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ABSTRACT

Predicting pre-disease state or tipping point just
before irreversible deterioration of health is a diffi-
cult task. Edge-network analysis (ENA) with dynamic
network biomarker (DNB) theory opens a new way
to study this problem by exploring rich dynamical
and high-dimensional information of omics data. Al-
though theoretically ENA has the ability to identify
the pre-disease state during the disease progres-
sion, it requires multiple samples for such predic-
tion on each individual, which are generally not avail-
able in clinical practice, thus limiting its applications
in personalized medicine. In this work to overcome
this problem, we propose the individual-specific ENA
(iENA) with DNB to identify the pre-disease state of
each individual in a single-sample manner. In partic-
ular, iENA can identify individual-specific biomark-
ers for the disease prediction, in addition to the tra-
ditional disease diagnosis. To demonstrate the ef-
fectiveness, iENA was applied to the analysis on
omics data of H3N2 cohorts and successfully de-
tected early-warning signals of the influenza infec-
tion for each individual both on the occurred time and
event in an accurate manner, which actually achieves
the AUC larger than 0.9. iENA not only found the new
individual-specific biomarkers but also recovered the
common biomarkers of influenza infection reported
from previous works. In addition, iENA also detected
the critical stages of multiple cancers with signifi-
cant edge-biomarkers, which were further validated
by survival analysis on both TCGA data and other
independent data.

INTRODUCTION

Disease progression can be generally divided into three
stages or states, i.e. normal state, pre-disease state (or
tipping point) and disease state. Traditional molecular
biomarkers are designed to diagnose disease states based
on the molecular data, rather than the prediction for pre-
disease state. Recent advance on the high-throughput tech-
nologies provides an unprecedented opportunity to study
the occurrence and progression of a disease in a person (or
patient) (1,2), and pave a new way to make accurate and ear-
lier disease diagnosis on individuals, which is a key concept
and action for precision medicine (3).

One representative example is the prediction of acute res-
piratory diseases. The analysis of temporal transcriptome
data from individual suspects has revealed many biologi-
cal and biomedical insights (4–6). The traditional differ-
ential gene expression analysis, i.e. traditional molecular
biomarker, is expected to capture the responsive genes to
virus infection (7); then the gene module analysis tends to
find interactive genes with particular biological functions
associated with virus infection (6,8); and further the gene
network analysis tries to extract the systematical features of
virus infection by inferring the biological pathway between
up-stream and down-stream genes (9). All of those works
mainly focus on the diagnosis of disease state by exploiting
information of the first-order statistics (e.g. ‘mean value’ for
differential expressions of genes or proteins) from the ob-
served data. In contrast to such traditional node-network
analysis, recently, edge-network analysis (ENA) (10) (Fig-
ure 1A) combined with dynamic network biomarker (DNB)
(11) was proposed to detect the early-warning signals or the
pre-disease state (or tipping point) before the serious dis-
ease deterioration by considering the second-order statistics
(e.g. ‘covariance’ for differential expressions among genes
or proteins) from the observed data. Different from gen-
eral anomaly detection (12–15), ENA can detect the tipping
point or pre-disease state just before the critical transition

*To whom correspondence should be addressed. Email: lnchen@sibs.ac.cn
Correspondence may also be addressed to Tao Zeng. Email: zengtao@sibs.ac.cn

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com



e170 Nucleic Acids Research, 2017, Vol. 45, No. 20 PAGE 2 OF 11

Figure 1. Concept of edge-network and iENA. (A) The comparison between new edge-network and conventional node-network. (B) The computational
framework of iENA.

to the disease state. Actually, ENA in our earlier work has
shown the ability to identify the pre-disease or pre-symptom
states (10), but it requires multiple samples for such pre-
diction, which is, however, not generally available for each
individual in clinical practice (10,16,17). To overcome this
problem, we aim to extend the ENA from multiple-samples
to one-sample in this work so as to achieve personalized di-
agnosis, prognosis and prediction on an individual basis.

Specifically, we propose the individual-specific ENA
(iENA) with DNB to identify the individual-specific
biomarkers (Figure 1B), which are applied to disease pre-
diction of individual subjects (or patients) on the basis of
single samples. According to the three conditions of the tip-
ping point from DNB theory (10), iENA can capture the
high-order statistical information during dynamical disease
progression for detecting the pre-disease state. On the other
hand, ENA is based on a well-founded stochastic dynam-
ics, and thus it can predict pre-disease states for individuals

by reducing the false-positive in the discovery of individual-
specific edge-biomarkers.

Based on the differential expression mean, differential
expression variance and differential expression co-variance
(18,19), we extend the ENA framework to iENA, which
has been implemented for the analysis on personalized dis-
ease prediction, e.g. influenza infection and cancer deterio-
rations. From the data of H3N2 cohorts on individual sub-
jects, iENA shows its ability on detecting early-warning sig-
nals or pre-disease state as the tipping point of influenza
infection for each individual, in contrast to the disease state
diagnosed by traditional molecular biomarkers. In partic-
ular, (i) iENA recovered the common biomarkers of in-
fluenza infection reported in the previous work (7), which
is also more effective than common modules derived from
WGCNA approach (20); (ii) iENA detected individual spe-
cific biomarkers, depending on the temporal (or spatial)
transcriptome data from each subject and the reference data
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of multiple subjects; (iii) different from previous static pre-
diction of disease states, a dynamical prediction model of
disease, i.e. DNB, was adopted in iENA, and successfully
predicted both the disease event and time in an accurate
manner. For TCGA cancer data, iENA also demonstrates
its power to detect the critical cancer stages with significant
edge-biomarkers. We show that iENA can identify the crit-
ical stages on both breast cancer and liver cancer, and the
results were further validated by survival analysis on both
TCGA data and other independent data.

In a brief summary, iENA provides a powerful network-
analysis tool for the study of complex diseases based on
edge induced data transformation, and also opens a new
way to predict the pre-disease states during disease pro-
gression (e.g. hunt for cancer tipping point) on the ba-
sis of individual samples for the personalized or precision
medicine (21). The matlab code of iENA is available on
http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm.

MATERIALS AND METHODS

Node-network of multiple samples

Biochemical master equation is generally used to simulate
the stochastic dynamics of a biological system at a molecu-
lar level (see Supplementary Information A1). Given the lin-
earization with Gaussian distribution assumption for such
a master equation, the biological system is usually approx-
imated by a group of equations on the mean vector of
molecules in previous study (10), i.e. node-network dynam-
ics:

dμ(t)
dt

= A(t)μ(t) (1)

where, μ is the mean vector of variables as network nodes;
A is the adjacent matrix of the underlying network and a
node represents a molecule (i.e. μi) in terms of concentra-
tion or number. Obviously, this group of linear differential
equations represents the first-order statistic information of
the molecular network, i.e. mean values. It can construct
the conventional network, called as a node-network in this
paper, e.g. using each molecule as a node in a molecular net-
work.

In practice, the node-network (e.g. a molecular network)
includes node set and edge set, where the node set is a list
of molecules and the edge set is a list of molecule-pairs. A
molecule-pair is determined by the correlation (or associa-
tion) between two molecules on the observed data, e.g. Pear-
son correlation coefficient (PCC) between two genes based
on gene expression profiles. As well known to us, such cor-
relation for a node-network with a group of samples can be
calculated as:

PCC(xi , xj ) = C(xi , xj )√
V(xi )V(xj )

(2)

where, xi and xj represent two molecules’ expression pro-
files; their expression covariance for a group of samples
is C(xi , xj ) = E((xi − μi )(xj − μ j )); and their expression
variance is V(xi ) = E((xi − μi )2). Here, E(x) is the opera-
tion of expectation for variable x over a group of samples.
When the absolute PCC is significantly large, it is to say

there is an edge or association between xi and xj, and all
edges connect nodes into a node-network (Figure 1A). Note
that, PCC includes both direct and indirect associations be-
tween two variables, and thus to better represent the topo-
logical structure of a node-network, direct association mea-
surement, such as partial correlation (22,23) or part mutual
information (24) can be adopted instead of Equation (2).

Edge-network of multiple samples

In addition to the node-network dynamics of Equation (1),
to exactly and completely characterize the stochastic bio-
logical system, it is also required the other group of equa-
tions on the covariance matrix of molecules according to
the Lyapunov differential equation (see Supplementary In-
formation A1), i.e. edge-network dynamics:

dσ (t)
dt

= A(t)σ (t) + σ (t)A′(t) + D(t) (3)

Where, σ is the covariance matrix of variables; A is the ad-
jacent matrix of the original node-network; A’ is the trans-
pose of A; and D is a state-independent (e.g. constant) cyclic
matrix. Obviously, this is a group of Lyapunov differential
equations characterizing the second-order statistic informa-
tion of a biological system, i.e. covariance. It can construct
the new edge-network of molecules, by using each pair of
molecules (i.e. σ ij) or each molecule interaction as a node.

A link in an edge-network is a fourth-order statistic
due to its relationship between two molecule-pairs, which
could be approximately inferred by using the correspond-
ing correlations between two molecule-pairs. Given, for four
molecules, i.e. two molecule-pairs, the correlation measure-
ment is calculated as a high-order PCC (hPCC) of a group
of samples (10):

hPCC(xi , xj , xk, xl )
= C(xi ,xj )C(xk,xl )+C(xi ,xk)C(xj ,xl )+C(xi ,xl )C(xj ,xk)

3
√

V(xi )V(xj )V(xk)V(xl )
(4)

where, covariance and variance over a group of samples are
respective C(xi , xj ) = E((xi − μi )(xj − μ j )) and V(xi ) =
E((xi − μi )2). Provided that there are time-course data or
multi-sample data, such correlation (hPCC) between two
molecule-pairs can be calculated, and two molecule-pairs
with significant hPCC can be connected as a high-order
edge. All high-order edges connect original edges of the
node network into a new edge-network in a usual co-
expression form (Figure 1A) (10). Clearly, an edge-network
can characterize the high-order moment information of a
biological system. The dynamics of a biological system with
stochastic fluctuations can be fully recovered by its node-
network and edge-network dynamics, given the Gaussian
distribution assumption of all molecules.

Edge-network of a single sample

For both node-network or edge-network, their construc-
tions require multiple samples, which, however, are gener-
ally unavailable in clinical practice (25). It is strongly de-
manded to characterize or infer edge-network (also node-
network) on the basis of single sample (25), which is expect

http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm
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to obtain the individual-specific or sample-specific edge-
network.

Previously, the quantification of PCC in one sample was
proposed to be calculated by correlation-like vectors (or
delta PCC) (26,27). In fact, when the number of the refer-
ence samples is sufficiently large, these measurements can
be reduced to calculate single-sample PCC (sPCC, see Sup-
plementary Information A1 and A2):

sPCC(xi , xj ) = Cr(xi , xj )√
Vr(xi )Vr(xj )

(5)

where, the variance of the reference samples is Vr(xi ) =
E((xi − μr

i )
2), and the covariance of a single sample is

Cr(xi , xj ) = (xi − μr
i )(xj − μr

j ). For a single sample, the ex-
pression mean and variance are unknown, and thus μr

i is the
expression mean of gene i on the reference group, and the
Vr(xi ) is the expression variance of gene i on the same refer-
ence group. Actually, Equation (5) can be viewed as a data
transform from individual variables xi or xj to variable-pairs
xi-xj against a given group of reference samples, e.g., from
molecular concentrations to correlations. Thus, instead of
the original data of a single sample, we can use the trans-
formed data of this single sample for further analysis (e.g.,
differential analysis or clustering analysis), which may re-
veal different features or “Dark Matter” of the molecular
expressions on the basis of a single sample.

In a similar way to PCC and sPCC, we extend hPCC with
multiple samples to shPCC with only one sample based on
a number of the reference samples (see Supplementary In-
formation A1), i.e. single-sample high-order PCC (shPCC)
is computed as:

shPCC(xi , xj , xk, xl )

= (xi −μr
i )(xj −μr

j )(xk−μr
k)(xl−μr

l )√
Vr(xi )Vr(xj )Vr(xk)Vr(xl )

(6)

where the high-order variance of the reference samples is
Vr(xi ) = E((xi − μr

i )
2), and the high-order covariance of a

single sample is Cr(xi , xj , xk, xl ) = (xi − μr
i )(xj − μr

j )(xk −
μr

k)(xl − μr
l ). Others are similarly defined. Hence, simi-

lar to the reconstruction of edge-network, we can obtain
individual-specific edge-network based on shPCC from the
observed single-sample data. Note that, to further eliminate
the indirect association between variables in Equations (5)–
(6), a sophisticated measurement such as partial correla-
tion (22,23) or part mutual information (24) can be similarly
adopted.

Individual-specific edge-network analysis (iENA)

Originally, the ENA was proposed to study molecular asso-
ciations based on multiple samples or population features
(10), e.g. cohorts’ risk estimation. However, it is increasingly
demanded to analyse the molecular mechanisms of diseases
on the basis of individuals. Thus, to address this general
problem of network analysis (25), in this study we propose
an advanced framework, i.e. iENA, based on our proposed
measurement of shPCC on one-sample omics data. The de-
tails of this new approach will be described in a step-by-step
manner (Figure 1B).

i) Collecting data: to evaluate the performance of iENA,
we downloaded several gene expression datasets from
NCBI GEO and TCGA to mainly predict the live in-
fluenza infection and cancer deterioration on individ-
ual subjects.

ii) Selecting reference samples: in order to solve the cal-
culation of mean and variance against a single-sample
(i.e. for each sample of one subject at one time point),
we need a group of reference samples (i.e. control sam-
ples, or normal samples). Here, we set the samples from
baseline date to latter a few points as a reference group
of each individual for influenza infection, and normal
(or early-stage) samples as a reference group for can-
cers. Actually, any samples with the similar property
can serve as a reference group (at least, five samples
are required for the reference group). Once the refer-
ence samples are determined, they should be kept un-
changed for whole studies.

iii) Constructing node-network by sPCC calculation: when
we have reference samples, we can construct the co-
expression network of one sample by our single-sample
measurement of PCC (sPCC, Equation (5)) consistent
with previous studies (19,26,28). Note that a direct cut-
off for edge correlations is difficult to decide because
the distribution of the new sPCC values is not the nor-
mal distribution, and our experiments also suggest that
the general threshold for PCC (e.g. 0.8 or else) seems
not work well in this situation. Hence, we only focused
on the edges from STRING database (29) to reduce
computational complexity in biological context. Note
that theoretically and computationally, instead of nor-
mal distribution, we can also construct the distribu-
tion of sPCC from the reference samples without the
approximation for such a purpose (statistical test for
the cut-off), but a large number of reference samples
are required to construct this distribution. Further-
more, for each sample at a time point, the candidate
edges/relations are required to have big changes on as-
sociations comparing to the same relations observed
in the reference samples, i.e. the edges/relations have
larger standard deviations than other edges. Then, the
top-ranked edges with strong relations and significant
changes will be finally selected. These candidate edges
consist of conventional node-network, and will be used
as the background ‘nodes’ for constructing the edge-
network.

iv) Constructing edge-network by shPCC calculation: for
an edge-network, we use a background set of edges
(gene-pairs) from the above steps as new nodes. Be-
tween two gene-pairs, we can carry on the estima-
tion of the fourth-order single-sample correlation co-
efficient for each edge-pair (i.e. two gene-pairs) by sh-
PCC (Equation (6)) for each single-sample (e.g. for
each sample of one subject at one time point). Note
that, in this step, we actually only compute the correla-
tions between the pre-selected edges from above steps,
and thus we can reduce the unnecessary computations
drastically. Finally, we will get the edge-network cor-
responding to each sample at a particular time point,
and each subject has its personalized/individual fea-
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tures on the observed samples or time series in the edge-
networks.

v) Recognizing individual edge-biomarkers: similar to the
edge selection, we select top-ranked edge-pairs as edge-
biomarkers, which have strong relations with each
other in terms of the high-order correlations. Those
strong correlated gene-pairs are considered as DNB
candidates, represented as a set called ‘Marker’. Then,
for each individual, the gene-pairs involved in the edge-
network (i.e. Marker) are used as individual edge-
biomarkers and these genes (i.e. marker genes) are ap-
plied in the disease prediction.

vi) Detecting the tipping point and DNB members by sCI:
the DNB has been developed to identify the pre-disease
state or the tipping point just before a sudden deteri-
oration during disease progression (16,30) as general
early-warning signals based on three statistical condi-
tions (10,16,17). Recently, DNB model with its crite-
rion (i.e. CI: composite index) based on multiple sam-
ples (11,31–34) has been adopted to successfully iden-
tify the tipping points of cell fate decision (35,36), to
study immune checkpoint blockade (37,38), and also
to quantify edge-biomarkers (10):

CI = PCCin

PCCout
× SDin.

In this work, DNB criterion is further re-defined by the
above second-order moment measurements on the ba-
sis of single-sample, i.e. single-sample composite index
(sCI) is defined as:

sCI =
∑

x,y∈Marker |sPCC (x, y) |
∑

x∈Marker,y/∈Marker |sPCC (x, y)|
×

∑
x∈Marker

|x − ux| (7)

where, the numerator is PCCin, which is the aver-
age sPCC of the expressions of genes in the domi-
nant group or DNB (e.g. a group of marker genes or
molecules) in absolute value in one sample; the denom-
inator is PCCout, which is the average sPCC of the ex-
pressions of genes between the dominant group and
other in absolute value in one sample; the multiplier
is SDin, which is the average standard deviation of the
expressions of genes in the dominant group or DNB.
‘Marker’ is the set of DNB members. The superscript
line means the average value. Thus, the sCI of indi-
vidual edge-biomarkers will indicate the early-warning
signals when its value is larger than a threshold. Note
that we can evaluate sCI of Equation (7) by sPCC of
Equation (5) without performing shPCC of Equation
(6).

vii) Comparing edge-biomarkers: for each individual, we
can use the differential gene-pairs in each single-sample
(i.e. the edge associations in each sample or time point)
as novel edge-biomarkers to indicate the early-warning
signals or the tipping point. We will obtain sCI value
with edge biomarkers for each subject or sample, and
we can observe different sCI scores at consecutive time
points or stages. Thus, we can set a threshold to indi-
cate the criticality, i.e. warning or not for a subject. In
addition, for the influenza infection data, we also ex-
amine the edge-biomarkers induced from each subject,

Figure 2. The sample organization of dataset about influenza infection.
The subjects are divided into two groups according to the clinical symp-
tom chart based on the standardized symptom scoring: symptomatic (Sx)
group with nine subjects (subjects S1,S5,S6,S7,S8,S10,S12,S13,S15)
and asymptomatic (Asx) group with eight subjects (subjects
S2,S3,S4,S9,S11,S14,S16,S17). The non-symptom samples (in grey)
which have no significant clinical symptom, may have obvious changes
in a network level; and we will identify edge-biomarkers for detecting
early-warning signals before the time point of symptom samples (in red).
The samples labeled in yellow colour indicates the time points predicted
by our iENA based on dataset GSE52428, which is clearly earlier than the
clinical symptom except one subject (S5). Actually, for the subject S5, the
tipping point predicted by iENA coincides with the first symptom point
at 45 h, but in this paper, we count it as an incorrect prediction.

and compare them with previously reported 50-gene
markers and 22-gene markers from population focused
studies (6–8,10).

RESULT AND DISCUSSION

Datasets for influenza infection

To evaluate the applicability of iENA, we downloaded two
datasets GSE30550 and GSE52428 (7,8) from NCBI GEO
to predict the live influenza infection on subjects in a tem-
poral model. The analysis settings on dataset GSE52428 are
described next mainly for convenience.

The transcriptome datasets contain 17 subjects (or
adults) challenged with influenza H3N2/Wisconsin. In such
challenge, nine subjects have been actually infected (i.e. ap-
pearance of the clinical symptom) but other eight subjects
still stay healthy (without the appearance of clinical symp-
tom). The gene expression profiles were obtained and mea-
sured on whole peripheral blood drawn from all subjects
at an interval of 8 h post-inoculation (hpi) through 108 hpi.
Totally, 268 gene micro-arrays were obtained for all subjects
at 16 time points including baseline (24 h before subjects
were injected with influenza virus, e.g. −24 hpi) (7), the pre-
processions on which are similar to previous study (10).

As shown in Figure 2, according to iENA, we divided
subjects into two groups according to the clinical symp-
tom chart based on the standardized symptom scoring
(7): symptomatic (Sx) group with nine subjects (subjects
1,5,6,7,8,10,12,13,15) and asymptomatic (Asx) group with
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eight subjects (subjects 2,3,4,9,11,14,16,17). And the sam-
ples from baseline date (as green in Figure 2) to latter a few
points will be used as the reference group of samples; the
non-symptom samples (as grey in Figure 2) which have no
significant clinical symptom, may have obvious changes in
molecular level and we will identify edge-biomarkers for de-
tecting early-warning signals before the time point of symp-
tom samples (as red in Figure 2). In calculation, we set five
samples including baseline data as a reference group, i.e.
there are five reference samples available for each subject
(except the data of the 13th subject missed at a time point
in dataset GSE52428). After that, we can calculate sPCC
(with mean and variance from reference group) for each
sample. Experimentally, we focused on the edges with great
changes comparing to the reference group (with log2(fold
change) > 0.8) and finally determined the top-ranked 1000
strong relations at each time point. Then, these pre-selected
edges are used as the background ‘nodes’ for constructing
the edge-network, and capturing the significant signal peaks
of edge-biomarkers across multiple time points, from which
59 genes are finally obtained as related edge-biomarkers for
Sx group (called Sx gene) compared to 215 candidates for
Asx group. Those genes are candidate DNB members.

Edge-biomarkers of Influenza infection identified by iENA
are consistent with literature reports

Based on each sample from dataset GSE52428, iENA pre-
dicted the tipping points of each subject, shown in Figure
2 (i.e. samples labeled in yellow colour), which are clearly
earlier than the clinical symptom except one subject (S5).
Actually, for the subject S5, the tipping point predicted by
iENA coincides with the first symptom point at 45 h, but
in this paper, we count it as an incorrect prediction. iENA
recovered the common biomarkers of influenza infection re-
ported in the previous works (10), which demonstrates the
effectiveness of iENA on biomarker discovery for diseases
(see Supplementary Information A3). As shown in Figure
3A, the marker genes detected in Sx individuals are very
different from those identified in Asx individuals; that is
why the Sx-specific edge markers can be used to predict the
symptom appearance (or disease occurrence). As shown in
Figure 3B, our final edge-biomarkers have significant over-
lap with 22-gene markers reported in our previous work (10)
and the 50-gene markers reported in the original work (6–
8,10). That means our new method can efficiently find the
key genes involved in influenza infection, and also discover
many new potential disease-associated genes.

Particularly, we evaluated the efficiency of edge-network
for recovering previously reported markers on individuals,
and used the overlap ratio (i.e. the ratio between the over-
lapping genes and the whole detected marker genes on all
samples for each individual) to evaluate such efficiency. As
shown in Figure 3C, almost 10% genes have been reported
for Sx individuals, meanwhile <5% genes for Asx individu-
als. This fact means that it is more possible to observe the
alteration of Influenza infection on Sx individuals than Asx
ones, and edge-network is effective to predict diseases. In
addition, we also evaluated the similar efficiency of node-
network (i.e. constructed by the background edges). As
shown in Figure 3D, the overlap ratio is <1% for both Sx

and Asx individuals, and there is no significant difference
between them, which supports again that edge-network is
more effective than node-network in iENA.

Next, our edge-biomarkers (i.e. Sx-specific edge biomark-
ers) have many dense associations on STRING network
(Figure 4A), which indicate that edge-network can actually
detect interactive gene-pairs. These marker genes have sig-
nificant enrichments on many virus-related KEGG path-
ways, such as NOD-like receptor signalling pathway, Her-
pes simplex infection, Influenza A, Hepatitis C, Cytosolic
DNA-sensing pathway and Measles. For Influenza A path-
way, our marker genes (as red in Figure 4B) are widely
distributed on the IPA annotated network as ‘Antimicro-
bial Response, Inflammatory Response’, which has been
reported to be related with early immune response to in-
fluenza A virus infection (39). That strongly supports that
our biomarkers can detect the early-warning signals of in-
fection before the appearance of symptom (i.e. the predic-
tion of pre-symptom state or the tipping point).

Detecting early-warning signals of Influenza symptom by
iENA

iENA with DNB can detect biomarkers and predict pre-
symptom state in a single-sample manner, in contrast to the
traditional methods (7,8). In other words, due to the na-
ture of single-sample, we can also analyze the data with-
out the temporal information. In this study, the dominant
group or DNB is the molecules or genes of edge-biomarkers
from each Sx or Asx sample, and others (all genes ex-
cept those in the dominant group) are the selected edges’
genes for the same sample. When calculating the single-
sample DNB score, i.e. sCI index, there is no need to pre-
define the time window for expression correlation calcu-
lation. Thus, each Sx or Asx subject can have 15 check-
points and the corresponding index values (sCI) can repre-
sent his/her diagnostic score over time (Figure 5A). When
the predicted score becomes significantly larger than a given
threshold, this time point will be regarded as the early-
warning point/tipping point of the disease occurrence. By
using such model to predict influenza infection in practice,
e.g. on dataset GSE52428, the ROC can be drawn along
with the change of the threshold, then the corresponding
AUC is used to evaluate the accuracy of such prediction.
The results show that our edge-biomarkers achieve about
0.9 accuracy (Figure 5B).

An advantage of our model is to predict both tipping
point and key molecules of diseases, rather than only disease
state. Especially, iENA can make the prediction based on
each single sample on any time point rather than multiple
samples on a time window. As shown in Figure 5C each sub-
figure displays the early-warning signal for each Sx subject
during the progression of the influenza infection, where the
green star mark indicates the predicted tipping point or pre-
symptom state by our prediction cut-off and the red circle
points the clinically diagnosed infection-time or symptom
state for the corresponding subject. According to the cut-
off for judging the pre-disease state during the progression
of influenza infection, all nine Sx subjects can be correctly
predicted the final disease occurrence. Even more, we can
also correctly predict the symptom for each subject (green
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Figure 3. The consistence between our findings and previously reported markers in the study of influenza infection from dataset GSE52428. (A) The
overlap between marker genes identified from Sx individuals and Asx individuals. (B) The overlap among iENA identified disease marker genes (i.e. Sx
genes) and previously reported 22 marker genes and 50 marker genes. (C) The overlap ratio as the percentage of individual edge-biomarkers recovered
from prior-known genes in each sample. (D) The overlap ratio as the percentage of individual node-biomarkers recovered from prior-known genes in each
sample.

Figure 4. The edge-biomarkers identified by iENA for dataset GSE52428. (A) Protein–protein associations on STRING network. (B) Regulatory associ-
ations on IPA network annotated as ‘Antimicrobial Response, Inflammatory Response’.

label in Figure 5C) before the influenza infection diagnosed
by the standardized symptom scoring record (red label in
Figure 5C), although the predicted time for subject 5 is a
little delayed. All results imply that edge-biomarker by our
iENA can predict the time of onset influenza infection ef-
fectively and accurately.

Robustness and reproducibility of iENA

On purpose of practical prediction on both occurred event
and time, different markers have been compared. For in-
stance, the consistent module genes significantly associ-
ated with phenotype by WGCNA (20), which has AUC
<0.5. Thus, the gene module from WGCNA would have
more false positives, and have less power on disease predic-
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Figure 5. Prediction performance of iENA for dataset GSE52428. (A) The
predicted curve of early-warning signals or tipping points for all subjects by
our edge-biomarkers. (B) The prediction accuracy as ROC curve. (C) The
individual prediction curves. The red circle points the clinically diagnosed
infection-time (symptom) for the corresponding subject, and the green star
mark indicates the predicted infection-time (tipping point) by our predic-
tion cut-off. Clearly, we correctly predicted all of the symptom cases except
S5 before their clinical symptom. Actually, for the subject S5, the tipping
point predicted by iENA coincides with the first clinical symptom point at
45 h, but in this paper, we count S5 as an incorrect prediction.

tion. By contrast, iENA achieves the higher performance
than WGCNA, because it not only considers the predic-
tion of disease occurrence but also captures the occurred
time point. On the other hand, some of the genes en-
riched in known KEGG influenza pathways can be poten-
tial biomarkers. But, the KEGG influenza pathway is still
incomplete, and thus, there is need to find additional marker
genes (40). Different from conventional common markers
(e.g. KEGG influenza pathway genes), iENA can investi-
gate the individual-specific makers and therefore provides a
new way for such a purpose.

In addition, we have also analyzed another dataset of in-
fluenza infection, i.e. GSE30550 dataset, and obtained sig-
nificant reproducibility, i.e. re-discovered markers (Figure
6A), high precision on disease occurrence and time (Fig-
ure 6B), and superior performance on individual prediction
(Figure 6C). The results validated the effectiveness of our
method.

Figure 6. Prediction results on another dataset of influenza symptom from
GSE30550 for validation. (A) The detected marker genes (recovered genes)
from GSE30550 analysis, and the Common Sx gene from GSE52428 anal-
ysis, and the 22-gene marker from our previous study. (B) The ROC of
prediction. (C) The prediction curves of individuals. The red circle points
the clinically diagnosed infection-time for the corresponding subject, and
the green star mark indicates the predicted infection-time by our predic-
tion cut-off. Clearly, we correctly predicted all of the symptom cases ex-
cept S5 before the clinical symptom, and the accuracy of the prediction is
about 90%. Although the tipping point of subject S5 predicted by iENA
coincides with the first clinical symptom point at 45 h, we count S5 as an
incorrect prediction in this paper.

Detecting the tipping points of cancer deteriorations by iENA
on TCGA data

Not limited to time course data, iENA can also analyse the
phased or sample-based data, e.g. the TCGA data about
cancer progression. In clinic, the cancer progression is mea-
sured with different stages, and some stage would be criti-
cal one or tipping point, after which the disease drastically
or seriously deteriorates. Before and after the tipping point,
the patient survival times will be significantly changed. A
few works have studied the gene expressions during cancer
occurrence and development (41), but, the protein expres-
sions (i.e. reverse phase protein array in TCGA) still remain
less focused on a systematical level.

In this study, for the first time, we applied iENA to sys-
tematically investigate the contribution of proteins in can-
cer progression, especially in the critical stage of cancer pro-
gression. We downloaded the TCGA RPPA data for breast
cancer (BRCA with 226 proteins on 929 samples) and liver
cancer (LIHC with 219 proteins on 172 samples) respec-
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Figure 7. The results on TCGA cancer data. (A) The iENA analysis on breast cancer (BRCA), where stage ii is identified as the tipping point. (B) The
survival-day comparison for different breast cancer stages. (C) The survival analysis by coding-genes of edge-biomarkers on TCGA BRCA data. (D) The
survival analysis by coding-genes of edge-biomarkers on GEO independent data. (E) The iENA analysis on liver cancer (LIHC), where stage ii is identified
as the tipping point. (F) The survival-day comparison for different liver cancer stages. (G) The survival analysis by coding-genes of edge-biomarkers on
TCGA LIHC data. (H) The survival analysis by coding-genes of edge-biomarkers on GEO independent data. Here, the edge-biomarkers are the DNB
members.

tively (42), and used the samples known with clinical stage
information. We took four sample groups labelled with se-
quentially clinical stages as stage i, stage ii, stage iii and stage
iv. Using the samples in stage i as references, each sample
can be analyzed by iENA to construct an edge-network and
further identify its edge-biomarkers. In such a way, each
sample can be quantified by sCI score. Note that even if
a sample is in the reference group, it can also be analysed

for iENA as the same as other single samples but the group
of the reference samples cannot be changed for the whole
study. The detail procedure and results for the analysis is
described as follows.

i. For each stage, the sCI scores of its all samples are
averaged as this stage’s early-warning signals. The av-
erage sCI score with re-sampling achieved the highest
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value at stage ii for both BRCA and LIHC, which sug-
gests that the second clinical stage would be the criti-
cal stage during cancer progression. And in stage ii, ac-
cording to the sample number of a protein selected as
edge-biomarkers, the proteins with marker frequency
no <0.1 are considered as the protein signatures or
DNB members of the corresponding critical stage (Fig-
ure 7A and E).

ii. To validate the tipping point, we also analyzed the dis-
tribution of survival days for samples in critical stage ii
and the periods before and after it. We can see that the
average survival days significantly decrease at stage ii or
later (Figure 7B and F), which provide the clinical evi-
dence for stage ii as a tipping point before patients suffer
from serious deteriorations on their disease risks.

iii. In addition, we used the coding-genes of protein sig-
natures (see Supplementary Information A3) to infer
their expression associations with patient survival time
by survival analysis (43), i.e. to test the effectiveness of
DNB members. Still on TCGA expression data, these
coding-genes can actually divide all patients (disregard-
ing specific stages) into discriminative high-risk and
low-risk groups, for BRCA and LIHC respectively (Fig-
ure 7C and G). To avoid platform dependence, we also
tested these coding-genes on the third-party data from
NCBI GEO with large sample sizes (43), and again they
indeed have significant survival analysis results on those
independent breast cancer or liver cancer cohorts (Fig-
ure 7D and H).

All these results illustrate that iENA is a general method
to study complex diseases including cancers, and provide
effective edge-biomarkers for disease prediction or tipping
point detection.

CONCLUSION

We have presented a new framework, i.e. iENA, based on
DNB to identify the pre-disease state or the tipping point
during disease progression, by extracting the high-order
statistics and dynamical information from biological data
in a one-sample manner. In this paper, as demonstration ex-
amples of iENA, we have mainly analyzed two time-course
datasets of 17 subjects (healthy adults) with risk of influenza
infection, and two cancer datasets of TCGA. The results of
the influenza infection data from the iENA analysis indi-
cate: (i) for nine Sx subjects, the early-warning signals of
the symptom were correctly found before clinical diagnosis
except one case, and their critical time points (i.e. tipping
points) with edge-biomarkers (i.e. DNBs) were detected;
(ii) the edge-biomarkers are significantly related to the dis-
ease progression and development (e.g. virus infection); and
(iii) the edge-biomarkers are able to predict the infection
occurrence and time simultaneously. In addition, we ap-
plied iENA to the analysis of TCGA cancer proteomic data
(breast cancer and liver cancer), which also revealed criti-
cal stages during cancer progression and provided survival-
relevant protein signatures. These results demonstrate the
effectiveness of iENA analysis with DNB on disease study,
which makes it practical in clinic applications due to no re-

quirement on multiple samples, which is a useful tool for
personalized medicine on different types of omics data (25).

Indeed, the iENA is the further development of the ENA
from the prediction of common risk factors over multiple
samples to the prediction of individual-specific biomarkers
on a single sample. This new method actually utilizes indi-
vidual samples for the prediction of disease states by explor-
ing differential edge-network based on differential expres-
sion, variance and covariance analysis. Although our eval-
uations have shown that iENA would be robust on the pa-
rameter setting (see Supplementary Information A3), it re-
quires careful quality control to reduce experimental errors
for the case of the limited reference samples. In this work,
we focused on omics data rather than low-throughput data,
and thus it is still unclear if or not iENA can be directly ap-
plied to the clinical panel assay. How to optimally choose
edge-biomarkers as DNB members is also a future topic.
iENA will be an important step towards precision medicine,
and especially its ability to predict the tipping points or crit-
ical transitions of diseases including cancer is also an impor-
tant topic in the field of translational medicine. In addition
to medicine, iENA can also be directly applied to the study
for the tipping points and key regulators of many biological
processes, e.g., cell differentiation or molecular evolution.
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