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ABSTRACT
Mesopelagic fishes are an important component of marine ecosystems, providing an important link
between lower and higher trophic levels. This group of fishes is also highly abundant and make up a
large portion of the marine vertebrate biomass. Here we report on the full mitochondrial sequences for
two common mesopelagic fishes from the southern California bight: the Mexican lampfish Triphoturus
mexicanus (Actinopterygii: Myctophidae) and the black-belly dragonfish Stomias atriventer
(Actinopterygii: Stomiidae). Triphoturus mexicanus showed previously reported gene rearrangements for
the Myctophidae. Phylogenetic analysis grouped S. atriventer with other Stomiiformes and T. mexicanus
within the Myctophiformes.
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Mesopelagic fishes make up the largest portion of the global
vertebrate biomass (Gjøsaeter and Kawaguchi 1980; Kaartvedt
et al. 2012; Davison et al. 2015). These fishes also make up an
important component of marine food webs, as they are a link
between plankton and higher-level predators (Gjøsaeter and
Kawaguchi 1980; Cherel et al. 2008; Choy et al. 2012).
Concordantly there is concern how this abundant and
important fish community will respond to the impacts of cli-
mate change (Koslow et al. 2011; Asch 2015). Despite these
features, there has been little genetic/genomic study on the
mesopelagic fishes of the northeast Pacific.

We assembled the complete mitochondrial genomes for
two common mesopelagic fishes from the southern California
bight: the Mexican lampfish (Triphoturus mexicanus) and the
black-belly dragonfish (Stomias atriventer). Samples were
obtained from an Isaacs-Kidd midwater trawl in the San
Pedro Channel (33.55830 N, �118.42550 W) and specimens,
tissue and DNA are vouchered at CSULA (#16-001 and #16-
033). Total genomic DNA was extracted and each individual
was sequenced on an Illumina HiSeqX (Illumina, San Diego,
CA). A portion of the reads from each species were
assembled using NOVOPlasty (Dierckxsens et al. 2017) with a
portion of the mitochondrial cytochrome oxidase I gene used
as the initial seed. Resulting assemblies were annotated with
on the MitoFish website (Iwasaki et al. 2013) and protein cod-
ing genes were used in a partitioned Bayesian phylogenetic
analysis. PartitionFinder2 (Lanfear et al. 2016) was used to

identify partitioning schemes and best-fit models of molecu-
lar evolution for the protein sequences.

The complete mitochondrial genome of T. mexicanus
(Genbank accession no. MG321595) is 18,012 bp with two
ribosomal genes (12S and 16S), 22 tRNAs and 13 protein-cod-
ing genes. It contained similar gene counts and organization
as other Myctophidae and Lampanyctini (Poulsen et al. 2013).
This includes the WANYC gene order, shifted tRNA-Cys and
Tyr positions and a longer OL region (90 bp in T. mexicanus).
Specific characteristics of the Lampanyctini found in T. mexi-
canus include the relocation of the tRNA-Glu and intergenic
non-coding regions resulting in the CytB/T/E/P gene order.
The assembled S. atriventer mitogenome (Genbank accession
no. MG321596) is 17,596 bp with two ribosomal genes (12S
and 16S), 22 tRNAs and 13 protein-coding genes. Stomias
atriventer contains the typical vertebrate gene order that is
also observed in another Stomiiformes (Diplophos sp. – Miya
and Nishida 2000).

Partitioned Bayesian phylogenetic analysis placed T. mexi-
canus sister to T. nigrescens with high posterior probability
(Figure 1). S. atriventer placed in the Stomiioformes clade, sis-
ter to C. sloaniþ S. gracilis (Figure 1). This result is interesting
given S. gracilis and Diplophos sp. are thought to be in the
same family (Gonostomatidae), however a paraphyletic
Gonostomatidae was found in a previous mitogenomic ana-
lysis (Miya et al. 2001) and the monophyly of the Stomiidae
has been challenged with a mitochondrial and nuclear ana-
lysis of the family (Kenaley et al. 2014).
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