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Abstract
Positron emission tomography (PET) using 18F-fluoromisonidazole (FMISO) 
is a promising technique for imaging tumour hypoxia, and a potential target 
for radiotherapy dose-painting. However, the relationship between FMISO 
uptake and oxygen partial pressure (PO2) is yet to be quantified fully. Tissue 
oxygenation varies over distances much smaller than clinical PET resolution 
(<100 μm versus  ∼4 mm), and cyclic variations in tumour perfusion have 
been observed on timescales shorter than typical FMISO PET studies 
(∼20 min versus a few hours). Furthermore, tracer uptake may be decreased 
in voxels containing some degree of necrosis.

This work develops a computational model of FMISO uptake in millimetre-
scale tumour regions. Coupled partial differential equations  govern the 
evolution of oxygen and FMISO distributions, and a dynamic vascular source 
map represents temporal variations in perfusion. Local FMISO binding 
capacity is modulated by the necrotic fraction. Outputs include spatiotemporal 
maps of PO2 and tracer accumulation, enabling calculation of tissue-to-blood 
ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue 
oxygenation.

The model is characterised using experimental data, finding half-maximal 
FMISO binding at local PO2 of 1.4 mmHg (95% CI: 0.3–2.6 mmHg) and 
half-maximal necrosis at 1.2 mmHg (0.1–4.9 mmHg). Simulations predict 
a non-linear non-monotonic relationship between FMISO activity (4 hr post-
injection) and mean tissue PO2 : tracer uptake rises sharply from negligible 
levels in avascular tissue, peaking at  ∼5 mmHg and declining towards 
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blood activity in well-oxygenated conditions. Greater temporal variation 
in perfusion increases peak TBRs (range 2.20–5.27) as a result of smaller 
predicted necrotic fraction, rather than fundamental differences in FMISO 
accumulation under acute hypoxia. Identical late FMISO uptake can occur in 
regions with differing PO2 and necrotic fraction, but simulated TACs indicate 
that additional early-phase information may allow discrimination of hypoxic 
and necrotic signals.

We conclude that a robust approach to FMISO interpretation (and dose-
painting prescription) is likely to be based on dynamic PET analysis.

Keywords: PET, FMISO, hypoxia, computational model

S  Online supplementary data available from stacks.iop.org/PMB/61/8596/
mmedia

(Some figures may appear in colour only in the online journal)

1.  Introduction

Hypoxia has been implicated as a major cause of local treatment failure in cancers treated with 
conventional fractionated radiotherapy (Tatum 2006, Vaupel and Mayer 2007). A consider-
able proportion of hypoxic radioresistance may be attributable to the radiobiological oxygen 
effect. This phenomenon manifests itself as a 2.5–3.5 times increase in the radiation dose 
required to achieve a given level of cell kill in hypoxic cells, compared to well-oxygenated 
cells, and is generally accepted to arise from oxygen acting as a fixing agent for radiation dam-
age (Hall and Giaccia 2006). It has been suggested that patient outcomes may be improved 
by delivering larger radiation doses to hypoxic regions identified using molecular imaging 
(Chao et al 2001, Ling et al 2000, Alber et al 2003)—a concept known as hypoxic ‘dose paint-
ing’. Positron emission tomography (PET) with the tracer 18F-fluoromisonidazole (hereafter 
denoted FMISO) has shown considerable promise in imaging hypoxia: a number of clinical 
trials are currently open to investigate the benefits of dose painting using FMISO-derived 
targets1, and the imaging technique has also been investigated to predict patient prognosis 
or response to therapy (Eschmann et al 2005, Rischin 2006, Thorwarth et al 2006, Kikuchi 
et al 2011, Zips et al 2012). However, there is not yet consensus on the precise quantitative 
relationship between FMISO image contrast and tumour oxygenation, and most dose paint-
ing proposals have taken a pragmatic approach to determine prescriptions (Geets et al 2013). 
Computational modelling may provide additional insights into the quantitative interpretation 
of FMISO imaging, and will be examined in this work.

1.1.  Computational modelling of oxygen and FMISO distributions in tumours

There is a large body of literature on the calculation of oxygen distributions arising from 
multiple microscopic vessels in tumour tissue, most recently reviewed by Toma-Dasu and 
Dasu (2013). In brief, numerical methods are typically used to solve a partial differential equa-
tion for oxygen diffusion with additional consumption term, taking the form:

1 E.g. ClinicalTrials.gov IDs NCT01576796, NCT02089204, NCT02352792; EudraCT numbers 2010-021139-15 
and 2010-021382-78.
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where P is oxygen partial pressure (PO2), D is a diffusion coefficient and q(P) is a bulk tissue 
oxygen consumption rate which may vary with PO2 . Input of oxygen from blood vessels can 
be mathematically represented either by boundary conditions, or by an additional source term 
in the equation (Skeldon et al 2012). Resulting maps of the oxygen partial pressure have been 
analyzed to predict tissue radiation sensitivity using models of the oxygen enhancement ratio 
(OER), providing insights into the biologically-optimal radiotherapy dose (Dasu et al 2005, 
Dasu and Toma-Dasu 2006, Toma-Dasu et al 2009b, Powathil et al 2012).

Many studies have aimed to obtain biologically relevant results by solving diffusion equa-
tions in two dimensions, but a limited number of works have considered the three-dimensional 
problem. Kelly and Brady (2006) accounted for the third dimension by using a vessel kernel 
which is averaged over all possible orientations, thereby assuming quasi-linear behaviour. 
Other authors have taken fully three-dimensional approaches to the oxygenation problem 
(Beard and Bassingthwaighte 2001, Secomb et al 2004, Grimes et al 2016b). Two- and three-
dimensional approaches have been compared by Espinoza et  al (2013), with a simple 3D 
vascular system in which vessels are oriented randomly along one of the Cartesian axes. There 
was no statistically significant difference in the hypoxic fraction predicted in twenty 2D and 
3D simulations with a specified vascular coverage. We have verified that this result applies 
when vessels are oriented at arbitrary angles, and in simulations of FMISO transport, as shown 
in appendix A.

Simulated oxygen distributions have been used as a basis for modelling uptake of hypoxia-
specific PET contrast agents, including FMISO (Kelly and Brady 2007, Toma-Dasu et  al 
2009a, Dalah et al 2010, Mönnich et al 2011, Mönnich et al 2012, Mönnich et al 2013, Wack 
et al 2015). Numerical methods are used to pre-calculate a PO2 distribution for tissue with 
given vasculature, from which a kinetic parameter map for FMISO binding is derived. The 
parameter map and the original vessel map are used as inputs to a coupled system of reaction–
diffusion equations, which describe tracer transport and binding. Approximate solutions are 
found for the tracer distribution as a function of time, in a similar manner to the oxygen 
distribution.

Most pre-existing simulations of tracer accumulation (with the notable exception of 
Mönnich et al (2012)) use vessel maps which do not vary over the course of a PET study. 
However, complex variations in blood vessel perfusion have been observed experimentally 
on shorter timescales (Chaplin et al 1986). Since the radiosensitivity of cells is modulated 
by the oxygen effect, which depends on the presence of oxygen within a window shorter 
than 10 ms (Prise et al 1999, Hall and Giaccia 2006), a computational model of tumours 
which reflects these vascular dynamics may be relevant. In addition, necrotic regions of sub-
millimetre size have been observed in histological samples of tumours (e.g. Beasley et al 
(2001), Rubin and Casarett (1966), Thomlinson and Gray (1955) and Wijffels et al (2000)). 
Previous works have accounted for this using an FMISO binding relation that is a func-
tion of instantaneous local PO2 , with the effective binding rate increasing as PO2 decreases, 
reaching a peak at low oxygen levels, before dropping to zero in anoxia due to hypoxic cell 
death. However, necrosis develops over periods of time that are longer than the fluctuations 
in perfusion (Franko and Sutherland 1978), so a model that decouples the two processes 
may provide additional insight in the interpretation of clinical FMISO images. Dynamic 
vasculature and separate consideration of hypoxic necrosis are key features of the model 
developed herein.

D R Warren and M Partridge﻿Phys. Med. Biol. 61 (2016) 8596
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1.2.  Vascular dynamics and acute hypoxia

There is considerable evidence that vascular perfusion in some tumours varies over time. 
Studies in which two independent vascular labels are injected into animals, separated by a 
period of minutes, do not show complete co-localisation of markers after tumour excision 
(Chaplin et al 1987, Trotter et al 1989). Mismatches are typically observed in 10–20% of ves-
sels mapped 20 min apart, although in some cases mismatches in excess of 50% are observed 
(Durand and Lepard 1995). Similarly, histological comparison of perfusion markers and vas-
cular structure stains in preclinical models have shown instantaneous perfused fractions in the 
range 20–85% (typically  >55%) (Bernsen et al 1995).

Local perfusion has been examined in superficial tumours by using laser Doppler flow-
metry in a clinical setting (Pigott et  al 1996), with perfusion changes greater than  ±50% 
being observed in 54% of tumour microregions (approx. volume 0.01 mm3) over a 1 h period. 
Fluorescence videomicroscopy has been used to monitor window-chamber tumours in rats, 
showing a wide variation in individual vessels’ red blood cell flux over 1 h (apex/nadir ratios 
1.5–10) (Kimura et al 1996). Under similar conditions, the PO2 in proximity to a vessel has 
been found to correlate well with the red blood cell flux therein (Lanzen 2006). Temporal 
variations in local oxygenation have also been observed in pre-clinical (e.g. Cardenas-Navia 
et al (2008)) and human tumours (e.g. Whittle et al (2010)) using continuous electrode meas-
urements—it is believed that local changes in perfusion may be a major contributing factor to 
these, and therefore to transient (or acute/cyclic) hypoxia (Dewhirst et al 2008).

A handful of pre-existing studies have examined oxygen transport calculations in the case 
of dynamic vasculature, assessing the magnitude of resulting variations in PO2 . Secomb et al 
(1995) used a Green’s function method to calculate oxygen distributions in tissue with a meas-
ured vascular network. A global increase in blood flow of approximately 70% was sufficient 
to reduce the predicted hypoxic fraction (defined as P 3O2<  mmHg) from 34% to zero. This 
approach was extended in Kimura et al (1996), by using temporally-resolved measurements of 
red blood cell flux measurements to define individual vessel flow rates and performing calcul
ations for different phases of acute hypoxia. For a 0.02 mm3 tumour region containing 22 ves-
sel segments, the method estimated 25% of the volume was chronically hypoxic and 35% was 
transiently hypoxic. Dasu et al (2003) simulated oxygen distributions using a finite element 
method and vessel maps derived from intervascular distance measurements in tumours and 
normal tissues. Acute hypoxia was modelled by randomly closing 25% of vessels, causing 
hypoxic fractions (P 2.5O2<  mmHg) to vary in the range 6.4–27.3% depending on the position 
of the closed vessels, compared to 0.2% with all vessels open. This model has subsequently 
been applied to calculate the radiobiological effects of acute hypoxia (Dasu et al 2005).

To the authors’ knowledge, the only prior simulations of FMISO binding in a dynamic vas-
cular scenario have been presented by Mönnich et al (2012). A source distribution was derived 
from a histological section, and two dynamic situations were examined: sinusoidal fluctuation 
of PO2 in the range 30–40 mmHg in all vessels, and complete collapse of blood flow in a region 
comprising approximately 5% of the domain. Compared to the static scenario (intravascular 
P 40O2 =  mmHg), a decrease in spatial and temporal mean tissue PO2 was observed, with the 
greatest local variations occurring at both extremes of the histogram (i.e. in the most hypoxic 
and least hypoxic bins). FMISO accumulated at a somewhat greater rate in the dynamic 
scenario than the static one: the sinusoidal variations led to approximately 13% increase in 
activity at 4 h, and an additional 7% resulted from supply collapse. Mönnich’s work provides 
insight into changes in FMISO contrast resulting from temporal PO2 variations that are highly-
correlated over an area  ∼1 mm2. In this work, we will seek to perform a complementary study, 
by examining the effects of random fluctuations in perfusion on a sub-millimetre scale .

D R Warren and M Partridge﻿Phys. Med. Biol. 61 (2016) 8596
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1.3.  FMISO binding models

FMISO is an analogue of misonidazole, in which a methoxy group on the alkyl side chain 
has been replaced by a fluorine atom, specifically 18F for PET imaging (Rasey et al 1987). 
Misonidazole has been shown to bind specifically to cells that are hypoxic yet viable, dem-
onstrated by the ‘halo’ of binding seen surrounding the anoxic core of large multicellular 
tumour spheroids (Franko and Chapman 1982, Rasey et al 1985). FMISO binding has been 
described as a result of two chemical reductions in the intracellular space, which produce a 
highly reactive product that quickly binds to nearby organic macromolecules (Padhani et al 
2007). The first reduction step requires an active electron transport chain, so it does not occur 
in dead cells; the second step is competitive with oxygen and leads to the hypoxia-specific 
binding characteristic.

A mathematical model of FMISO binding kinetics in the presence of varying oxygen con-
centration has been proposed by Casciari et al (1995). This multi-compartment model allows 
for reaction products that are bound irreversibly, or temporarily retained, and makes predic-
tions which fit time activity curves (TACs) for both human and rat tumours. It has been cali-
brated using measurements in V79 cell monolayers (Casciari and Rasey 1995), and has been 
adopted, with the additional assumption of irreversible binding, in the previously-cited works 
by Kelly and Mönnich. A parameter-heavy electrochemical model also exists, as described by 
Bowen et al (2011).

Whilst the Casciari model reflects the complex reaction scheme of FMISO in cells, there are 
challenges in adopting it to predict spatiotemporal FMISO distributions in clinical tumours. 
In particular, it is not possible to use measured blood time activity curves as a proxy for 
the tracer present in vessels, since the model assumes blood also contains radioactive diffus-
ible reduction products. However, Casciari’s analysis of patient blood samples 120–160 min 
post-injection (p.i.) suggests only 15% of blood activity arises from reduction products. We 
therefore choose to calibrate a simpler irreversible binding model to experimental data, with 
the expectation that the behaviour of this non-dominant compartment will be partly reflected 
in the fitted parameter values, and it will only have a minor influence on model behaviour.

1.4.  Statement of purpose

This work presents a computational model, calibrated using experimental data, to simulate 
oxygen and misonidazole transport within tumour tissue. The size of the simulation domain 
is comparable to the resolution of a typical PET scanner (∼4 mm), which cannot directly 
capture all radiobiologically-important heterogeneity in oxygenation (Busk et al 2008, 2009);  
simulation elements are smaller than characteristic distances for oxygen supply in tissue 
(∼100–200 μm).

Previous simulations of oxygen transport and FMISO binding have either been performed 
in static vasculature, or in vessel maps with temporally-coordinated variations in PO2 . The 
approach here differs by considering tissue with vessels whose individual perfusion status 
varies randomly in an uncoordinated fashion. Additionally, the model is formulated such that 
FMISO binding in tissue is dependent on an underlying map of living cells, which reflects the 
onset of necrosis after long periods of time at very low oxygen partial pressure (PO2).

The objective is to identify model behaviour which may be relevant when developing a 
strategy for dose painting or hypoxia assessment using FMISO. In particular, the primary aim 
is to identify the extent to which perfusion fluctuations affect observed FMISO image con-
trast, and its interpretation in terms of tissue oxygenation.

D R Warren and M Partridge﻿Phys. Med. Biol. 61 (2016) 8596
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2.  Materials and methods

2.1.  Modelling approach

The model described herein calculates concentrations of oxygen and misonidazole in cancer 
cells as a function of time and position. It can be applied to cells grown as an avascular spher-
oid in vitro, or to cells that grow in vivo as part of a solid tumour. In this work, the model will 
be characterised using data measured in the former situation, and applied to make predictions 
for the latter situation.

A schematic of the main features of the model is presented in figure 1. The first step of the 
process is generation of a simulation domain, comprising many discrete volume elements. In 
the case of avascular spheroids a spherical domain is sub-divided into shells of equal thick-
ness. Solid tumours are represented by a rectangular cuboidal domain sub-divided into cubes.

Each volume element is allowed to contain varying proportions of living cells (C), vascu-
lature (V) and necrosis (N  =  1  −  C  −  V). Vasculature supplies tissue with oxygen, which is 
consumed by living cells, and misonidazole, which may be bound in living cells. Regions of 
necrosis do not consume or bind either molecule but still allow for them to diffuse freely. C 
and N may vary with time, as a result of a dynamic (i.e. time-varying) vasculature or because 
of changes induced by radiotherapy.

A series of coupled partial differential equations govern the evolution of oxygen and miso-
nidazole distributions in the domain over time, in a similar manner to many works cited in 

Figure 1.  Schematic of the proposed model for oxygen and misonidazole concentrations 
in tumour. (a) Representation of a single blood vessel position within the discretised 
tissue domain. The line L designates a path extending in a radial direction, passing 
through six volume elements. Blue shading represents the oxygen concentration in 
tissue. (b) Illustrative profiles of oxygen partial pressure and FMISO binding rate 
in living tissue as a function of distance along L. (c) Volume fractions of the three 
modelled tissue components (vasculature, living cells and necrosis) in the six voxels 
intersected by L. The dashed bar, as measured from the bottom, represents the relative 
oxygen consumption rate as predicted by the Michaelis–Menten relationship employed 
in the model.

D R Warren and M Partridge﻿Phys. Med. Biol. 61 (2016) 8596
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section 1.1. Numerical methods are used to find approximate solutions to these equations for 
a pre-defined dynamic vasculature and misonidazole input function.

Each of the various elements of the model is described in more detail below.

2.1.1.  Vasculature.  Spheroids have no vasculature, so vascular fraction V  =  0 at all positions. 
In this case oxygen and misonidazole sources are represented by fixed boundary conditions 
setting PO2 and misonidazole concentration at the spheroid surface.

In solid tumour, a two-dimensional vascular map V(x,y) is generated. Individual vessels 
Vi(x,y) are modelled as rasterized cylinders oriented perpendicular to the simulation plane, 
with central positions randomly sampled from a uniform distribution and fixed radius rv 
defined by the user. A static vasculature is then specified by

V x y V x y, , ,
i

iS( ) ( )∑=

or a dynamic vasculature by

V x y t f t V x y, , , ,
i

i iD( ) ( ) ( )∑= ⋅

where fi(t) is a function representing the perfusion status of vessel i at time t and takes values 
in the the range [0,1]. In the event of overlapping vessels, the sums are constrained such that 
V never takes a value greater than 1.

Vessel perfusion status fi is modelled as a Boolean function (0  =  non-perfused, 1  =  per-
fused). fi has a cyclic behaviour: the perfusion status of each vessel persists for a time ran-
domly sampled from a normal distribution, after which it switches to the other perfusion 
status. The switching behaviour is repeated ad infinitum with a different randomly-generated 
duration for each iteration. Simulations are performed with an average fluctuation period of 

20 min (i.e. open/closed states persist for 10 min on average) and coefficient of variation (σ
µ
) 

of 20%, unless otherwise stated, although variations this parameter are also examined. At 
the beginning of a simulation, individual fi values are randomly allocated such that a speci-
fied fraction of vessels are perfused, and a random time offset is assigned to each vessel to 
desynchronize their cycles. Perfused fractions in the range 50–100% are examined, reflecting 
the approximate range of instantaneous perfused fractions and vessel perfusion mismatches 
reported in the literature.

The model has been implemented in 3D; however, this paper will consider the results of 2D 
simulations, since the statistical properties of 2D simulations with a 2D vascular model have 
been shown equivalent to those of 3D simulations with a 3D vascular model (Espinoza et al 
(2013) and appendix A of this work).

2.1.2.  Oxygen diffusion and consumption.  The following equation is solved to find oxygen 
partial pressure P within the tissue as a function of position and time t:

( ) ( ) ( ) ( )∂
∂
= + ⋅ ⋅ ∇ − ⋅ + ⋅

P

t
C N D P C q P V t f Pt

O
v O

2
,

2
2

� (1)

q P q
P

P P q
max

50,
( ) =

+

f P
D

r d
P Pv O

v
O

v v
v, 2

2

( ) ( )=
⋅
⋅ −
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q(P) is a consumption term following Michaelis–Menten kinetics. The source term f Pv O, 2
( ) 

is necessary to properly model intravascular resistance, and is constructed from an approxi-
mate solution to the diffusion equation across a cylindrical shell (representing the vessel wall). 
Constants are defined in table 1. C, N, V(t) and P (and any functions thereof) vary with posi-
tion. This set of equations is an adapted form of those used by Kelly and Brady (2006) and 
discussed by Skeldon et al (2012).

Oxygen consumption in vessel walls is neglected, with experimental data (Sasaki et  al 
2012) suggesting approximately 1% reduction in the source term for vessels with the dimen-
sions studied here.

2.1.3.  Hypoxic necrosis.  Cells are expected to have reduced viability in resource-starved 
environments. Low oxygen concentrations have been shown to cause cell death over pro-
longed periods—reported response times range from a few hours to approximately a week 
(Franko and Sutherland 1978, Shimizu et al 1996)—and necrosis develops in the centre of 
large tumour spheroids. In this model, the quantity N will be used to represent the corre
sponding reduction in cells available to bind FMISO. This will be termed the necrotic fraction, 
but it encompasses all mechanisms that have the same effect (not just necrotic cell death).

We make the assumption that oxygen availability is the primary determinant of N. It should 
be noted, however, that changes in glucose concentration have been seen to modulate the 
necrotic fraction in tumour spheroids (Freyer and Sutherland 1986, Luk and Sutherland 1987). 
This phenomenon might be explained by glucose-induced changes in oxygen consumption 
rate, or by a lack of glucose directly limiting cell viability. Even in the latter case, we expect 
that PO2 will be an adequate proxy for the development of necrosis: oxygen and glucose are 
both distributed by the vasculature and consumed by cells in vivo, so their concentration pro-
files should be highly correlated.

Local oxygen partial pressure varies as a function of time in the dynamic vascular model. 
We assume that the timescale of changes in vascular perfusion is sufficiently short, such that 
N as a function of position can be characterised using the temporal average of the PO2 map, 
P .We follow Kelly and Brady (2007) in modelling cell death as a saturable process, such that 

N takes the functional form:

Table 1.  Definition and estimated values of parameters used in equation  (1). The 
calibration process described in section  2.2 determines cell-line-specific values for 
parameters marked *.

Symbol Meaning Estimated value Reference

Dt
O2 Diffusion coefficient of oxygen in 

bulk tissue
2  ×  10−9 m2 s−1 Tannock (1972)

qmax Maximum tissue oxygen 
consumption rate

15 mmHg s−1 * Dasu et al (2003)

P50,q Partial pressure of oxygen for 50% 
drop in tissue consumption rate

2.5 mmHg * Dasu et al (2003)

Dv
O2 Diffusion coefficient of oxygen in 

vessel wall
2  ×  10−10 m2 s−1 Sasaki et al (2012)

rv Vessel radius 10 μm Kelly and Brady (2006)
dv Vessel wall thickness 1 μm Kelly and Brady (2006)
Pv Partial pressure of oxygen inside 

vessels
40 mmHg Dasu et al (2003)

D R Warren and M Partridge﻿Phys. Med. Biol. 61 (2016) 8596
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N
P

P P
1 ,

n50,
= −

+
� (2)

where P50,n is the temporal mean PO2 that reduces the density of living cells by 50%. The value 
of this parameter will be determined from spheroid data.

Death is considered to be the last stage of a cell’s response to hypoxia, being preceded by a 
reduction in oxygen consumption as a result of protective processes. Therefore, the Michaelis–
Menten consumption term q(P) accounts for decreased oxygen consumption due to cell death 
in the static vascular model. The same rule is applied to dynamic vasculature, since the model 
behaviour is approximately linear and therefore the value of q P( )  and q P( ) will be similar 
over the simulation time-frame. Misonidazole binding will be modulated by 1  −  N.

2.1.4.  Misonidazole diffusion and binding.  The model allows misonidazole to be present 
in one of three compartments: vascular (unbound but spatially-constrained, concentration 
denoted Mv), bulk tissue (unbound and freely-diffusing, concentration denoted Mf) and irre-
versibly bound (spatially-constrained, concentration denoted Mb). For the latter two com-
partments, concentrations within tissue as a function of position and time t are given by the 
following pair of equations:

∂

∂
= + ⋅ ⋅ ∇ − ⋅ ⋅ + ⋅

M

t
C N D M C k P M V t f M

f
t
M

f b f s M f
2

,( ) ( ) ( ) ( ) � (3)

M

t
C k P Mb

b f( )∂
∂
= ⋅ ⋅� (4)

f P
D

r d
M t Ms M

v
M

v v
v f, ( ) [ ( ) ]  =

⋅
⋅ −

kb(P) is the oxygen-specific misonidazole binding rate, which will be determined from spher-
oid data. The source term fs,M(P) is constructed in a similar manner to the oxygen source 
term and is modulated by the same vascular perfusion function V(t), reflecting our assump-
tion that the vasculature acts as both a source of oxygen and FMISO. Mv(t) is the vascular 
misonidazole input function (a user-defined input). It is also possible for fs,M(P) to act as a 
sink term if the free misonidazole concentration is greater than that in the input function. We 
assume that the misonidazole diffusion coefficient is the same in vessel wall and tissue i.e. 
D D 5.5 10t

M
v
M 11= = × −  m2 s−1.

This set of equations  is an adapted form of those used by Kelly and Brady (2006) and 
discussed by Skeldon et al (2012). C, N, V(t), P, Mf and Mb (and any functions thereof) vary 
with position.

We take the functional form of kb(P) from the rate constant for bound product in the reac-
tion scheme described by Casciari et al (1995).

k P
k P

P P
b

b b

b

,0 50,

50,
( ) =

⋅
+� (5)

The maximum binding rate kb,0 and PO2 for 50% reduction in binding P50,b will be  
determined from spheroid data.
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2.2.  Calibration using spheroid data

2.2.1.  Input data.  The model is calibrated using misonidazole uptake data available in the 
scientific literature. In particular, we rely upon the data of Gross et al (1995) and Raleigh et al 
(1985). In these studies, PO2 profiles were measured in avascular spheroids of EMT6 cells. 
These spheroids were bathed in tritiated misonidazole, sectioned and subjected to autoradiog-
raphy, allowing uptake to be quantified by the density of activated grains along radii. However, 
there is one major methodological difference between the two works: Gross scored grain 
density in all regions, whilst Raleigh only counted grains in non-necrotic regions. The effect 
of necrosis may therefore be isolated by comparison of the two authors’ results. Experimental 
details for both of these studies are summarized in table 2.

2.2.2.  Fitting methodology.  Autoradiographic grain densities were converted to intracellular 
concentrations by the method detailed in appendix B. Energy spectra for electrons emitted in 
beta decay of 3H nuclei were obtained from Mantel (1972), and electron range in water as a 
function of energy was extracted from Meesungnoen et al (2002).

The differential equations (1), (3) and (4) were solved in one dimension (spherical radius) 
using the MATLAB (Mathworks, Natick, MA, USA) function pdepe. Optimal values for the 
parameters qmax, P50,q, kb,0, P50,b and P50,n were found by minimizing the sum of the square 
differences between modelled and experimental misonidazole concentration profiles, using 
the Levenberg-Marquardt algorithm.

The first stage was a two-parameter fit for oxygen consumption parameters qmax and P50,q 
using Gross’ measured PO2 profile. A fixed boundary condition was imposed on equation (1), 
setting the spheroid surface PO2 to the measured value of 102 mmHg, which is consistent with 
reports of EMT6 spheroid surface oxygenation where stirred medium is in contact with air 
(Mueller-Klieser and Sutherland 1982).

The second stage is a fit for misonidazole binding parameters in non-necrotic tissues, so it 
is assumed that N  =  0. The parameters determined in the first stage fit are used to generate PO2 
profiles for Raleigh’s spheroids in air and 4000 ppm oxygen, providing inputs to equations (3) 
and (4). A fixed boundary condition is imposed, setting the spheroid surface misonidazole 
concentration to the value used in the experiment. A two-parameter fit is then performed to 
determine kb,0 and P50,b by comparing simulated Mb to Raleigh’s two measured misonidazole 

Table 2.  Summary of key experimental conditions for the EMT6 spheroid misonidazole 
binding studies used to calibrate the model. Quantities ηa and ηl are calculated as 
described in appendix B.

Raleigh et al (1985)
Gross et al 
(1995)

Necrotic regions scored? No Yes
Mean spheroid radius, rs 660 μma 433.5 μm
Oxygen conditions 0.4% / air air
Section thickness, ds 4 μm 3.5 μmb

Autoradiographic efficiency, ηa 0.0671 0.0763
Misonidazole concentration, M0 25 μM 50 μM
Labelling efficiency, ηl 0.0024 0.0031
Misonidazole incubation time, tbath 3 h 90 min
Autoradiography exposure time, texp 16 d 60 d

a Given in cited work Franko and Koch (1983).
b Given in cited work Bourrat-Floeck et al (1991).
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profiles; both profiles are weighted equally, and the function minimized is the sum of the 
square differences relative to the respective profile’s mean.

The third stage uses Gross’ misonidazole profiles to fit the hypoxic necrosis parameter 
P50,n. An oxygen profile is generated, and used as an input to the misonidazole equations with 
N given by equation  (2) and the previously determined binding parameters. A single- 
parameter fit to Gross’ measured misonidazole profile then determines P50,n.

A sanity check is also performed by carrying out a five-parameter fit directly to the Gross 
data, with parameters initialized using the values found in the three-stage fit. For each fit, 
parameter confidence intervals are estimated by the bootstrap resampling method, using 1000 
randomly-drawn samples. For the three-stage fit, each bootstrap iteration simulates every 
stage of the fitting process using a single set of resampled data.

2.3.  Predictive simulations for bulk tumour

Simulations in bulk tumour are performed using an in-house MATLAB program, specifically 
developed to allow simultaneous calculation of oxygen and FMISO distributions as a func-
tion of time in temporally-varying vasculature. This software generates a vascularised tissue 
domain, and uses finite difference methods to find the approximate time evolution of solutions 
to equations (1), (3) and (4) therein.

Regions within bulk tumour are modelled as two-dimensional domains with dimension 
1 mm  ×  1 mm, comprising volume elements of size 10 μm  ×  10 μm. Other authors have 
used computational domains of similar dimensions (Dasu et al 2003, Kelly and Brady 2006, 
Skeldon et al 2012, Espinoza et al 2013), which are justifiable since they are sufficiently large 
compared to the tissue region influenced by an individual blood vessel (∼100–150 μm).

Vessels are represented by rasterized cylinders of radius 10 μm running perpendicular to the 
tissue plane, passing through points selected randomly from a uniform distribution. Multiple 
vascular maps are generated with different mean vessel densities in the range 1–1000 ves-
sels mm−2, covering the typical (approx. 10–300 vessels mm−2 (Weidner 1995)) and extreme 
(MacLennan and Bostwick 1995, Gulubova and Vlaykova 2009) values reported in the litera-
ture. Each vessel’s geometry is stored independently for the dynamic vascular model, allow-
ing vessel maps to vary as a function of time.

Model parameters adopted are given in table 1, with additional parameters determined by 
the calibration process described in the previous section. All perfused vessels in the simula-
tion domain are assumed to contain the same concentration of tracer at a particular moment 
in time, given by the FMISO input function Mv(t). This input function represents the injec-
tion and longitudinal dispersion of the radioactive bolus, and tracer metabolism, all of which 
are considered to occur outside the simulation domain. Mv(t) is specified in terms of blood 
activity, attenuation-corrected to reflect activity at the time of injection. The function used in 
this work was extracted from an arterial region in a 4 h dynamic FMISO PET study, and was 
interpolated between frames by fitting a bi-exponential decay function (Thorwarth et al 2005).

In the case of the static vascular function VS, simulations are performed consecutively; a 
steady-state oxygen distribution is found, which is then used to calculate N and kb maps for 
a subsequent FMISO simulation in the same vasculature. In the case of a dynamic vascular 
function VD, the oxygen and FMISO simulations are coupled. The temporal average PO2 map 
P  is estimated by performing an initial 1 h simulation without FMISO, and used to calculate 

N, which is considered static over the simulation time-frame2. This necrosis map is used as 

2 The mean convergence error in N, arising as a result of the relatively short simulation time, was assessed by com-
parison to 48 h simulations and found to be  <2%.
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an input to the full 4 h simulation with FMISO, in which kb is recalculated at each time-point 
based on the instantaneous PO2.

The finite difference calculations are accelerated by use of an adaptive time step, whose 
length is adjusted such that the PO2 and FMISO concentration in any voxel change by no more 
than 0.1 mmHg or 0.1 kBq ml−1 (decay-corrected) respectively.

3.  Results

3.1.  Model parameterisation

Table 3 gives optimal values and bootstrapped confidence intervals for the parameters of the 
oxygen consumption and misonidazole binding model, as fitted to the data of Raleigh and 
Gross. The direct and three-stage fitting methods produce parameter estimates which are con-
sistent with each other. Oxygen and misonidazole profiles predicted by the model are plotted 
in figure 2, alongside the source data. Best-fit profiles follow the shape of the original data, 
predicting the distance for half-maximal binding within 10 μm and showing a maximum 
deviation of approximately 20% peak misonidazole binding.

The best agreement is observed between the direct five-parameter fit and the Gross data 
(figure 2(d)), which is also associated with the narrowest confidence intervals. This constitutes 
a best-case scenario: model fitting and validation are being performed upon the same dataset, 
and the fitting procedure has the greatest degrees of freedom. The three-stage fit gives broader 
confidence intervals in this dataset and slightly overestimates the depth at which bound miso-
nidazole concentration peaks. This reduction in fit quality is a result of additional constraints 
being imposed on the model by the other datasets—four of the five parameters have been 
determined before the three-stage fit considers the Gross misonidazole profile.

The Raleigh dataset is described comparably well by best-fit lines of both fitting approaches. 
A greater degree of scatter is evident compared to the Gross data, especially in figure 2(b) – a 
possible consequence of the small volume of non-necrotic material available for analysis at 
greater depths, or uncertainties in the classification of necrosis. It is notable that both lines 
underestimate the maximum plateau height in figure  2(c) by  ∼10%, which could indicate 
a systematic error in an unfitted input parameter (e.g. in table 2) or suggest a departure in 
the functional form of kb,0 from equation (5) at very low PO2 . In the most hypoxic regions 

Table 3.  Fitted parameters for the oxygen diffusion and misonidazole binding model. 
Values are given for a three-stage fit using data from both Raleigh 1985 and Gross 1995, 
and for a direct five-parameter fit to data from Gross 1995 only. The fitting methodology 
is described in section  2.2.2. Confidence intervals are estimated using the bootstrap 
resampling method with 1000 random samples—in the case of the three-stage fit, each 
bootstrap simulates all stages of the fitting process for a random sample of the input 
data, leading to broader confidence intervals.

Three-stage 
fit 95% CI

Direct 
fit 95% CI

Maximum oxygen consumption rate, qmax 
( ⋅ −mmHg s 1)

17.5 15.3–25.1 16.3 15.3–17.9

PO2 for 50% drop in consumption, P50,q (mmHg) 2.7 0.0–12.5 1.6 1.2–2.1

Maximum misonidazole binding rate, kb,0 (  × − −10 s4 1) 4.5 3.9–4.9 4.4 2.5–5.3

PO2 for 50% drop in binding, P50,b (mmHg) 1.4 0.3–2.6 1.4 1.1–2.5
PO2 for 50% necrosis, P50,n (mmHg) 1.2 0.1–4.9 1.0 0.4–1.2
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of Raleigh’s spheroids, confidence intervals are considerably narrower for the three-stage fit 
compared to the direct fit, which has less predictive power since it was calibrated using data 
with necrosis.

In general, the three-stage fit would be expected to lead to more reliable predictions than 
the direct fit, given that two independent datasets are used in calibration. This is supported  
by the observation that the confidence interval widths are more consistent across datasets.  
We therefore adopted best-fit parameters from the three-stage fit for the subsequent bulk 
tumour simulations.

The maximum binding rate in the model for spheroids with necrosis occurs at:
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Figure 2.  Predictions of the misonidazole binding model for the tumour spheroids 
described in Raleigh 1985 and Gross 1995, plotted alongside original data. Fitted 
parameters are as given in table 3. In the three-stage fit, individual datasets were used to 
determine the parameters for oxygen consumption (a), misonidazole binding ((b) and (c)), 
and hypoxic necrosis (d). In the direct fit, all parameters were determined from a single 
dataset (d). Regions representing 95% confidence intervals are derived from bootstrap 
resampling as in table  3. (a) Oxygen profile, Gross 1995. (b) Bound misonidazole 
excluding necrosis, Raleigh 1985 (3000 ppm oxygen). (c) Bound misonidazole excluding 
necrosis, Raleigh 1985 (air). (d) Bound misonidazole including necrosis, Gross 1995.
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With the calibrated parameter values, k 1.2 10 smax
4 1 = × − − .

3.2.  Predicted 18F-MISO uptake versus mean PO2 in bulk tumour

3.2.1.  Static uptake maps.  Figure 3 shows the relationship between mean tissue PO2 and 
FMISO activity 4 h p.i. in 48 simulations with tissue of varying vascular density, under four 
different modelling assumptions. In all cases, a non-linear and non-monotonic (peaked) rela-
tionship is observed between the spatiotemporal mean PO2 and predicted FMISO signal. For 
simulations with static vasculature and no necrosis (i.e. N  =  0, regardless of local PO2), the 
maximal FMISO tissue:blood ratio (TBR) is greater than 5 and occurs at a PO2 of 1.7 mmHg. 
For simulations in which necrosis is considered, peak uptake is observed at 5 mmHg and the 
maximal TBRs are 3.0 and 2.6 for dynamic vasculature with average perfused fraction 50% 
and 75% respectively, and 2.2 for static vasculature. All simulations converge on a pseudo-
linear decreasing relationship between FMISO signal and oxygenation in the range P 25O2>  
mmHg (TBR  <  1.45).

Example 2D maps of instantaneous PO2 , temporal mean PO2 and FMISO binding at 4 h 
are shown in figure 4. This figure  illustrates the four modelling assumptions from figure 3 

Figure 3.  Volume-averaged temporal mean oxygen tension and FMISO activity 4 h p.i. 
for simulations with varying vascular density at different perfused fractions (PF, the 
average percentage of vessels perfused at any one time). Results for static vasculature 
without necrosis are also shown. Individual simulation results plotted as points; lines 
are smoothed spline fits to guide the eye. FMISO activity is attenuation corrected to 
time of injection.
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in a single vessel map with 60 vessels mm−2. The effect of increasing the average perfused 
fraction from 50% to 100% can be seen in the instantaneous PO2 maps (the number of oxygen 
sources increases) and in the temporal mean PO2 maps (a global increase in values). The vas-
cular density in this scenario is relatively low, such that a halo of FMISO binding is seen on 
the fringe of vascularised sub-regions and around isolated vessels, beyond which little tracer 
is retained due to necrosis. For a given vascular map, the model predicts smaller regions of 
necrosis as perfused vessel fraction increases. If no necrosis is included in the model, strong 
binding is instead seen in the regions furthest from vessels. Animations depicting the evo
lution in FMISO and oxygen distributions over time are available in the supplementary mat
erial to this paper (stacks.iop.org/PMB/61/8596/mmedia).

Numerical data for the simulated vascular fraction, hypoxic fraction, necrotic fraction and 
FMISO TBR 1–4 h p.i. are given in table 4, at a range of tissue oxygenations and perfused 
fractions. In figure 3, the maximal TBR is seen to increase as the perfused vessel fraction 
decreases. This may be explained by reference to the necrotic fraction in the table, which 
represents the percentage of the volume in which FMISO is not able to be bound, and which 
decreases with perfused fraction at a given mean PO2 .

The effect of varying the average period of perfusion fluctuations in the range 1–120 min 
is illustrated in figure 5. Figure 5(a) shows the relationship between spatiotemporal mean PO2 
and FMISO TBR 4 hr p.i. for each time structure. No discernible differences in the relationship 
are observed as a result of changes in the time period. This can be explained in terms of the 
constituent parts of the FMISO binding rate expression in equation (4). The viable cell frac-
tion C at a given temporal mean PO2 is independent of the fluctuation rate, since we assume 
that the necrotic fraction is a function of P  alone (see equation (2)). The local free FMISO 

Figure 4.  Simulated microscopic oxygen partial pressure (top: instantaneous; middle: 
temporal mean) and FMISO distribution maps (bottom). Simulations were performed 
in a vessel map with 60 vessels mm−2 and average instantaneous perfused fractions 
of 50%, 75% and 100%. White dotted lines denote isocontours of 50% necrosis. 
Results for static vasculature without necrosis are also shown. Maps represent an area 
measuring 1 mm  ×  1 mm.
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Table 4.  Summary statistics for simulations in tissue with a given spatiotemporal 
mean oxygen partial pressure PO2  at varying perfused vessel fraction. Each table row 
corresponds to an individual simulation, where the vascular density was selected to 
achieve the specified spatiotemporal mean PO2 . For example, the middle row of the 
top table  should be interpreted as follows: with 50% of vessels perfused, a vascular 
fraction of 4.7% led to a spatiotemporal mean PO2 of 10 mmHg, hypoxic fraction of 
40.4%  ±  5.9%, necrotic fraction 16.4% and FMISO TBR at 1 h/2 h/4 h of 1.36/1.73/2.55.

VF HF NF TBR-1h TBR-2h TBR-4h

1 mmHg 0.6 93.6  ±  2.4 76.8 1.19 1.44 2.01
5 mmHg 2.7 68.0  ±  4.2 32.4 1.45 1.95 3.03

PO2
10 mmHg 4.7 40.4  ±  5.9 16.4 1.36 1.73 2.55

20 mmHg 9.5 5.7  ±  2.4 6.4 1.15 1.30 1.63
35 mmHg 31.4 0  ±  0 3.4 1.06 1.12 1.25

(a) 50% vessels perfused

VF HF NF TBR-1h TBR-2h TBR-4h

1 mmHg 0.4 93.4  ±  2.0 79.4 1.16 1.35 1.79
5 mmHg 1.8 67.7  ±  2.7 42.6 1.31 1.64 2.40

PO2
10 mmHg 3.4 38.1  ±  4.3 20.2 1.29 1.59 2.27

20 mmHg 6.5 6.7  ±  1.5 7.6 1.15 1.29 1.62
35 mmHg 21.5 0  ±  0 3.4 1.06 1.12 1.25

(b) 75% vessels perfused

VF HF NF TBR-1h TBR-2h TBR-4h

1 mmHg 0.2 96.0 87.6 1.06 1.18 1.40
5 mmHg 1.3 71.1 46.9 1.27 1.56 2.20

PO2
10 mmHg 2.5 39.9 22.1 1.26 1.53 2.12

20 mmHg 4.7 2.4 7.1 1.13 1.26 1.55
35 mmHg 15.7 0 3.3 1.06 1.12 1.25

(c) 100% vessels perfused

VF HF NF TBR-1h TBR-2h TBR-4h

1 mmHg 0.3 94.6 0 1.53 2.58 4.93
5 mmHg 1.3 68.3 0 1.74 2.54 4.34

PO2
10 mmHg 2.3 46.0 0 1.52 2.06 3.28

20 mmHg 4.3 5.9 0 1.17 1.34 1.73
35 mmHg 13.7 0 0 1.07 1.13 1.28

(d) 100% vessels perfused (no necrosis)

Key.
VF  =  vascular fraction (percentage of tissue domain occupied by vessels, both perfused and 
unperfused).
HF  =  ‘hypoxic fraction’ (percentage of domain with instantaneous <P 5O2  mmHg), ±   
corresponds to r.m.s. variation with time.
NF  =  necrotic fraction (percentage of cells assumed killed by hypoxic conditions).
TBR-1 h/2 h/4 h  =  domain-averaged FMISO tissue:blood ratio at 1/2/4 h p.i.
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concentration Mf is relatively uniform across the domain for the majority of the imaging period, 

since the characteristic time for FMISO diffusion over typical intravascular distances ( x

D4

2

) is 

considerably shorter than the imaging period, and variations in the FMISO blood activity curve 
are gradual after the initial bolus. Finally, the radial PO2 profile (and therefore the binding 
parameter kb) is broadly the same for all vessels of a given perfusion state. The net result is that 
the FMISO bound 4 hr p.i. is essentially determined by the average number of vessels open and 
closed at any one time, rather than the time any particular vessel persists in each state.

3.2.2.  Dynamic uptake curves.  Time-activity curves (TACs) are also simulated, allowing the 
investigation of model features that are relevant to dynamic PET studies. Figure 6(a) shows a 
plot of simulated TACs in tissue with average PO2 of 1, 10 and 25 mmHg, alongside the blood-
activity curve used as an input. In the most hypoxic scenario, the observed TAC is essentially 
monotonically increasing. In the intermediate scenario, a peak in tissue activity occurs at the 
time of the FMISO bolus injection, but it is considerably broader than the equivalent feature in 
the blood activity curve and an accumulative behaviour is seen at later times. A more distinct 
peak is seen at the relatively well-oxygenated PO2 of 25 mmHg, followed by a consistent decay 
in tissue activity over the length of a typical PET study. Whilst the accumulation rate of bound 
FMISO appears to be increasing with time in figure 6, this is an artefact of the logarithmic 
time axis—the absolute binding rate is actually decreasing gradually as a result of the decay-
ing concentration of tracer in blood.

Simulated 1 mmHg and 10 mmHg TACs follow almost identical trajectories at times greater 
than 103 s, and it would therefore be impossible to discriminate between these two tissues by 
analysing static PET images acquired at late time-points. This observation can be explained 
intuitively with reference to table 4, noting that FMISO binds to regions that are hypoxic but 
not necrotic. In a very simplified model, tissue activity at late time-points will therefore be 
proportional to HF NF− , which is calculated to be approximately 20% at both 1 mmHg and 
10 mmHg using the tabulated data for 50% vessels perfused.

Figure 5.  (a) Volume-averaged temporal mean oxygen tension and FMISO activity 4 h 
p.i for simulations in tissue with dynamic vasculature. Each symbol type represents 
simulations with a different average period of perfusion fluctuations (in the range  
1 min–120 min), and average instantaneous perfused vessel fraction of 50%. Black 
line is a smoothing spline to guide the eye, fit to all data points. (b) Example time 
structures for variation in tissue mean PO2 , around a value of 10 mmHg. Average period 
of fluctuations denoted by the same colour and position as in the legend of (a) i.e. top 
trace represents a period of 1 min, bottom trace represents 120 min.
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It is also possible to extract the relative contributions of activity in the various compart-
ments of the model as a function of time, providing insight into the shape of TACs. Figure 6(b) 
demonstrates this for a tissue TAC at 10 mmHg. At this PO2 only a small amount of activity 
directly originates from FMISO in blood (<20%, even at the peak of the activity curve) with 
the majority of signal arising in the gradually decaying diffusive compartment until approxi-
mately 104 s. However, after approximately 103 s, the greatest rate of change of tracer con-
centration is seen in the bound compartment, which therefore defines the shape of the TAC at 
later times. Animations depicting the spatial distribution of FMISO in each compartment are 
available in the supplementary material to this paper.

4.  Discussion

4.1.  Calibration of model parameters

Predictions of the calibrated oxygen and misonidazole binding model agree well with spheroid 
data published in the literature. Previously-reported ensemble oxygen consumption rates for 
EMT6 spheroids of diameter 300–1000 μm are 1.80–6.44 mlO2 · cm−3 · s−1 (Mueller-Klieser 
1984) (approx. 9–21 mmHg s−1), and 4.1–7.9  ×  10−17 mol · cell · s−1 (Freyer and Sutherland 
1985) (approx. 10–19 mmHg s−1)3, with higher consumption rates being observed in smaller 
spheroids. For comparison, spheroids simulated using equation (1) and the calibrated values 
of qmax and P50,q from table 3 have volume-averaged consumption rates of 12–17 mmHg · s−1 
over the same diameter range. Hypoxic necrosis data for EMT6 cells is available in the form of 
the thickness of viable rim in large spheroids, which is strongly influenced by glucose concen-
tration in the medium but is relatively insensitive to spheroid diameter (Freyer and Sutherland 
1986, Mueller-Klieser et al 1986). At atmospheric oxygen levels and physiological glucose 
concentrations, experimental data suggest a viable rim thickness for EMT6 cells of 190–220 

3 Assuming perfectly tessellating cells of volume 8  ×  8  ×  51 μm3 (Chen et al 2011).

Figure 6.  (a) Simulated time-activity curves for tissue with perfused fraction of 50% 
and three different vascular maps, leading to a range of temporal mean PO2 values. 
Plotted activity is a spatial average over the whole simulation domain, and is attenuation 
corrected to time of injection. Logarithmic time axis spans 4 h. Peak value of blood 
activity curve is 63.4 kBq ml−1 and occurs at 11 s. (b) Relative contributions of 
activity in each compartment of the model to the overall time-activity curve labelled 
⟨ ⟩ =P 10O2  mmHg in (a). Animations showing the spatial distribution of FMISO in each 
compartment over time are available in the supplementary material.
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μm (Freyer and Sutherland 1985, Luk and Sutherland 1987): in spheroids simulated with the 
calibrated model this would be the case over the realistic diameter range 700–1200 μm. EMT6 
is a murine breast cancer cell line, but the oxygen consumption rates found here also agree 
well with direct measurements of oxygen consumption in the human breast cancer cell line 
MDA-MB-468 (18.08  ±  4.53 mmHg s−1) (Grimes et al 2016a).

FMISO binding parameters are model-specific, but agreement between similar parameters 
nevertheless provides confidence in the calibrated model. The calibrated model value for 50% 
maximal binding in EMT6 cells was P 1.4 mmHgb50,  = . Casciari identified an oxygen con-
centration for half-maximal FMISO binding of 2710 ppm (PO2 approx. 2.1 mmHg) in V79 
cells (Casciari and Rasey 1995); Rasey found values in the range 1000–2000 ppm (PO2 approx 
0.8-1.5 mmHg) in four different cell lines, and suggests that this parameter may be cell line-
dependent (Rasey et al 1989). The maximal FMISO binding rate without necrosis has previ-
ously been reported as 8.7 10 s4 1 × − − , found by fitting Casciari’s model to temporal uptake 
measurements in V79 monolayers (Casciari and Rasey 1995). The equivalent parameter in 
this model is k 4.5 10 sb,0

4 1 = × − − , which is smaller but of the same order of magnitude. 
There is no simple explanation for this discrepancy, but it might partly be attributable to 
cell-line dependence, and to differences in cell packing density between monolayer and sphe-
roid cultures. Including the term for necrosis, the maximal predicted binding rate in tissue is 
1.2 10 s4 1 × − − , which is comparable to that suggested independently by Mönnich et al (2011) 
(calculated as 1.3 10 s4 1 × − − ).

4.2.  Comparison of simulated tumour FMISO uptake to in vivo data

The clinical relevance of absolute FMISO binding rates calculated by the parameterised 
model can be assessed by comparing simulated tissue-to-blood ratios (TBRs) to in vivo mea-
surements. This model was derived using data from EMT6 cells, a breast cancer line. In one 
of the few studies reporting on FMISO uptake in breast tumours, maximal TBRs at 2 h p.i. 
were reported for 7 patients, with an average of 1.5 (range 0.9–2.6) (Rajendran 2004). Similar 
TBR ranges were reported in the same paper for head and neck tumours and sarcomas. Our 
simulated TBRs at 2 h p.i. range from 1.3 (in the well-oxygenated case) up to 1.6–2.0 (at 
the peak, dependent on perfused fraction) for the model with necrosis, and up to 2.8 for the 
model without necrosis. In general, most of the reported range can be accounted for by the 
model, if we accept the possibility of variations in the propensity for necrosis in the clinical 
tumours. The exception is the small numbers of TBRs below 1, which cannot be accounted 
for in the model as formulated, but could be explained by the presence of significant amounts 
of non-diffusing material within the image voxel. Rajendran reported a notably higher range 
for maximal TBRs at 2 h p.i. in brain (mean 2.4, range 1.7–2.9). It is suggested that a different 
model may be necessary to quantitatively match brain data, since the cerebral environment is 
markedly different to other areas of the body.

Simulation results show a turnover in FMISO uptake as a function of tissue oxygenation, as 
illustrated in figure 3: no uptake is seen in complete anoxia, sharply rising to a peak at approxi-
mately 5 mmHg, followed by a gradual decrease at higher PO2 . Comparable pre-clinical and 
clinical data is available from studies in which tumour hypoxic fractions have been measured 
before or after FMISO PET imaging.

Precisely-guided animal experiments, employing microPET and fluorescence-based oxy-
gen measurements, showed a broadly monotonic decreasing relationship between the two 
variables in all but the most hypoxic regions (Chang et al 2009). However, considerable vari-
ation in FMISO uptake was seen in regions with PO2 measurements close to 0 mmHg—this 
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could be consistent with varying levels of hypoxic necrosis at low PO2 , but the data is too scat-
tered to be viewed as confirmation or contradiction of the turnover relationship observed in the 
simulations. A proof-of-concept study using a different robotic platform illustrated a turnover 
relationship along one track through a single tumour (Hsu et al 2011).

Clinical studies in head and neck cancer patients have suggested a monotonic increasing 
relationship between FMISO and hypoxia at hypoxic fractions  <70% (Zimny et  al 2006, 
Gagel et al 2007). The results of our simulations are consistent with this observation, since 
the data in table 4 indicates that the turnover in the oxygenation-retention curve occurs at 
HF close to 70%. Furthermore, these authors found greatest departures from a monotonic 
FMISO versus hypoxia relationship in small, highly-necrotic tumours. In another head and 
neck cohort, Mortensen and colleagues compared measured hypoxic fractions with those esti-
mated from FMISO images, assuming a linear mapping between TMR (in the range 1.0–3.7) 
and hypoxic fraction (corresponding range 0–100%) (Mortensen et al 2010). Whilst no statis-
tically significant correlation was reported, it is notable that the greatest FMISO signals were 
observed in regions of intermediate (as opposed to complete) measured hypoxia, and some of 
the illustrated data is consistent with a turnover at very low mean PO2 .

4.3.  Clinical implications of model predictions

It has already been established that a broad range of cellular PO2 values exist in tissue regions 
of PET voxel size (Busk et al 2008, 2009), and that FMISO binding is likely to be similarly 
heterogeneous (Kelly and Brady 2006, Mönnich et al 2011, Mönnich et al 2012, Mönnich 
et al 2013). Our results support those observations, and emphasize that there is a possibility 
of millimetre-sized tumour regions containing well-oxygenated, hypoxic and necrotic regions 
over a wide PO2 range. As a result, FMISO uptake at late time points may be dependent upon 
the competing effects of hypoxia (increasing binding) and necrosis (decreasing binding)—
both of these factors should therefore be considered when developing a strategy for hypoxia 
assessment using FMISO PET. Simulated time activity curves suggest that perfusion infor-
mation in the early phase of a dynamic PET study (�10 s3  ) may enable the differentiation of 
well-oxygenated and highly-necrotic regions. Full pharmacokinetic modelling may not be 
necessary: for example, FH/P, the ratio of activity in a voxel at 4 h to its average activity in the 
first 15 min of the study, is a promising metric proposed by Mönnich et al (2013).

At present, tumour hypoxic volumes are often assessed by defining thresholded regions 
on a static PET image, but there is not consensus on the precise threshold applicable (typi-
cally in the range 1.2–1.5) or the ideal delay between contrast injection and image acquisition 
(Peeters et al 2015). Computational modelling can provide estimates of the oxygenation levels 
to which these thresholds correspond. Specific parameterisation of the model for a particular 
tumour type will provide the most robust estimates. With the generic model described here, 
TBR  >  1.4 at 4 h p.i. corresponds to tissue with temporal mean PO2 above 0.1–1.3 mmHg 
and below 23 mmHg, whilst tumour:normal tissue ratio  >  1.3 is predicted in regions above 
0.1–1.1 mmHg and below 27 mmHg4. The upper limits are quite robust to differences in ves-
sel perfusion status, whilst the lower limits are dependent on the level of hypoxic necrosis.

5.  Conclusions

We have presented a computational model of FMISO binding in tumour tissue, which has 
been calibrated using experimental data, and which predicts tumour:blood ratios that match 

4 Under the assumption that normal tissue (e.g. muscle) is modelled by the maximally-oxygenated simulation.

D R Warren and M Partridge﻿Phys. Med. Biol. 61 (2016) 8596



8616

clinical data over a realistic range of PO2 . Simulations show a non-linear, non-monotonic rela-
tionship between millimetre-scale tissue oxygenation and FMISO uptake at 4 h, with a sharp 
fall-off at low oxygen levels due to necrosis.

Our model has, for the first time, simulated the effects of temporally-incoherent cyclic vari-
ations in perfusion on FMISO contrast. Results suggest that the signal observed at late time-
points does not specifically relate to ‘chronic’ or ‘acute’ hypoxia, but is instead representative 
of the time-averaged oxygenation during the imaging study. Transient perfusion may affect 
the maximum possible signal by increasing the number of viable cells available to bind tracer 
at a given spatiotemporal mean PO2 : more tissue will be exposed to oxygen over a long time 
period, and necrosis may therefore be more limited. Varying the average timescale of perfu-
sion fluctuations in the range 1–120 min does not seem to appreciably affect the observed 
binding at late time-points. It should, however, be noted that correlated variations in perfusion 
may affect the time-averaged oxygenation and therefore cause changes in the FMISO signal, 
such as those observed by Mönnich et al (2012).

Since the model predicts that FMISO contrast arises in cells that are hypoxic but not yet 
necrotic, static FMISO PET images may be confounded by the effects of necrosis. A dose-
painting strategy that is driven by a one-to-one mapping between static FMISO imaging and 
dose5 will therefore risk underdosing small populations of hypoxic cells in mostly necrotic 
regions. However, our results indicate that additional information present in dynamic PET 
scans may allow the differentiation of necrotic and oxic signals, in concordance with previous 
authors (Mönnich et al 2013). We suggest that a robust dose-painting strategy is likely to be 
based on dynamic PET analysis, such as the methodology described by Thorwarth (2007a, 
2007b, 2008).

This work suggests that quantifying necrosis may be an important step in interpreting 
image contrast in FMISO PET, and potentially other hypoxia imaging modalities. Little data is 
available regarding the quantitative relationship between tissue oxygenation and necrosis, and 
how that might be affected by temporal variations in oxygenation. Biological factors beyond 
the scope of this model (e.g. glucose availability) may also modulate necrosis and therefore 
the FMISO signal. Further experimental work along these lines would be a useful contribution 
to our understanding of hypoxia imaging.
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Appendix A.  Oxygen and FMISO diffusion in 2D versus 3D

Espinoza et al (2013) have previously compared simulated PO2 histograms in vascular maps 
where cylindrical blood vessels run parallel to each other (equivalent to a 2D simulation 
geometry) or are randomly oriented along one of three mutually perpendicular directions. 
They observed no statistically significant differences when comparing the average hypoxic 
volume (defined as P 5O2<  mmHg) in twenty simulations of each model with the same vascu-
lar volume, and conclude that 3D simulation is unnecessary. That result is confirmed below, 

5 E.g. defining biological treatment volume by thresholding; linear escalation of dose according to voxel uptake.
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considering the additional possibility of an isotropic angular distribution such that vessels may 
travel at oblique angles to each other. We also perform a similar comparison for the FMISO 
diffusion and binding model.

A.1.  Methods

New oxygen and misonidazole diffusion simulations were carried out in a 1 mm3 cubic domain 
consisting of cubic voxels with side length 10 μm and periodic boundary conditions. Vessels 
were modelled by rasterized representations of a cylinder with radius 10 μm calculated to 
0.1% precision. The directions of cylinder axes were sampled from the relevant p.d.f. (prob-
ability density function) given in table A1, and origin points were sampled from a uniform 
spatial p.d.f. The parallel vessel arrangement can be considered equivalent to a 2D model.

In order to ensure that all simulations had equal vessel coverage, vessels were added to the 

vascular map V one-at-a-time until the calculated relative vascular volume ∑ V
N i i
1

i( ) exceeded 

a target fraction. The finite-difference simulation method and model parameters were identical 
to those used for static vasculature in the main text, except for the use of a three-dimensional 
discrete Laplace operator.

A.2.  Results

Figure A1 shows average steady-state PO2 and 4 h FMISO histograms for 20 simulations with 
each vessel arrangement and coverage fractions of 1% and 5%. Only very minor variations 
between distributions are apparent, the statistical significance of which were assessed using 
the chi-square test on a bin-by-bin basis. Significant differences (at the 95% level) in the 
oxygen histograms were only seen for bins above 30 mmHg. It is suggested that these small 
differences arise due to a slight bias in the vessel seeding method: an additional parallel or 
perpendicular vessel necessarily spans the entire simulation volume, whereas isotropic vessels 
may only span a fraction of the volume. No significant differences were seen in the FMISO 
histograms. We conclude that 2D simulations are sufficiently accurate to justify their use in 
this study.

It should be noted that the whole vascular map has been pre-determined and used as an 
input to these simulations, a situation which is not typically possible for experimental data 
analysis. In addition, the comparisons have considered summary histograms rather than local 
spatial distributions of oxygen and tracer. Grimes et al (2016b) have reported considerable 
variability in oxygen distributions calculated by sampling single 2D slices from a 3D vessel 
network, as would be the case if a single histological section is used to estimate the vascula-
ture. Caution should therefore be exercised in performing 2D analysis of experimental data.

Table A1.  Probability density functions (p.d.f.) sampled in order to model each vessel 
arrangement. ( )δ x  is the Dirac delta function.

Vessel arrangement Azimuthal p.d.f. Polar p.d.f.

Parallel ( ) ( )θ δ θ=f ( ) ( )φ δ φ=f

Perpendicular ( ) ( )θ δ θ= ∑ − π
=f n

n1

4 0
3

2 ( )( ) ( )φ δ φ δ φ= + − π⎡⎣ ⎤⎦f 1

2 2

Isotropic
( ) ⩽

⎪

⎪
⎧
⎨
⎩

θ
θ π

=
<

πf
0 2

0 otherwise

1

2 ( ) ⩽⎪

⎪

⎧
⎨
⎩

φ φ φ π= <
f

sin 0

0 otherwise

1

2
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Figure A1.  (a) Histograms representing the simulated oxygen partial pressure 
(PO2) distributions in tissue with three-dimensional vessel maps measuring 1 mm3 
and vascular volume fractions of 1% and 5%. Three vessel orientations are examined 
(parallel, perpendicular and isotropic), and example volume renderings of the vessel 
maps are inset. Bin heights represent the mean of 20 simulations, and error bars 
denote  ±1 standard deviation. (b) Histograms representing the simulated FMISO 
activity distributions in the same 3D volumes as (a), 4 h after injection. Insets show 
example 2D slices of PO2 (left) and FMISO (right) distributions. Bin heights represent 
the mean of 20 simulations, and error bars denote  ±1 standard deviation.
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Appendix B.  Quantification of autoradiography

A method for the quantification of autoradiography with tritium-labelled molecules has previ-
ously been reported by Kellerer et al (1993). We follow that work but with an explicit con-
sideration of the isotropic emission of electrons, as expected in the beta decay of unpolarised 
nuclei. A similar method could be followed for alternative labels (e.g. 14C).

The quantity aη , autoradiographic efficiency, for a section of thickness ds will be defined 
as follows:

d P E H R E x E xcos d d da s

d E

0 0

s max

( ) ( ) ( ( ) ) ∫ ∫ ∫η θ θ= ⋅ ⋅ −
π

π

−

where P(E) is the beta decay energy spectrum (normalised to integral 1), R(E) is the range 
of an electron with energy E, θ is the angle between the emitted electron’s initial trajectory 
and the section’s surface normal, and H(x) is the Heaviside step function. The geometry is 
illustrated in figure B1.

aη  can be interpreted as the proportion of electrons detectable at the surface of the sample 
relative to all electrons emitted within the sample. We also define a radiolabelling efficiency lη , 
which is the ratio of the specific activity of the labelled tracer aρ (in Bq g−1) to the theoretical 
maximum (when each molecule of tracer is bonded to a single label):

a
t

N

m

Nlog 2l
A l

1
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟η = ⋅

⋅
⋅ρ

where t1
2
 is the label’s half-life in seconds, NA is the Avogadro constant, m is the mass of the 

tracer in a.m.u, and Nl is the number of labels per tracer molecule.
Under the assumption that a single electron track reaching the emulsion activates exactly 

one grain, a measured areal density of activated grains σ can be related to c̄, the molar concen-
tration of tracer in the sample averaged along the x direction.

Figure B1.  Geometry for the autoradiography quantification model. Two possible 
initial trajectories ( −e 1 and −e 2) are shown for electrons of equal energy and thus equal 
range R. −e 1 will be detected as a grain activation, but −e 2 will never reach the emulsion 
since θ<R dcos s.
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cN d
t

t

log 2
l a A s

exp

1
2

¯σ η η= ⋅ ⋅
⋅

c
N d

t

t

1

log 2l a A s

1
2

exp
¯
η η

σ
= ⋅ ⋅

⋅

where texp is the exposure time in seconds. To obtain a concentration in mol dm 3⋅ − , σ is speci-
fied in dm 2−  and ds in dm. In the special case of a sample that is thicker than R R Emax max( )≡ , 
the maximum range of an emitted electron:

η η
σ

= ⋅ ⋅
⋅

c
R N R

t

t

1

log 2
.

l a Amax max

1
2

exp
¯

( )
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