence-based approaches, including RVIS (5),
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MPC (6) and MTR (7), which have shown that patient-
ascertained causative variants are preferentially found
within intolerant regions. These provide differing scores de-
pending on whether they are per-gene or regional scores, the
sample sizes involved, and the statistical methods used to
summarise the degree of depletion. Several tools exist that
utilise sequence-based information mapped to protein ter-
tiary structures in order to analyse the impact of mutations
(8,9). When examining intolerance scores across a gene’s
protein tertiary structure, intolerant regions have been ob-
served to cluster within 3D space, but this has not been sys-
tematically and comprehensively investigated.

To form a more accurate estimate of missense intoler-
ance, and to systematically investigate genetic intolerance
in the tertiary protein space, we introduce the MTR3D, a
means of evaluating missense variant deleteriousness based
on its spatially measured intolerance. The MTR3D provides
both experimental structures from the Protein Data Bank
(PDB) and available homology models where a transcript
(Ensembl or NCBI RefSeq) could be aligned to a high-
quality template.

MATERIALS AND METHODS

Data sets

Population variation was combined from gnomAD v2.1.1
(10) (125,748 exomes, 15,708 genomes), gnomAD v3 (76
156 genomes overlapping with gnomAD v2.1.1), the Dis-
covEHR dataset (11) (50 000 exomes) and UK Biobank (12)
(200 000 exomes). Genomic coordinates of DiscovEHR and
gnomAD v2.1.1 variants were converted from GRCh37 to
GRCh38 reference assembly using LiftOver (13). Variants
were then filtered to those single nucleotide variants (SNVs)
passing each dataset’s quality control filters, annotated us-
ing the Variant Effect Predictor (VEP) (Release 101) (14)
for positions within Ensembl transcripts and consequence
for filtering to synonymous and missense only.

Ensembl transcripts were downloaded from the Ensembl
database (v101) (15) using the Bioconductor’s biomaRt
(16) package. RefSeq transcripts were downloaded from
NCBI RefSeq (17) using the biomartr (18) package for NM
mRNA transcripts, NP coding sequences and paired with
Ensembl transcripts with identical Consensus CDS (CCDS)
(19) sequence identifiers. A simulated set of all possible vari-
ants was generated by considering every possible single nu-
cleotide substitution (3 variants per nucleotide in the se-
quence), filtered to missense and synonymous variants, and
annotated using VEP to calculate the expected proportion
of missense variants.

For validation purposes, ClinVar (20) missense variants
were retrieved from the NCBI FTP server and subset based
on their labels to pathogenic, likely pathogenic, benign and
likely benign variants. The Catalogue of Somatic Mutations
in Cancer (COSMIC) v92 (21) variants were downloaded
from their website and filtered to confirmed somatic mis-
sense variants. The FATHMM SwissProt/TrEMBL disease
variants dataset and FATHMM cancer-associated missense
variants datasets were also retrieved for additional compar-
isons (22).

Sequence-based MTR scores can also be viewed in
MTR3D, calculated using window sizes of 21, 31 and 41.

MTR v1 refers to the MTR scores calculated using gno-
mAD v1 (23). MTR v2 refers to the current sequence-based
MTR scores derived from variation from gnomAD v2.1.1
and v3, UK Biobank and DiscovEHR (7).

Calculation of the MTR scores across gene transcripts

Missense Tolerance Ratio (MTR) scores were calculated us-
ing a sliding window of 21, 31 and 41 codons across each
Ensembl and RefSeq transcript by comparing the observed
proportion of missense variants to the expected proportion
of variants (Equations 1–3).

For a given window WH,J
i and with selected window size

w, the window is defined as:

where i = residue position

H = max
(

1, i − w − 1
2

)

J = min
(

transcript length, i + w − 1
2

)
(1)

Within each window, the number of unique missense and
synonymous variants are summed at each amino acid posi-
tion yi for both the observed and expected datasets (Equa-
tion 2), and the ratio is taken (Equation 3).

yi = ∑
xm∈

{
WH,J

i

} xm

∀x ∈ {missense obs, synonymous obs,
missense exp, synonymous exp}

(2)

MTRi = missense obsi / (missense obsi + synonymous obsi )
missense expi / (missense expi + synonymous expi )

(3)

Alignment of transcripts to protein tertiary structures

UniProtKB’s ID mapping table was used to identify pair-
ings between Ensembl and RefSeq transcripts with their
corresponding experimental and homology modelled PDB
structures and chains (24). Experimentally determined pro-
tein structures were downloaded from RCSB Protein Data
Bank (25), selecting only the primary biological assembly
for each structure. Homology models of Ensembl or RefSeq
transcripts were generated using SWISS-MODEL (26) and
an in-house homology modelling pipeline using Modeller
(27). We considered all potential templates with at least 30%
identity for alignments longer than 100 residues and at least
70% identity for alignments shorter than 100 residues. Fol-
lowing minimization in Foldx, the quality of the homology
models was assessed using Procheck (28), Molprobity (29)
and WHATIF (30). The distribution of QMEAN Z-scores
for the homology models was examined, revealing that over
76.9% of models have a Z-score above –4.0, indicating struc-
tural features of the homology models are comparable to
what would be expected from high resolution X-ray struc-
tures (Supplementary Figure S1).

Ensembl and RefSeq transcripts were aligned to pro-
tein tertiary structures in R. Transcripts, metadata and
sequences were parsed using data.tables, PDB files were
parsed using bio3d (31) and aligned using a ClustalW (32)
pairwise alignment via the msa package (33). To take into
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consideration added and omitted residues (for example un-
resolved loops) and partial structures (where the experimen-
tal structure was generated from a region of the gene, for ex-
ample a single domain), the alignment was then split where
there were gaps of at least three residues. These were then
considered separately for congruence of >50% and mini-
mum length of five residues in order to allow unaligned re-
gions to be discarded. 42 312 Ensembl transcripts and 32
845 RefSeq transcripts were aligned to 40 277 unique RCSB
PDB structures, 41 861 unique SWISS-MODEL homology
models and 43 477 unique homology models generated us-
ing Modeller.

Calculation of the MTR3D scores

Population variation and simulated data of all possible vari-
ants, as described above, were mapped to residues within the
PDB structure files. At each residue position, in x, y, z co-
ordinates in angströms, missense and synonymous variants
were summed based on any residue within a distance of 5,
6 and 8 Å respectively. Proximal residues with at least one
atom within each of these spheres were considered (Supple-
mentary Figure S2).

For a given window W(x1,x2),(y1,y2),(z1,z2)
i as a sphere of

radius w, taken from the defined x, y, z coordinates of a
residue (Equation 4),

where i = residue position

x1 = x − w; x2 = x + w

y1 = y − w; y2 = y + w

z1 = z − w; z2 = z + w (4)

Observed and expected missense and synonymous vari-
ants were summed for each window at each residue y.i
(Equation 5).

yi = ∑
xm∈

{
W

(x1 ,x2),(y1 ,y2),(z1 ,z2)
i

} xm

∀x ∈ {missense obs, synonymous obs,
missense exp, synonymous exp}

(5)

MTRi = missense obsi / (missense obsi + synonymous obsi )
missense expi / (missense expi + synonymous expi )

(6)

The MTR3D was then calculated at each position, con-
sidering only positions with at least three observed variants
(Equation 6).

MTR3D scores for both ClinVar and COSMIC missense
variants were also compared at the different radii of 5, 6
and 8 Å, and separately for experimentally determined and
homology modelled structures (Supplementary Figures S3
and S4). This revealed that the 5 Å window size was most
informative.

Additionally, both the MTR and MTR3D were calcu-
lated for specific populations using a subset of the gnomAD
database with sufficient representation of a given popula-
tion (Admixed American (AMR), Non-Finnish European
(NFE) and South Asian (SAS)).

MTRX consensus score

To assess the extent to which the combination of MTR and
MTR3D scores are able to distinguish between pathogenic
and non-pathogenic variants, a machine learning model was
trained. Uniquely observed missense variants from ClinVar
with no conflicting evidence of pathogenicity were assigned
the class labels ‘P’, where clinical significance was denoted
‘Pathogenic’ or ‘Likely pathogenic’, or ‘B’ for ‘Benign’ or
‘Likely benign’.

To develop the MTR consensus score, we considered
the missense tolerance scores from MTR3D (using a ra-
dius of 5 Å), and the previous sequence-based scores from
MTR v1 and MTR v2. The performance of each score was
considered individually and in combination. In addition,
general structural properties including measures of depth,
residue solvent accessibility (RSA) and Psi/Phi angles at
each residue position, calculated using DSSP 3.0 (34) and
Biopython (35), were also considered.

Selecting the most informative features based on pre-
dictive performance (Supplementary Table S1), a classi-
fier was generated using Random Forest Classification
(n estimators = 100, max depth = none, max features =
none, criterion=“gini”) with the scikit-learn Python toolkit
(36) and evaluated under 10-fold cross-validation, with the
best performing model selected based on the area under the
ROC curve (AUC) and Matthew’s correlation coefficient
(MCC). The final classifier MTRX uses MTR3D, MTR v2
21-codon windows, MTR v1 41-codon windows and RSA
as evidence to distinguish between variant classes. Only po-
sitions with a valid score for these four metrics were given a
consensus score.

WEB-SERVER

We have implemented MTR3D as a user-friendly and freely
available web-server application (http://biosig.unimelb.edu.
au/mtr3d). The server front end was developed using Ma-
terialize framework version 1.0.0, and the back end was
built using Python 2.7 via the Flask framework (version
1.0.2). The web-server is hosted on a Linux Server running
Apache2.

Input

MTR3D can be used to either browse a table of the full set
of available gene transcripts––PDB structure/chain pair-
ings (Supplementary Figure S5), or to search for a specific
gene or transcript directly. Names are not case-sensitive.

On the viewer page (Figure 1) after making a selection,
users may select alternate transcripts or alternate structures
available for the current transcript or select between differ-
ent distance calculations from a set of pre-computed op-
tions. Sequence-based MTR scores including population-
specific MTRs can also be visualised directly on the struc-
ture. Users may also submit a protein position or list of pro-
tein residues to be highlighted on the structure, based on the
transcript’s corresponding protein position.

Output

A line graph using Bokeh is displayed to show the currently
selected MTR scores as a 2D representation. This also pro-

http://biosig.unimelb.edu.au/mtr3d
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Figure 1. MTR3D viewer page. (A) Users may select between different structures and sequence-based, spatial-based and consensus scores for the currently
selected transcript. Users may also select between window sizes and population estimates. (B) Line graph showing the alignment of scores to the currently
selected transcript and structure. Gaps in the plot indicate regions not congruent or not present in the protein tertiary structure. Horizontal lines indicate
MTR percentiles for the current transcript at 5th, 25th, 50th and MTR = 1. (C) The selected protein structure is displayed and coloured by the currently
selected MTR score, where red and blue represent intolerance and tolerance respectively. (D) Download links for the MTR scores for the currently selected
structure or the currently shown PDB.

vides a visualisation of which protein positions of the tran-
script are present in the currently viewed protein structure.
Low scoring MTR3D scores indicate intolerance and pu-
rifying selection acting on that region, while high MTR3D
scores indicate tolerance and, where MTR3D > 1.0, indi-
cate that variation may be positively selected for in this re-
gion.

A viewer to interact with the protein structure is pro-
vided, displaying MTR scores mapped onto the structure,
where blue coloured regions indicate tolerance and red re-
gions indicate intolerance. The structure can be rotated,

zoomed and translated. Individual residue information is
displayed when hovering over the structure.

If residues have been selected, a red dot denoting their po-
sitions is highlighted on the line graph, and their side chains
are displayed in stick format on the structure view.

Both the line graphs and structure representations can be
downloaded as image files as currently displayed. A table
of MTR scores with alignments between transcript protein
positions and structure residue numbers can also be down-
loaded as a CSV file, as well as the currently displayed PDB
structure itself.
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API

An Application Programming Interface (API) implementa-
tion is also available for the MTR3D scores for facilitat-
ing integration of our method with other systems and ap-
plications. Users may query an Ensembl transcript, RefSeq
transcript, or HGNC symbol, and may optionally specify a
protein position, specific PDB:chain identifier and specific
score name. If no specific PDB:chain is supplied, the API
will default to the structure with the most coverage for that
transcript’s alignment to the structure. If no protein posi-
tion is supplied, the API will return all scores across the
currently selected structure. If a specific score is selected,
the API will only return values for that score. Results are
returned as a JSON object.

Datasets

A bulk download is available via the web-server to down-
load the full set of scores for Ensembl and RefSeq tran-
scripts mapped to the experimental and homology struc-
tures. ClinVar disease variants, COSMIC somatic variants
and DiscovEHR population control variants used for vali-
dation are also available for download via the web-server.

VALIDATION

Performance on disease-ascertained variants

MTR3D was assessed for its ability to differentiate
pathogenic from non-pathogenic variants by comparing
MTR3D scores across the ClinVar dataset. For each Clin-
Var gene transcript, a single protein structure with the great-
est number of matching residues was selected, then Clin-
Var variants were filtered to uniquely observed variants by
removing duplicate observations in order to prevent bias
towards gene symbols with many transcripts or overrep-
resented variants. Note that validation could only be per-
formed on ClinVar genes with a valid structure (2752 ex-
perimental structures, 6333 homology modelled structures).
Performance of experimentally determined protein struc-
tures was assessed separately to the homology modelled
structures to assess whether both show similar enrichment
of pathogenic variants within intolerant regions (Supple-
mentary Figure S3).

Intolerant regions were found to be significantly enriched
for ClinVar non de novo pathogenic variants (n = 14 547)
and de novo pathogenic variants (n = 725) than benign vari-
ants (n = 7,086) for both experimentally determined and
homology modelled structures (Figure 2A; Mann–Whitney
U test P < 2.2 × 10−16 and P < 2.2 × 10−16, respectively).
At a MTR3D (5 Å) <0.5, which we consider to be intoler-
ant, 537 of 725 ClinVar de novo pathogenic and 5030 of 14
547 ClinVar non de novo pathogenic variants were observed,
while only 856 of 7086 benign variants were found here. The
MTR3D scores was further assessed using the FATHMM
SwissProt/TrEMBL training dataset and found to perform
similarly (Mann–Whitney U test P < 2.2 × 10−16).

Performance on cancer-ascertained variants

COSMIC unique somatic missense variants from cancer
samples were compared with DiscovEHR population vari-

ants to determine whether there is significant enrichment
of COSMIC variants within intolerant regions compared
with standing variation within the population (Figure 2B).
We defined a proposed cutoff of 0.75 to denote intolerance,
however the ideal cutoff will vary depending on the gene
under investigation. Over two thirds of COSMIC variants
(18 981/27 520) were found to have a MTR3D <0.75. A
significant enrichment was found in both experimentally
determined and homology models for COSMIC variants
(Supplementary Figure S4; Mann–Whitney U test P < 2.2
× 10−16 and P < 2.2 × 10−16, respectively). Using the
FATHMM cancer-associated training dataset, we find sim-
ilar enrichment for cancer-associated variants within intol-
erant regions (Mann–Whitney U test P < 2.2 × 10−16).

Interestingly, when we compared the intolerance scores
of variants in tumour suppressor (n = 116 genes) and onco-
genes (n = 91 genes) separately, while background control
variation did not reveal any significant difference, cancer-
ascertained variants in oncogenes were associated with sig-
nificantly lower MTR3D scores than those in tumour sup-
pressors (Supplementary Figure S6). This is likely due to the
larger effect of purifying selection of dominant variants.

Performance of the MTRX consensus score

A consensus score, MTRX, was built using the MTR3D
scores, together with sequence-based MTR scores and gen-
eral structural properties, using the ClinVar database (n =
23 406 variants). The MTRX represents a likelihood of a
variant being pathogenic [0–1]. The distribution of MTRv1,
MTRv2, MTR3D and RSA across the dataset shows clear
differences between benign and pathogenic variants (P-
value < 0.0001, Supplementary Figure S7), and interest-
ingly there is not a strong correlation between the spatial
and sequence based scores (Supplementary Figure S8). The
overlap in intolerant regions between the spatial and se-
quence based scores, indicated that while there was signif-
icant agreement, over 18% of the intolerant regions under
selective pressure were identified by only the spatial based
scores, in particular in sequence based windows with limited
data (Supplementary Figure S9).

Table 1 shows the predictive performance of individ-
ual scores and their combination under 10-fold cross val-
idation. Individually, MTR scores achieved AUCs of 0.63
(MTR3D; 5 Å), 0.64 (MTR v2; 21 codons) and 0.67 (MTR
v1; 41 codons), respectively (Figure 2D). While individual
features only presented a modest ability of distinguishing
between pathogenic and benign variants, a significant im-
provement in performance (P-value < 0.001) is observed
when scores are combined in a consensus, achieving an
AUC of 0.85 and MCC of 0.49, demonstrating the com-
plementary nature of the scores. Performance is further
improved when structural properties (residue relative sol-
vent accessibility) is also considered (Figure 2D; AUC of
0.90 and MCC of 0.62). An analysis of feature importance
also showed a high level of complementarity between MTR
scores and the selected structural property (Supplementary
Figure S10).

Exploring the learned trees further, we observe that the
top of the majority of the decision trees uses as first branch-
ing point an RSA of 20.7% (Figure 2C). Interestingly, this is



Nucleic Acids Research, 2021, Vol. 49, Web Server issue W443

Figure 2. Performance of MTR3D and consensus score on identification of disease and cancer-ascertained variants. Comparison of the spatial- and
sequence- based MTR scores using disease-associated variants. (A) Cumulative distribution graph comparing MTR3D (5 Å) and MTR v2 (31 codons) in
ClinVar de novo pathogenic missense variants (purple, blue respectively), ClinVar not de novo pathogenic missense variants (orange, brown respectively) and
ClinVar benign missense variants (black, grey respectively). (B) Cumulative distribution graph comparing COSMIC somatic missense variants MTR3D (5
Å) scores (red), MTR v2 (31 codons) scores (orange), with DiscovEHR population missense variants observed within the same genes (black, grey respec-
tively). (C) Decision tree representation of the most informative scores used in the generation of the consensus metric calculated using a Random Forest
model. Cut-offs were determined based on 10-fold cross-validation. (D) Area under the Curve (AUC) plot showing classification specificity/sensitivity for
MTR3D (5 Å) (red), MTR v2 21 codons (green), MTR v1 41 codons (blue), MTR consensus using MTR3D (5 Å) + MTR v2 21 + MTR v1 41 (purple) and
with RSA included (black).

Table 1. Predictive performance of MTRX consensus scores on ClinVar variants

Score TP rate FP rate Precision Recall AUC MCC

MTR3D 5 Å 0.64 0.57 0.60 0.64 0.63 0.10
MTRv2 (21 codons) 0.64 0.55 0.60 0.64 0.64 0.12
MTRv1 (41 codons) 0.65 0.49 0.63 0.65 0.67 0.17
MTR3D + MTRv2 + MTRv1 0.77 0.30 0.77 0.77 0.85 0.49
MTRX 0.83 0.22 0.83 0.83 0.90 0.61



W444 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

consistent with general thresholds for considering residues
as either buried (RSA < 20%) or exposed (RSA > 20%)
(37,38). For buried residues, MTRX considered a variant
pathogenic if the MTR3D score was below 0.73 or the
MTRv1 score <0.68 (Figure 1A). For exposed residues,
variants were considered pathogenic if their MTR3D score
was below 0.58, indicating the need for stronger evidence
of intolerance to label exposed residues as pathogenic than
buried residues. These two simple rules covered over a quar-
ter of the data.

CONCLUSION

The MTR3D application provides an intuitive and pro-
grammable interface to explore intolerance and purifying
selection within protein tertiary structures and across the
flat sequence. The MTR3D and MTR consensus scores are
versatile metrics to assess the likelihood of pathogenicity in
patient-ascertained variants, as well as measures to identify
novel important regions within protein structures that may
be overlooked by traditional metrics.

DATA AVAILABILITY

MTR3D scores and data are freely available either via the
user-friendly web interface, as a bulk download or through
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