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In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or

tRNA derived fragments; tRFs) have emerged as new powerful players in the

field of small RNA mediated regulation of gene expression, translation, and

epigenetic control. tRFs have been identified from evolutionarily divergent

organisms from Archaea, the higher plants, to humans. Recent studies have

confirmed their roles in cancers and other metabolic disorders in humans and

experimental models. They have been implicated in biotic and abiotic stress

responses in plants as well. In this review, we summarize the current knowledge

on tRFs including types of tRFs, their biogenesis, andmechanisms of action. The

review also highlights recent studies involving differential expression profiling of

tRFs and elucidation of specific functions of individual tRFs from various species.

We also discuss potential considerations while designing experiments involving

tRFs identification and characterization and list the available bioinformatics

tools for this purpose.

KEYWORDS

tRNA derived fragments, tRFs, biogenesis, mechanisms of action, recent studies,
bioinformatics tools

Introduction

Transfer RNAs (tRNAs) play a central role in protein synthesis by recognizing the

codons in mRNA and recruiting corresponding amino acids for polymerization by the

protein synthetase. tRNAs are transcribed by RNA polymerase III and their sizes vary

between 73 and 90 nt even though tRNAs as small as 42 nts have been reported (Wende

et al., 2014). tRNAs adopt a typical cloverleaf secondary structure consisting of an

acceptor stem, D-arm, the anticodon arm, the variable loop, and the T-arm, also known as

the TΨC arm. Each arm consists of a double-stranded stem and a single-stranded loop

(Cramer et al., 1969; Kim et al., 1974; Robertus et al., 1974; Lyons et al., 2018). However,

naturally occurring, active tRNAs that do not fit the established canonical structures have

also been described (Dirheimer et al., 1994; Krahn et al., 2020).

tRNAs are encoded by multiple genes in humans, plants, and other organisms

(Goodenbour and Pan, 2006; Cognat et al., 2013) and can be present in the nuclear

genome and the genome of sub-cellular organelles such as mitochondria and chloroplast
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(Mohanta et al., 2019; Suzuki et al., 2020). In addition, tRNAs

transcribed from the nuclear genome are imported to

mitochondria and vice versa (Brubacher-Kauffmann et al.,

1999; Tarassov et al., 2007; Rubio and Hopper, 2011). tRNAs

are transcribed as precursors (pre-tRNAs, ~125 nt) which are

later processed by ribozymes RNAse P and Z, to cleave the 5′
leader and the 3′ trailer, respectively. After cleavage, a CCA

trinucleotide tag is added at the 3′ end of mature tRNAs by a

specialized RNA polymerase (tRNA nucleotidyltransferase)

(Betat and Mörl, 2015). This addition of CCA trinucleotide is

a crucial step in tRNA amino-acylation, export to the cytoplasm,

and quality control (Hou, 2010). Several tRNA genes contain

introns that are spliced out to generate mature tRNAs (Abelson

et al., 1998; Hayne et al., 2020).

Many organisms contain a large number of diverse tRNA

genes beyond what is necessary for translation suggesting roles

other than protein synthesis (Michaud et al., 2011; Iben and

Maraia, 2014). tRNA genes have also been shown to go through

rapid evolutionary changes to meet novel translational

demands (Yona et al., 2013). In yeast, the loss of a tRNA

gene was made up within 200 generations through mutations

of another tRNA gene (Yona et al., 2013). tRNA genes are

subjected to evolutionary changes in the human population too

(Thornlow et al., 2018). Among 1000 human genomes

analyzed, over 1% contained 24 new tRNA sequences and

over 0.2% of all individuals had 76 new tRNA sequences

(Parisien et al., 2013). Considerable evolutionary variations

have been observed in organellar tRNAs too (Salinas-Giegé

et al., 2015; Zhao et al., 2021). Beyond their role in protein

synthesis, additional roles for tRNAs have been reported in the

regulation of gene expression, cell wall biosynthesis, post-

translational protein labeling, antibiotic biosynthesis, stress

responses, priming reverse transcription, and as substrates

for non-ribosomal peptide bond formation (Raina and Ibba,

2014).

Even though tRNAs are highly stable compared to mRNAs

owing to their highly folded structure and the presence of many

post-transcriptional modifications, stringent tRNA surveillance

and quality control pathways are in place to prevent the

accumulation of nonfunctional tRNAs (Megel et al., 2015).

However, several small non-coding RNAs derived from

tRNAs have been discovered in species ranging from Archaea

to higher plants (Gebetsberger et al., 2012; Xiong et al., 2019; Sun

et al., 2022) even though no degradation products are expected to

persist after tRNA degradation. Analysis of tRNA defective yeast

mutants resulted in a pool of mismodified tRNAs but no

significant increase in small non-coding RNAs derived from

tRNAs, indicating that these are not a byproduct of random

degradation of nonfunctional tRNAs (Thompson et al., 2008).

An increasing amount of evidence suggests that these tRNA

derived fragments; tRFs, (alternatively known as tRNA derived

small RNAs; tsRNAs) are rather specific small non-coding RNAs

with distinct sequence structure, specific expression patterns, and

biological roles independent of their parental tRNAs (Guan et al.,

2020; Chen Q. et al., 2021).

Earlier studies have identified differential expression of tRFs

population in various tissues, stresses, and developmental stages

and recently, more studies are focusing on functional

characterization of individual tRFs. In this review, we

summarize our present knowledge on nature, biogenesis, and

functions of tRFs and various library construction methods and

bioinformatics platforms and tools employed in their

identification and characterization.

Types of tRNA derived fragments (tRFs)

tRFs are generated either as byproducts of pre-tRNA

processing or from mature tRNAs through cleavage by

endonucleases. Depending on the location of the cleavage in

the tRNA sequence, different types of tRFs are generated (Lee

et al., 2009). Later, a classification system for tRFs has been

proposed based on their origin and length (Raina and Ibba,

2014); 1) products of cleavage at the 3′ end of the pre-tRNA

transcript (3′ U tRFs), 2) products of cleavage at the 3′ end of

mature tRNA (3′ CCA tRFs; 3′ tRFs), 3) products of cleavage at
the 5′ end of the mature tRNA (5′ tRFs), 4) tRFs that are

generated from the interior of the mature tRNA sequence and

can include the anticodon (i-tRFs) and 5) tRFs of around ~35 nt

generated by cleavage of mature tRNA molecules in 2 halves

(tRNA halves) (Figure 1). The size of tRFs can vary between

10–50 nucleotides (Ma et al., 2021; Yuan et al., 2021). Since then,

more comprehensive naming systems have been proposed for

tRFs (Megel et al., 2015; Xie et al., 2020; Pereira et al., 2021).

Among the five categories, tRFs derived from mature tRNAs are

more predominant (Keam andHutvagner, 2015). In Arabidopsis,

more than 99% of tRFs are derived from mature tRNAs and only

less than 1% are derived from tRNA precursors (Cognat et al.,

2017).

Biogenesis of tRFs

Different endonucleases have been implicated in the

generation of tRFs in different species. E. coli prr strain was

reported to have a latent tRNA (Lys)-specific anticodon nuclease

(prrC) which is released during T4 phage infection. The release of

prrC leads to cleavage of host lysine tRNAs at the anticodon loop

and helps in restricting phase propagation (Morad et al., 1993).

Two other endonucleases from E. coli, Colicin E5 and Colicin D

also cleave specific tRNAs at the anticodon loop. Colicin D

specifically cleaves arginine tRNAs while Colicin E5 cleaves

specific tRNAs for Tyr, His, Asn, and Asp (Tomita et al.,

2000). In yeast, Saccharomyces cerevisiae, Rnase T2 family

member Rny1p was found to cleave tRNAs in the anticodon

loop (Thompson and Parker, 2009). The heterotrimeric γ-toxin,
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zymocin, secreted by dairy yeast Kluyveromyces lactis is a tRNA

endonuclease that cleaves specific tRNA sequences in the

anticodon region (Lu et al., 2005). Another tRNA

endonuclease that serve as a ribotoxin is PaT from yeast

Pichia acacia which inhibits growth of Saccharomyces

cerevisiae via cleavage of tRNAGln (Chakravarty et al., 2014).

Several other ribotoxins reported from microorganisms such as

Mycobacterium tuberculosis, Shigella flexneri, and Salmonella

enterica are in fact tRNA endonucleases (Winther and Gerdes,

2011; Schifano et al., 2016; Winther et al., 2016).

Several different endonucleases have been reported to

generate tRFs in mammalian cells. ELAC2, a homolog of

Rnase Z, was found to cleave precursor tRNAs to generate 3′

U tRFs in human prostate cancer cell lines (Lee et al., 2009). In

human U2OS cells, ribonuclease angiogenin (ANG), a member

of the RNAse A family, cleaves tRNAs to generate tRNA halves in

response to arsenite, heat shock, or ultraviolet irradiation

(Yamasaki et al., 2009). Recombinant angiogenin induces the

production of tRNA halves and inhibits protein synthesis, while

Rnase 4 and Rnase A do not show induction of tRNA halves

(Yamasaki et al., 2009). Unlike microRNAs which are generated

by Dicer, Angiogenin cleaved tRNA halves have the 5′ hydroxyl
but not the 5′ phosphate (Lyons et al., 2017). Angiogenin

however was found to selectively cleave a subset of tRNAs to

produce tRFs in human cell lines (Su et al., 2019). Furthermore,

ANG knockout indicated that the majority of stress-induced tRFs

FIGURE 1
Types of tRNA derived fragments. tRFs can be derived from pre tRNAs (3′ UtRFs) or mature tRNAs (3′ tRFs, 5′ tRFs, i-tRFs, and tRNA halves). 3′ U
tRFs are produced by cleavage of pre tRNA by RNase Z (or ELAC2). 3′ tRFs and 5′ tRFs are derived from 3 to 5′ ends of mature tRNA while i-tRFs are
derived from internal regions. 3 and 5′ tRNA halves are produced by cleavage at the anticodon loop. tRFs from the same tRNA can vary in type and
length depending upon tissue, developmental stage or environmental stimuli.

Frontiers in Genetics frontiersin.org03

George et al. 10.3389/fgene.2022.997780

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.997780


are ANG independent. Another recent study of tRNA halves

expressed during human renal cell development (Kazimierczyk

et al., 2022) observed that in addition to tRFs generated by

angiogenin, certain tRFs were cleaved at sites which are different

from angiogenin targets. These suggests the existence of other

Rnases that produce tRFs in human cells.

Dicer, the central regulator of microRNA processing was

investigated as a candidate for generating tRFs. (Cole et al., 2009).

showed that generation of 5′ tRFs from tRNAGln in HeLa cells

depended on Dicer. This tRF disappeared after a short siRNA

treatment against Dicer confirming that Dicer is required for its

generation. Similarly in human renal cells, knockdown of Dicer

stopped the biogenesis of 3′ tRFs derived from tRNAArg. The tRF

reappeared after transfection of the cells with a plasmid

containing the dicer gene further confirming the role of Dicer

in its biogenesis (Kazimierczyk et al., 2022). Similarly, Dicer

knockdown in human HEK293T cell lines revealed that tRFs and

miRNAs were significantly reduced upon Dicer knockdown. tRFs

derived from pre-tRNA and tRNA 3′ends were found to be

particularly Dicer dependent (Di Fazio et al., 2022). The same

study also showed that Dicer specifically binds and cleaves

certain tRNAs. Stability of pre-tRNA transcripts may

influence cleavage by Dicer (Hasler et al., 2016). It was shown

that depletion of Lupus autoantigen La, an RNA-binding protein

that stabilizes RNA polymerase III transcripts and supports RNA

folding lead to an increase in tRNA cleavage by Dicer in human

cells (Hasler et al., 2016).

The biogenesis of tRFs in most plants was found to be mostly

independent of Dicer Like proteins (DCLs) (Alves et al., 2017).

Expression profiling of tRFs in flower tissues from DCL mutants

compared to wild type did not reveal significant variations

indicating that DCLs are not primarily essential for the

biogenesis of most tRFs in Arabidopsis. Similarly, in rice and

other plant species, tRFs biogenesis seemed to be mostly

independent of DCLs (Alves et al., 2017). However, the

authors did not rule out the possibility that particular

components of the miRNA biogenesis machinery might be

involved in the biogenesis of particular tRFs. Indeed, the role

of DCL1 in the cleavage of specific 19-nt tRFs was later

demonstrated in Arabidopsis pollen (Martinez et al., 2017).

DCLs may be involved in tRF processing in a tissue/

developmental stage/stress-specific manner. S-like

Ribonuclease 1 (RNS1), a member of the ancient superfamily

of ribonucleases T2/S that is conserved across evolutionarily

distant plant species has been shown to generate different

tRFs in Arabidopsis (Alves et al., 2017). Interestingly, RNS1 is

upregulated under stress conditions indicating a potential role for

tRFs in stress regulation (Hillwig et al., 2008).

The extent of posttranscriptional modifications of parent

tRNA has been shown to influence the biogenesis of tRFs (Pereira

et al., 2021). Queuosine (Q) modification in the wobble

anticodon position of some tRNAs was found to inhibit

cleavage by endonuclease Angiogenin and alter the pool of

tRFs in human cells (Wang et al., 2018). Similarly,

methylation by DNA methyltransferase Dnmt2 protected

tRNAs against ribonuclease cleavage (Schaefer et al., 2010).

tRNA methyltransferase TRMT2A catalyzes the 5-

methyluridine (m5U) modification at position 54 of cytosolic

tRNAs. M5U54 tRNA hypomodification was observed in

TRMT2A mutant human cells followed by an increase in

angiogenin-dependent tRFs production. Interestingly,

oxidative stress has been shown to downregulate TRMT2A in

mammalian cells linking oxidative stress to increased tRFs

production (Pereira et al., 2021).

Overall, biogenesis of tRFs is regulated by different

endonucleases in different organisms and more than one

endonuclease is responsible for tRF biogenesis in many

species. More studies and necessary to evaluate the role of

different endonucleases in generating subsets of tRFs and their

biological implications.

tRFs are not derived equally from all tRNA
genes

Hundreds of tRNA genes are reported in many species to

decode the 61 codons (Goodenbour and Pan, 2006). Expression

profiles of these tRNAs vary widely, even among isodecoders

(tRNAs that share the same anticodon sequence). In human

samples, differences in isodecoder tRNA gene expression often

did not result in changes in the levels of mature tRNAs but were

reflected in the tRFs that are generated from them (Kumar et al.,

2014; Torres et al., 2019). In plants too, tRFs were shown to be

preferentially derived from a limited set of tRNAs (Cognat et al.,

2017; Ma et al., 2021). tRFs derived from different parts of the

same tRNA did not show similar abundance, possibly due to

differential cleavage of the same tRNA in different regions,

differential stabilities of tRFs, or differential selection of tRFs

due to their modifications during library construction (Cognat

et al., 2017). Different sets of tRNAs may be utilized to generate

tRFs in different tissue, stress, and developmental stages.

Organellar tRFs

tRNAs are transcribed from nuclear, chloroplast, and

mitochondrial genomes. It was shown that tRFs generated

from the organellar tRNAs could be exported to the

cytoplasm and serve as key messengers in nuclear organellar

communication (Kumar et al., 2015; Cognat et al., 2017;

Meseguer, 2021). tRFs derived from chloroplasts tRNAs

(ptRFs) can account for around one-quarter of total short

tRFs (19–26 nt) analyzed from Arabidopsis leaves, while tRFs

derived from native mitochondrial tRNAs (mtRFs) accounted

for >1% of total tRFs. Nuclear and plastid tRNAs displayed rather

similar profiles of tRF populations even though they are not
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expressed in the same compartments (Cognat et al., 2017).

Analyzing tRFs originating from mitochondria is more

complex. The genomes of several organisms from humans to

marsupials contain several copies of their mitochondrial tRNAs

in their nuclear genomes (Meseguer, 2021). In addition to tRNAs

expressed from true mitochondrial tRNA genes, plant

mitochondria contain ‘chloroplast-like’ tRNAs expressed from

plastid genes inserted into the mitochondrial genome (Cognat

et al., 2017). This is further complicated due to the import of

nucleus-encoded tRNAs to mitochondria to compensate for the

lack of mitochondrial tRNA genes. Recent studies have been

considering these while profiling mitochondrial tRFs (Loher

et al., 2017).

Functional significance of tRFs

Though the research on tRFs has been gaining momentum

only for the past decade or so, several studies have reported their

roles in various biological functions. These fall into three main

categories; regulation of gene expression, regulation of

translation, and epigenetic regulation (Figure 2).

Regulation of gene expression by tRFs

tRFs can target specific genes and regulate their transcript

level through different mechanisms such as Post Transcriptional

FIGURE 2
Cellular roles of tRNA derive fragments.
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Gene Silencing (PTGS), nascent RNA silencing (NRS), by

affecting mRNA stability, by mediating regulation of

retrotransposition and by mediating biogenesis of other non-

coding RNAs. Additionally, feedback regulation by specific tRFs

to regulate corresponding tRNA gene transcription have also

been reported (Rudinger-Thirion et al., 2011; Goodarzi et al.,

2015; Schorn et al., 2017; Boskovic et al., 2020; Chen L. et al.,

2021; Di Fazio et al., 2022).

The role for tRFs in mediating PTGS have been supported by

the discovery of their association with Argonaute proteins

(AGOs) (Kuscu et al., 2018; Green et al., 2020). AGOs are key

components of the RNA-induced silencing complex (RISC) and

play a central role in the regulation of gene expression networks

(Kuscu et al., 2018; Müller et al., 2019). tRFs association with

AGOs has been shown in a variety of organisms including

human, drosophila and plants (Loss-Morais et al., 2013;

Kumar et al., 2014; Karaiskos et al., 2015; Martinez et al.,

2017; Marchais et al., 2019). Through this association similar

to miRNAs, the tRF–AGO complex can participate in the RNA

silencing and tRFs associated with RISC can induce cleavage of

target RNAs (Maute et al., 2013; Kumar et al., 2014; Martinez

et al., 2017; Kuscu et al., 2018; Ren et al., 2019). tRFs can bind to

their target genes through distinct modes of hybridization (Guan

et al., 2020). Some of these binding regions are similar to 5ʹ-

localized seed sequences in miRNAs, while others were located at

the 3′ end or central region of the tRFs or even extended across

the whole tRF molecule. It is possible that tRFs can recognize

their targets throughmultiple binding regions. In human cells, all

types of tRFs were found to hybridize with targets even though

the most frequent were17–21 nts long (Guan et al., 2020).

mRNAs are the main targets of tRFs for PTGS, but a large

population of them target various ncRNAs including miRNAs as

well (Guan et al., 2020). This, together with previous reports of

AGO-loaded miRNAs that can target tRFs (Helwak et al., 2013),

suggests that tRFs and miRNAs may regulate each other (Guan

et al., 2020).

A novel mode of gene silencing by tRFs, different from

transcriptional and post-transcriptional gene silencing was

demonstrated in mammalian cells recently (Di Fazio et al.,

2022). Dicer generated tRFs were found to guide Ago2-

containing silencing complexes to the nucleus to target

nascent transcripts for direct cleavage in a sequence specific

manner. This nascent RNA silencing occurred through tRFs

targeting the initial introns in nascent transcripts, enabling

Ago2 to slice them co-transcriptionally. AGO mediated gene

silencing inside nucleus by miRNAs are reported in mammalian

cells before. But unlike NRS, the gene silencing happened post

transcriptionally (Sarshad et al., 2018). It is not clear why

miRNA loaded nuclear AGOs do not lead to NRS. (Di Fazio

et al., 2022). suggested that unlike miRNAs, the various

modifications on tRFs may affect the target RNA:tRF

stability contributing to their ability to bind to nascent

RNAs. It is highly likely that NRS by tRFs is a key

mechanism of gene expression regulation, but more studies

in diverse organisms are necessary to confirm this.

A few studies reported that tRFs were able to regulate

transcript stability and translation by interacting with RNA

Binding Proteins (RBP). YBX1 is an RBP that enhances the

translation of several oncogenic transcripts by binding to and

stabilizing them (Perner et al., 2022). The majority of YBX1-

binding sites in these transcripts were localized to 3′ UTRs and
exons (Goodarzi et al., 2015). In breast cancer cells, tRFs derived

from specific tRNAs were found to bind to YBX1 in a sequence-

specific manner. Competitive binding by these specific tRFs to

YBX1 leads to the displacement of oncogenic transcripts

resulting in their destabilization, and downregulation. Unlike

RNAi-mediated silencing where tRFs serve as guides that direct a

transcript to cleavage by endonucleases, here the post-

transcriptional silencing is achieved through displacement and

destabilization of mRNA transcripts (Goodarzi et al., 2015). In

another study, a 32 nt tRF (tRF3E) deriving from the 3′ end of the
mature tRNAGlu was shown to specifically bind to NCL

(nucleolin), an RBP that binds to several cellular mRNAs,

regulating their stability or translation. NCL can interact with

a well-known tumor suppressor p53 mRNA and suppress its

translation. Competitive binding of tRF3E to NCL leads to

increased translation of p53 mRNA (Falconi et al., 2019). A

very recent report showed that another tRF, a 5′ tRF from

tRNACys, binds NCL and drives NCL oligomerization to

enhance NCL-bound mRNAs’ stabilities. This protected these

transcripts from exonucleolytic degradation (Liu et al., 2022).

Thus, interactions of specific tRFs with RBPs can lead to increase

or decrease in transcript level of associated genes.

tRFs have been reported to regulate reverse transcription of

retrotransposons. Mobility of transposable elements (TE) is

tightly controlled in cells to prevent mutations. However,

epigenetic reprogramming in stem cells release transcriptional

control of TEs. Small RNAs are reported to play a major role in

inhibiting transposon expression when epigenetic control is

compromised by reprogramming (Schorn et al., 2017).

Retroviruses, plant pararetroviruses, and retrotransposons

require specific tRNAs as primers for reverse transcriptase to

initiate DNA synthesis (Marquet et al., 1995). Primer tRNAs bind

to complementary primer binding sites (PBS) within the

retroelements leading to their reverse transcription. In mouse

stem cells, 3′ CCA tRFs have been shown to target PBS in

retrotransposons. Competitive binding of tRFs to PBS

prevents their reverse transcription and retrotransposition.

Thus, the presence of specific tRFs could provide an innate

immunity during horizontal entry of LTR-retrotransposons

(Schorn et al., 2017).

Specific tRFs have been shown to play a role in the

production of a wide variety of other noncoding RNAs such

as snoRNAs, scaRNAs, and snRNAs (Boskovic et al., 2020). Cajal

bodies are coiled suborganelles present in the nucleus involved in

ribonucleoprotein processing and maturation. A 5′ tRF from
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tRNAGly was found to positively regulate production of non-

coding RNAs such as U7 snRNA in Cajal bodies of human and

mouse embryonic stem cells. In addition, tRFs regulate the

biogenesis of Cajal bodies and in turn regulate the biogenesis

of other non-coding RNAs (Boskovic et al., 2020).

In addition to regulating transcript level of other genes and

noncoding RNAs, tRFs are known to regulate the transcript level

of their parent tRNA (Chen L. et al., 2021). In zebrafish embryos,

5′ tRFs from tRNAGlu and tRNAGly were found to promote

transcription of matching tRNA genes. Knockdown of 5′ tRFs
resulted in significant reduction in expression levels of

corresponding parent tRNA while synthetic 5′ tRFs mimetics

that do not possess native modifications were able to significantly

increase the parent tRNA levels. This feedback regulation was

caused by binding of 5′ tRFs to the template strand of their

corresponding tRNAs. This binding of 5′ tRFs to the template

strand prevent homologous full-length tRNAs from forming

transcriptionally inhibitory RNA:DNA hybrids on the same

tRNA genes, promoting their transcription (Chen L. et al., 2021).

Regulation of translation by tRFs

tRFs have been shown to regulate translation of various

proteins through participating in ribosome biogenesis as well

as directly interacting with various components of protein

synthesis machinery.

A role for tRFs in fine-tuning the production of ribosomal

proteins and ultimately the number of ribosomes in proliferating

cells was demonstrated in human cancer cells (Kim et al., 2017).

A 3′ tRF from tRNALeuCAG was shown to enhance translation of

small ribosomal subunit protein mRNA, RPS28 (Kim et al.,

2017). The authors proposed that this tRF is involved in

unfolding the mRNA target sites that have duplexed

secondary structures allowing for enhanced translation. The

tRF target site in the RPS28 coding sequence is conserved in

vertebrates indicating that tRF-regulated mRNA translation of

RPS28 is a conserved process (Kim et al., 2019). RPS28 is needed

for ribosomal RNA 18S rRNA biogenesis and is an integral part

of the 40S ribosomal subunit (Robledo et al., 2008). Inhibition of

this tRF induces apoptosis in rapidly dividing cells by impairing

ribosome biogenesis (Kim et al., 2017).

Direct interaction of tRFs with ribosomes and inhibition of

global translation was shown inHaloferax volcanii (Gebetsberger

et al., 2012). In this halophilic archaeon, a 5′tRF processed in a

stress-dependent manner from valine tRNA was found to

primarily target the small ribosomal subunit leading to

reduction in protein synthesis by interfering with peptidyl

transferase activity (Gebetsberger et al., 2012). In yeast too,

specific tRFs were found to associate with small ribosomal

subunits to inhibit translation by affecting global

aminoacylation and the aminoacylation of the corresponding

parental tRNAs (Mleczko et al., 2018). In mammalian cells, a 5ʹ

tRNA half derived from tRNAPro was found to be associated with

ribosomes and polysomes (Gonskikh et al., 2020). Addition of

synthetic tRNAPro halves to mammalian in vitro translation

systems results in global translation inhibition. The authors

suggested that binding of the tRNAPro 5ʹ half to the ribosome

leads to ribosome stalling resulting in translation inhibition

(Gonskikh et al., 2020).

Significant inhibition of global protein synthesis by tRFs

through interaction with specific components of translation

machinery was demonstrated in human cells (Yamasaki et al.,

2009). This inhibition of translation by angiogenin cleaved tRFs

under stress conditions is associated with increased accumulation

of stress granules too (Ivanov et al., 2011). Later studies showed

that this inhibition of translation involves 5′ tRFs derived from

tRNAAla and tRNACys and correlates with their ability to displace

eIF4G/A from mRNA. These tRFs interact with the translation

repressor Y-box-binding protein 1 (YB-1) and displace the cap-

binding complex to prevent eIF4G/A from initiating translation.

(Ivanov et al., 2011). Another 5′ tRF, derived from tRNAGln

(Gln19) was found to modulate translation by associating

primarily with the human multisynthetase complex (MSC)

(Keam et al., 2017). In model plant Arabidopsis, translation

inhibition by tRFs possibly through association with active

polyribosomes has been reported (Zhang et al., 2009; Lalande

et al., 2020). In Drosophila, tRFs regulate the global translational

activities by targeting key components of translation machinery

through conserved antisense sequence matching in an AGO-

dependent manner largely independent of miRNA-mediated

regulation (Luo et al., 2018).

While most studies on tRFmediated regulation of translation

reported inhibition of translation, a role for tRFs in stimulating

translation was demonstrated in the pathogenic parasite

Trypanosoma brucei. tRFs derived from tRNAThr accumulated

during nutrient deprivation and enhanced translation by

facilitating mRNA loading on ribosomes and polysomes

(Fricker et al., 2019).

Epigenetic regulation of gene expression
by tRFs

Epigenetic changes are dynamic and heritable genetic

alterations without any nucleotide changes (Park et al., 2020).

tRFs have been reported to function in epigenetic regulation by

acting as signal molecules, influencing mRNA transport and

affecting transgenerational memory.

Rhizobial tRFs have been shown to act as signal molecules

that positively regulates host nodulation (Ren et al., 2019). The

rhizobium Bradyrhizobium japonicum was found to produce

tRFs derived from all 50 rhizobial tRNAs in both Rhizobium

culture and nodules of the host plant soybean. The tRFs were

more abundant in nodules than in culture and were primarily 3′
tRFs. These tRFs were predicted to target 52 soybean genes but

Frontiers in Genetics frontiersin.org07

George et al. 10.3389/fgene.2022.997780

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.997780


were not predicted to target rhizobial genes. Three rhizobial tRFs,

derived from tRNAs, Val-1-tRNA (CAC), Gly-1-tRNA (UCC),

and Gln-1- tRNA (CUG) were to regulate host genes that were

negative regulators of nodulation through cleavage of mRNAs in

predicted target sites in a manner similar to miRNAs.

Interestingly, none of the predicted target sites for rhizobial

tRFs were not predicted to be targeted by previously identified

soybean small RNAs (Arikit et al., 2014; Ren et al., 2019). The

rhizobial tRFs were shown to utilize the soybean AGO1 to

catalyze tRF-guided cleavage of target mRNAs in the host

cells (Ren et al., 2019). These results indicate a cross-kingdom

communication involving tRFs and their targets. It is possible

that such cross-kingdom communication involving tRFs exist

between other host-symbiont/parasite relationships too.

Additionally, such communication could exist between disease

causing agents and their hosts. Further studies in different species

are necessary to evaluate such roles of tRFs.

A role for tRFs in movement of mRNAs graft junction has

been observed in grafted plants of different Arabidopsis ecotypes

(Thieme et al., 2015). Plants use the movement of

macromolecules through phloem as a mechanism for long-

distance signaling to affect distal regions (Mach, 2016). The

abundance of tRNAs in phloem sap correlated with the

movement of a large number of mRNAs across graft junction

suggesting a potential role for them in mRNA mobility (Thieme

et al., 2015). tRNAs can interact with the 3′ ends of mRNAs to

create a linked RNA that can move through plasmodesmata

(Westwood and Kim, 2017). Synthetically constructed tRFs

derived from different regions of tRNAMet could facilitate

systemic movement of co-transcribed mRNA between roots

and shoots in transgenic systems while retaining the mRNA

function (Zhang et al., 2016). Additional studies are required to

verify if naturally occurring tRFs associate with mRNAs to

influence their movement.

Importance of tRFs in transgenerational memory has been

demonstrated in widely unrelated species. Sperm tRFs from

paternal mice on a high-fat diet altered gene expression of

metabolic pathways in early embryos and islets of F1 offspring

leading to metabolic disorders (Chen et al., 2016). Similarly,

sperm tRFs from aged male mice induced anxiety-like

behaviors in F1 males (Guo et al., 2021) and mediated

obesogenic and hedonic phenotypes in the progeny following

maternal high-fat diet (Sarker et al., 2019). Another interesting

study showed that sperm cells from nutrient restricted mice

gained tRFs from tissue in the reproductive tracts through

fusion with tRFs containing vesicles. These tRFs were passed

on to the embryos where they were found to repress genes

associated with the endogenous retroelement MERVL (Sharma

et al., 2016). Post-transcriptional modifications of tRFs are

potentially important in intergenerational inheritance of

metabolic disorders as deletion of tRNA methyltransferase,

DNMT2, abolished sperm sncRNA-mediated transmission of

high-fat diet-induced metabolic disorders to offspring (Zhang

et al., 2018). In Brassica rapa, changes in expression profiles of

tRFs in heat-stressed plants were inherited by unstressed

progeny leading to improved thermotolerance compared to

unprimed plants (Byeon et al., 2019). It has been proposed

that small RNAs including tRFs could serve as signaling

molecules that transmit between tissues and even across

generations to bring out transgenerational memory (Zhang

and Tian, 2022).

Identification and expression profiling of
tRFs

Several studies have reported differential expression of tRFs

under various conditions in many species. Population and

expression levels of tRFs were found to vary between

cancerous and normal tissues in mouse and human cells

indicating potential roles in carcinogenesis (Jehn et al., 2020;

Huang et al., 2022). Differential expression of tRFs is reported

across various tissues and developmental stages (Soares et al.,

2015). In plants, differential expression of tRFs is reported across

various tissues, between developmental stages, and under abiotic

and abiotic stresses (Cognat et al., 2017; Meijer et al., 2022; Sun

et al., 2022). Table 1 lists recent studies reporting expression

profiling of tRFs from various species.

Functional analysis of specific tRFs

Research interest in tRFs is rapidly gaining momentum, and

many studies are reporting differential expression of tRFs in the

experimental conditions of interest (Table 1). tRFs have been

reported to play major roles in many cancers (Li X. et al., 2021).

(Telonis et al., 2019) carried out a large-scale investigation of

tRF-mRNA co-expression networks in 32 cancer types. Their

results showed that mitochondria contribute disproportionally

more tRFs than the nuclear ones. The associations between

specific tRFs and mRNAs were found to differ from cancer to

cancer. Correlation of tRFs with mRNAs depended on their

length and presence of higher density in repeats, such as ALUs,

MIRs, and ERVLs. Detailed analysis of tRF-mRNA cancer

specific associations would help in identifying candidate

genetic elements for targeted treatments.

The studies involving functional characterization of

individual tRFs are limited mostly to cancer research. Some

tRFs were reported to promote cancer progression while

others were reported to suppress it. A 3′tRF from tRNAVal

was significantly upregulated in gastric cancer tissues

compared to control tissues and was positively correlated with

tumor size and the depth of tumor invasion (Cui et al., 2022).

Further functional analysis proved its involvement in cancer

proliferation and invasion and inhibition of apoptosis in gastric

cancer cells via binding to chaperone molecule EEF1A1 (Cui
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TABLE 1 Differential Expression profiling of tRFs in various organisms.

Sl.
No.

Organism Tissue/Stress/Developmental stage References

Human cells

1 Human clinical lung adenocarcinoma tissues and adjacent normal lung tissues Huang et al. (2022)

2 Human primary nasopharyngeal carcinoma tissues and healthy controls Lu et al. (2021)

3 Human high-grade serous ovarian cancer (HGSOC) and adjacent normal ovarian tissues Chen et al. (2021a)

4 Human Aorta tissue from Aortic dissection (AD) patients and healthy controls Fu et al. (2021)

5 Human Peripheral blood mononuclear cells (PBMCs) from blood samples of IgA nephropathy (IgAN)
patients and healthy control groups

Luo et al. (2020)

6 Human plasma cells from the bone marrow of diagnosed myeloma and healthy donors Xu and Fu, (2021)

7 Human bone marrow stromal cells (BMSCs) from Fibrous dysplasia (FD) patients and healthy
controls

Ling et al. (2022)

8 Human clinical breast cancer tissues and adjacent normal samples Wang et al. (2019)

9 mouse, rat, pig, human, chimpanzee,
macaque

Hippocampal tissue Jehn et al. (2020)

10 Human Muscle-invasive bladder cancer (MIBC) specimens and adjacent control mucosal tissues Qin et al. (2022)

Plants

1 Arabidopsis Phosphate sufficient and deficient shoot and root samples Hsieh et al. (2009)

2 Arabidopsis Various tissues and stresses Cognat et al. (2017)

3 Arabidopsis Shoot tissue from cold treated and control plants Tiwari et al. (2020)

4 Arabidopsis, rice Various tissues, stress, and developmental stages Ma et al. (2021)

5 Rice (Oryza sativa) Various tissues and developmental stages Meijer et al. (2022)

6 Tomato (Solanum lycopersicum) exogenous abscisic acid (ABA) treated leaf tissue and control untreated leaves Luan et al. (2020)

7 Wheat (Triticum aestivum) Leaves from heat-treated seedlings Wang et al. (2016)

8 Wheat (Triticum aestivum) spikelets inoculated with Fusarium graminearum and uninoculated controls Sun et al. (2022)

9 Barley (Hordeum vulgare L.) Phosphate sufficient and deficient shoot and root samples Hackenberg et al. (2013)

10 Barley (Hordeum vulgare L.) Phosphate sufficient and deficient shoot and root samples Sega et al. (2021)

11 Black Pepper (Piper nigrum L.) Phytophthora capsica infected leaves and roots Asha and Soniya, (2016)

12 Brassica rapa Various tissues Byeon et al. (2019)

13 Different land plants Various tissues Alves et al. (2017)

Others

1 Drosophila melanogaster Various tissues and developmental stages Luo et al. (2018)

2 Drosophila melanogaster Ovary tissues from wild type and tRNA biogenesis mutants Molla-Herman et al.
(2020)

3 Mice Sperm cells from mice exposed to cadmium Zeng et al. (2021)

4 Mice Retina from mice with oxygen-induced retinopathy (OIR) and control mice Peng et al. (2020)

5 Mice Brain tissue from SAMP8 (senescence-accelerated mouse prone 8) mice and SAMR1
(senescence-accelerated mouse resistant 1) mice

Zhang et al. (2019)

6 mice Skin tissue of ultraviolet Irradiated and untreated animals Fang et al. (2021)

7 Schizosaccharomyces pombe Heat stressed and unstressed samples Hu et al. (2021)

8 Schmidtea mediterranea Transverse sections of the organism Lakshmanan et al.
(2021)

9 Cryptococcus gattii, Cryptococcus
neoformans

Comparison between the two basidiomycetous yeasts Streit et al. (2021)

10 Zebrafish (Danio rerio) Various tissues and developmental stages Soares et al. (2015)
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et al., 2022). Another study showed that tRF-3017A (derived

from the 3′ end of mature tRNAVal) was involved in silencing

tumor suppressor NELL2 leading to significantly higher lymph

node metastasis in gastric cancer (Tong et al., 2021).

Interestingly, another tRNAVal derived tRF, tRF-19-3L7L73JD,

was shown to have a potential role in the suppression of the

development of gastric cancer (Shen et al., 2021). tRF-19-

3L7L73JD was downregulated in plasma from gastric cancer

patients compared to healthy controls. It was found to inhibit cell

proliferation and migration, induced apoptosis, and arrested cells

at G0/G1 phases (Shen et al., 2021). The expression level of a 5′
tRF from tRNAArg (tRF-20-S998LO9D), was positively correlated

with poor prognosis in a variety of cancers such as breast invasive

carcinoma, head and neck squamous cell carcinoma, kidney renal

clear cell carcinoma, lung squamous cell carcinoma,

pheochromocytoma and paraganglioma, and uterine corpus

endometrial carcinoma (Gu et al., 2020; Ma and Liu, 2022).

Specific tRFs have been suggested as predictive biomarkers and

intervention targets for several types of cancers (Sun et al., 2018;

Xi et al., 2021).

Although there are several published studies on differential

expression of tRFs under various stress conditions, tissues and

developmental stages in many plant species, (Table 1), functional

analysis of specific tRFs are limited. In a recent report, a 5′ tRF
from tRNAAla was found to negatively regulate Cytochrome P450

71A13 (CYP71A13) expression and camalexin biosynthesis in

Arabidopsis via AGO1 mediated silencing. Negative regulation

of Camalexin, the major phytoalexin in Arabidopsis, lead to

decreased resistance to fungal pathogen Botrytis cinerea (Gu

et al., 2022). Table 2 lists a few of the reported functional

studies in tRFs.

Identification, expression profiling, and
functional analysis of tRFs–Methods and
considerations

Next-generation sequencing technologies and microarrays

are effective tools for high throughput identification and

expression profiling of tRFs. tRNAs are heavily modified post-

TABLE 2 Documented roles of specific tRFs.

Sl.
No.

Type of
tRF/name

Parental tRNA System Function References

1 3′ tRF LeuCAG Human cells Enhances translation of specific ribosomal protein mRNAs, regulates
ribosome biogenesis

Kim et al. (2017)

2 - tRNAGlu, tRNAAsp,
tRNAGly, tRNATyr

Human cells Suppress Breast Cancer Progression Goodarzi et al.
(2015)

3 3′ tRF (tRF3008A) tRNAVal Human cells Suppresses the progression and metastasis of colorectal cancer Han et al. (2022)

4 3′ tRF (tRF-3019a) tRNAAla Human cells Enhances cell proliferation, migration, and invasion in gastric cancer Zhang et al. (2020a)

5 5′ tRF tRNA Lys Human cells Early Progression of bladder cancer Papadimitriou et al.
(2020)

6 3′ tRF tRNAGIu Human cells Tumor suppressor in breast cancer Falconi et al. (2019)

7 5′ tRF tRNAGly Human cells Controls noncoding RNA production and histone levels Boskovic et al.
(2020)

8 5′ tRNA half tRNAHis Human cells Functions in the innate immune response by activating Toll-like
receptor 7

Pawar et al. (2020)

9 5′ tRNA half tRNAHis Human cells Functions in B-lymphoblastic Cell Proliferation Mo et al. (2020)

10 3′ tRNA half
(tsRNA-16902)

tRNAThr Human cells Regulates the adipogenic differentiation of human bone marrow
mesenchymal stem cells

Wang et al. (2020)

11 5′ tRF tRNAGln Human cells Promotes Respiratory Syncytial Virus replication and induction Choi et al. (2020)

12 5′ tRF tRNAGlu Human cells Regulates Breast Cancer Anti-Estrogen Resistance 3 (BCAR3)
expression and proliferation in ovarian cancer cells

Zhou et al. (2017)

13 5′ tRNA halve tRNAGly Human cells Directly binds to splicing-related RNA-binding protein RBM17 and
regulates papillary thyroid cancer

Han et al. (2021)

14 tRF3 tRNAThr Human cells Target the 3′UTR of Z-DNA-binding protein 1 (ZBP1) for its
degradation leading to the suppression of acute pancreatitis

Sun et al. (2021)

15 5′ tRF (TRF365) tRNAThr Human cells Regulates themetabolism of anterior cruciate ligament (ACL) cells by
silencing the expression of The inhibitor of nuclear factor kappa B
kinase subunit beta

Long et al. (2022)

16 5′ tRF tRNAAla Arabidopsis Repress anti-fungal defense by negatively regulating Cytochrome
P450 71A13 (CYP71A13) expression in an AGO1dependent manner

Gu et al. (2022)

17 5′ tRF tRNAGln Porcine male
germ cells

Regulates early cleavage of preimplantation embryos in mature
spermatozoa

Chen et al. (2020)
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transcriptionally (Lyons et al., 2018; Delaunay and Frye, 2019).

More than 170 RNAmodifications are reported and over 90 such

modifications are found in tRNA, even though their frequency

and distribution vary according to organism or tRNA species

(Lyons et al., 2018). These post-transcriptional modifications

serve to stabilize the tertiary structure, are required for efficient

export to cytoplasm, and aid in the codon-anticodon recognition

and translation (Lipowsky et al., 1999; Bednářová et al., 2017).

Modifications including mononucleotides that did not

correspond to the four canonical RNA bases such as

pseudouridine (Ψ), 2-methyladenine, N6-methyladenine, N6-

dimethyladenine, etc, and 2′-O-methylation are common in

tRNAs from various species (Hou et al., 2015; Bednářová

et al., 2017; Lyons et al., 2018). tRNA modifications influence

the specificity and efficiency of tRNA cleavage to produce tRFs

(Schaefer et al., 2010; Wang et al., 2018). Similar to tRNAs, tRFs

are also rich in post-transcriptional modifications which could

potentially play roles in their function and should be considered

in studies involving the identification and characterization of

tRFs (Guzzi et al., 2018; Akiyama et al., 2020). Post-

transcriptional modifications in tRFs often lead to

misincorporation by reverse transcriptase and interfere with

the efficiency of reverse transcription (Ebhardt et al., 2009;

Potapov et al., 2018) and ultimately affect the tRFs population

identified through small RNAseq library preparation. Some tRFs

contain a 2′,3′-cyclic phosphate (cP) at their 3′ termini that

inhibit the adapter ligation reaction (Honda et al., 2016). Several

newly developed sequencing techniques such as ARM-seq, cp-

RNA-seq, hydro-tRNAseq, and YAMATseq have taken these

into consideration (Cozen et al., 2015; Honda et al., 2016;

Gogakos et al., 2017; Shigematsu et al., 2017). These

techniques have incorporated RNA pretreatments such as

demethylation, selective amplification of RNA fragments that

contain 3′-cP, partial alkaline RNA hydrolysis, 3′-terminal

diacylation, 3′-cP removal, and 5′-phosphate addition, use of

specific adapters for ligation, etc. (Ma et al., 2021).

Additionally, the size of tRFs in a population can vary, with

tRNA halves ranging from 30 to 40 nt, tRFs derived fromD and T

arms ranging from 18 to 25 nt, and internal tRFs as small as 10 nt

(Alves and Nogueira, 2021; Ma et al., 2021; Yuan et al., 2021).

Hence, studies involving tRFs identification should consider this

while doing size selection.

Bioinformatics analysis of tRFs

Mapping the tRFs to tRNA space alone, instead of the full

genome can lead to the generation of false positives (Telonis et al.,

2016). This is because well-studied genomes like the human

genome contain hundreds of incomplete tRNA sequences which

do not produce functional tRNAs. Mapping pipelines that do not

map to the full genome might erroneously map these deep-

sequencing reads as tRFs because of the existing sequence

similarity (Telonis et al., 2016). 3′tRFs contain the non-

templated “CCA” at the 3′ terminus, which can also exist at

multiple genomic locations that are unrelated to tRNAs, and it is

essential to rule out them to eliminate false positives (Telonis

et al., 2016). Mapping the small RNA reads to both tRNAs and

the full genome and discarding the reads that map better to non-

tRNA space would help to eliminate false positives (Thompson

et al., 2018; Ma et al., 2021).

Post-transcriptional modifications affect RNA polymerase

and reverse transcriptase fidelity (Potapov et al., 2018) and this

needs to be considered while permitting mismatches when

mapping the reads sequences on the mature tRNA sequences

(Cognat et al., 2017). It was shown that permitting two

mismatches did not lead to an inflated number of false-

positive tRFs in Arabidopsis (Cognat et al., 2017). A post-

transcriptional modification of “m1A” at position 58 is highly

present in Arabidopsis tRNAs and often leads to

misincorporation by reverse transcriptase (Chen et al., 2010;

Cognat et al., 2017). Permitting one mismatch was shown to be

essential to accurately retrieve the set of 3′ tRFs with this

modification (Cognat et al., 2017).

Identification of tRF interacting proteins
and RNAs

Techniques such as CLIP (Crosslinking and Immuno

precipitation), PAR-CLIP (Photoactivatable

Ribonucleoside-Enhanced Crosslinking and

Immunoprecipitation), and CLASH (crosslinking, ligation,

and sequencing of hybrids) are used widely for identifying

tRFs interacting with AGO proteins and other RNAs (Kudla

et al., 2011; Spitzer et al., 2014; Hafner et al., 2021). PAR-

CLIP incorporates photoreactive ribonucleoside analogs into

nascent transcripts. Upon UV exposure, photoreactive

nucleoside-labeled cellular RNAs are cross-linked

effectively to their interacting RBPs. After

immunoprecipitating and purifying the Cross-linked

RNA-RBP complexes, protein is digested and the RNA is

reverse transcribed and sequenced. Binding sites of the

proteins on the RNA can be recognized by mutations

caused by incorporated ribonucleoside analogs (Danan

et al., 2016). CLASH identifies RNA-RNA interactions.

Similar to PAR-CLIP, protein associated RNAs are

stabilized by cross-linking the RNAs with proteins by

ultraviolet irradiation and the proteins are

immunoprecipitated. RNAs associated with proteins are

partially truncated and a ligation step physically connect

the ends of RNA-duplexes in an individual protein molecule.

Later, these RNAs are reverse transcribed. The ligated

duplexes give rise to chimeric cDNAs, enabling the

identification of RNA-RNA interaction sites (Helwak and

Tollervey, 2014).
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PAR-CLIP has been useful in deciphering specific AGO

associations of tRFs. Human PAR-CLIP data showed that 5′
and 3′ tRFs preferentially associated with AGO1, 3 and 4 rather

than AGO2 (Kumar et al., 2014). Dicer PAR-CLIP data from

human HEK293T cell line suggested that Dicer is involved in the

biogenesis of a subset of tsRNAs (Di Fazio et al., 2022). Human

TABLE 3 Databases and tools for tRNAs and tRFs.

Name Details Website Ref

tRNA databases and tools

GtRNAdb 2.0 Database of tRNA genes from over 4370 genomes, includes information on tRNA
modifications, SNPs, gene expression, and evolutionary conservation

http://gtrnadb.ucsc.edu/ Chan and Lowe, (2016)

DBtRend Database of mature tRNA expression profiles across various biological conditions in
humans

https://trend.pmrc.re.kr/ Lee et al. (2021)

PLMItRNA Database of plant mitochondrial tRNAs and tRNA genes http://bio-www.ba.cnr.it:8000/srs/ Ceci et al. (1999)

tRNAscan-SE Tool for predicting tRNA genes in whole genomes http://trna.ucsc.edu/tRNAscan-SE/ Chan and Lowe, (2019)

tRNAmodpred Tool for prediction of posttranscriptional modifications in tRNAs http://genesilico.pl/trnamodpred/ Machnicka et al. (2016)

PRMdb Includes predicted tRNA modifications in plants http://www.biosequencing.cn/
PRMdb/

Ma et al. (2020)

tRic Database of tRNA expression profiles in 31 human cancer types https://hanlab.uth.edu/tRic Zhang et al. (2020b)

tRFs databases and tools

tRFdb Database of tRFs from 8 species including human, mouse, drosophila http://genome.bioch.virginia.edu/
trfdb/

Kumar et al. (2015)

PtRFdb Database of tRFs from plant species including Arabidopsis, rice, soybean, sorghum,
maize, etc

www.nipgr.res.in/PtRFdb Gupta et al. (2018)

tRFexplorer Expression profiles of tRFs in TCGA and NCI-60 panel cell lines (human tumor cell
lines)

https://bio.tools/tRFexplorer La Ferlita et al. (2019)

MINTbase Database of nuclear and mitochondrial tRFs from all The Cancer Genome Atlas
projects

https://cm.jefferson.edu/MINTbase/ Pliatsika et al. (2018)

MINTmap Tool for identification of mitochondrial and nuclear tRFs in short RNA-seq datasets https://github.com/TJU-CMC-Org/
MINTmap/

Loher et al. (2017)

tRFtarget Database of predicted tRFs targets in eight species http://trftarget.net Li et al. (2021a)

tRFTars A tool for predicting the targets of tRNA-derived fragments http://trftars.cmuzhenninglab.org:
3838/tar/

Xiao et al. (2021)

tRFTar Tool for prediction of tRF-target gene interactions http://www.rnanut.net/tRFTar/ Zhou et al. (2021)

miRge3.0 tRF sequencing analysis pipeline https://anaconda.org/bioconda/
mirge3

Patil and Halushka,
(2021)

tDRmapper A tool for mapping, naming and quantifying tRFs https://github.com/sararselitsky/
tDRmapper

Selitsky and Sethupathy,
(2015)

SPORTS1.0 A tool that includes annotation and profiling of tRFs https://github.com/junchaoshi/
sports1.0

Shi et al. (2018)

tsRNAsearch A pipeline for identification of differentially expressing tRFs from small RNA-
sequencing data

https://github.com/GiantSpaceRobot/
tsRNAsearch

Donovan et al. (2021)

deepBase v3.0 tRFs annotation and expression profiles in various cell lines http://rna.sysu.edu.cn/deepbase3/
index.html

Xie et al. (2021)

tRex Database of tRFs in Arabidopsis http://combio.pl/trex Thompson et al. (2018)

tsRFun Database and tools for tRF analysis across 32 types of cancers http://rna.sysu.edu.cn/tsRFun/ Wang et al. (2022)

OncotRF Database and tools for exploring tRFs in human cancers http://bioinformatics.zju.edu.cn/
OncotRF

Yao et al. (2020)

tRF2Cancer Database and tools to analyze expression profiles of tRFs in multiple cancers http://rna.sysu.edu.cn/tRFfinder/ Zheng et al. (2016)

tRFanalyzer Database of tRNA and tRFs expression data from Arabidopsis and rice http://www.biosequencing.cn/
tRFanalyzer/

Ma et al. (2021)

tsRBase Database for expression and function of tRFs in many species http://www.tsrbase.org Zuo et al. (2021)
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AGO1 CLASH identified thousands of RNAs that interact with

tRFs (Kumar et al., 2014).

Functional characterization of tRFs

Owing to the potential roles post-transcriptional

modifications play in tRFs function (Guzzi et al., 2018), the

use of synthetic RNAs that closely mimic endogenous tRFs in

their sequence may not be ideal for functional studies (Akiyama

et al., 2020). Purification of tRFs retaining modifications from

endogenous sources and their use in functional studies would be

more prudential in this context. In a recent study, the authors

used DNA oligo probes complementary to target tRFs to

efficiently isolate natural individual tRFs containing internal

modifications (Akiyama et al., 2020). The translation

inhibition efficiency of thus isolated endogenous tRF (5ʹ-

tiRNAGly) was greater than its synthetic counterpart (Akiyama

et al., 2020). Different in vitro and in vivo strategies for the

production of tRFs retaining modifications have been described

here (Drino et al., 2020). For knockdown studies involving tRFs,

Short tandem target mimic (STTM) technology can be useful

(Tang et al., 2012). STTM is a synthetic, short, non-coding RNA

that can block the function of small RNAs of interest. STTM has

been successfully used knockdown specific tRFs and decipher

their function (Martinez et al., 2017). It would be prudent to

consider the evolutionary variability of tRNA genes (Parisien

et al., 2013) and in turn tRFs even within the population of single

species while designing functional characterization experiments.

Bioinformatics resources for tRNAs and
tRFs

Several databases and bioinformatics tools exist for studies

focusing on tRNA and tRFs. tRFdb is a database that contains

tRFs from 8 species including humans and mice (Kumar et al.,

2014). PtRFdb is a database for plant transfer RNA-derived

fragments (Gupta et al., 2018). It includes information on

tRFs from ten different plant species. The database also

includes sequence similarity searches. Table 3 lists available

databases and tools for tRNAs and tRFs.

Conclusions and perspectives

The research on tRFs is gaining momentum over the past

decade and tRNA-derived fragments have been proved to be

involved in various biological functions including regulation of

gene expression, translation, and epigenetic regulation. The roles

of specific tRFs in several types of cancers and other metabolic

disorders are being unraveled. Parental germ cell tRFs have also

been shown to influence metabolic disorders in offspring. This

opens the doors for additional treatments involving the

regulation of the biogenesis of tRFs and their targets and the

use of tRFs as potential biomarkers for disease onset. Of

particular interest is the evidence of cross-kingdom

communication involving tRFs. Detailed studies on such

interactions between various infectious agents and their hosts

will further help in targeted treatments.

In plants, tRFs have been implicated in biotic and abiotic

stress tolerance and transgenerational memory of stress. tRFs

acting as signal molecules for interspecies communication

deserves specific attention. Altering expression levels of tRFs

and their targets can modify traits in target species. In many

species, the population of tRFs was found to show differences

between tissues and developmental stages pointing towards

additional roles for these small non-coding RNAs in the

growth and development of organisms.

New sequencing technologies and bioinformatics tools are

being used to bypass the complications in tRFs library

construction and expression profiling and further research will

unravel additional layers of tRFs biogenesis and functions.
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