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Abstract

Segregation of homologous chromosomes during meiosis I depends on appropriately positioned crossovers/chiasmata.
Crossover assurance ensures at least one crossover per homolog pair, while interference reduces double crossovers. Here,
we have investigated the interplay between chromosome axis morphogenesis and non-random crossover placement. We
demonstrate that chromosome axes are structurally modified at future crossover sites as indicated by correspondence
between crossover designation marker Zip3 and domains enriched for axis ensemble Hop1/Red1. This association is first
detected at the zygotene stage, persists until double Holliday junction resolution, and is controlled by the conserved AAA+
ATPase Pch2. Pch2 further mediates crossover interference, although it is dispensable for crossover formation at normal
levels. Thus, interference appears to be superimposed on underlying mechanisms of crossover formation. When
recombination-initiating DSBs are reduced, Pch2 is also required for viable spore formation, consistent with further
functions in chiasma formation. pch2D mutant defects in crossover interference and spore viability at reduced DSB levels are
oppositely modulated by temperature, suggesting contributions of two separable pathways to crossover control. Roles of
Pch2 in controlling both chromosome axis morphogenesis and crossover placement suggest linkage between these
processes. Pch2 is proposed to reorganize chromosome axes into a tiling array of long-range crossover control modules,
resulting in chiasma formation at minimum levels and with maximum spacing.
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Introduction

During meiosis, a single round of DNA replication is followed

by two rounds of chromosome separation, with homologous

chromosomes (homologs) segregating during meiosis I and sister

chromatids during meiosis II. Homolog segregation critically

depends on formation of crossovers (COs) between homologs.

COs, cytologically detectable as chiasmata, in combination with

sister chromatid connections, mediate the correct positioning of

homolog pairs in the meiosis I spindle. Without COs, homologs

frequently fail to segregate, resulting in formation of aneuploid

gametes, i.e. gametes with a chromosome surplus or deficit.

Aneuploid gametes are one of the major causes for stillbirths and

birth defects in humans [1].

CO formation occurs via a carefully orchestrated program during

prophase of meiosis I entails close homolog juxtaposition, followed

by reciprocal exchange of chromosome arms through homologous

recombination [2]. On the DNA level, meiotic recombination is

initiated by formation of programmed double strand breaks (DSBs)

at multiple genome positions [3–5]. A non-random subset of DSBs

undergoes stable interaction with a homologous chromatid, giving

rise to COs, while the remainder of DSBs progress to alternative

fates, including non-crossovers (NCOs), i.e. recombination events

without exchange of flanking chromosome arms, as well as repair

events with the sister chromatid [6–8].

Studies in fungi including S. cerevisiae have provided an

understanding of meiotic recombination at the molecular level.

Processing of meiotically induced DSBs depends on numerous

proteins with related roles in mitotic DSB repair, but there are also

prominent differences between these processes: First, during meiosis,

homologs rather than sister chromatids serve as partners for

homologous recombination [6]. Second, CO formation is enhanced

over that of NCOs [7]. Following 59 resection, DSBs undergo strand

invasion of intact non-sister homologous chromatids. Pathways

leading to COs and NCOs appear to bifurcate no later than the

stage of strand invasion: Single end invasions (SEIs) emerge as the first

CO-specific intermediate, subsequently giving rise to double Holliday

junctions which are specifically resolved as COs [9–11]. NCOs likely

arise via an alternative pathway characterized by a more transient

strand invasion [7]. Notably, only COs provide interhomolog

connections as required for homolog segregation.

Recombination is temporally and spatially coordinated with

dramatic changes in global chromosome structure culminating in

the assembly of the synaptonemal complex (SC). The SC, a widely
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conserved proteinaceous structure, stably juxtaposes homologs

along their entire lengths during the pachytene stage [12]. SC

formation is initiated during the leptotene stage when axial

elements first form between and along sister chromatids. During

the zygotene stage, axial elements of homologous chromosomes

become closely juxtaposed via the SC central element which starts

polymerizing from discrete sites; achieving full length homolog

synapsis during the pachytene stage. Recombination is initiated via

induction of DSBs during the leptotene stage, followed by onset of

strand invasion at the transition from the leptotene to the zygotene

stage [9]. During the pachytene stage, in the context of fully

formed SC, double Holliday junctions are formed and resolved

into COs, with NCOs emerging somewhat earlier [9–11].

Morphogenesis of the SC and recombination are highly

interdependent, as indicated by (i) requirements for recombination

proteins for SC assembly, and (ii) functions of SC components in

recombination. In S. cerevisiae, DSBs are introduced by the widely

conserved topoisomerase homolog Spo11 [5]. Spo11-dependent

DSB formation is also required for SC assembly. Prominent

components of yeast axial elements include Hop1 and its binding

partner Red1, as well as meiosis-specific cohesin Rec8 and

cohesin-associated proteins, e.g. Spo76/Pds5 [13–16]. Hop1 and

Red1 further mediate normal DSB formation and preferential

interaction of DSBs with homologs rather than sister chromatids

[6,17–19]. Zip1 is a prominent component of the SC central

element. Zip1 starts polymerizing from both centromeres and

from positions of designated CO sites [20–24]. Prior to assembly

into full length SC, Zip1 mediates timely and efficient CO-specific

strand invasion during recombination [11]. Two ZMM proteins,

Zip2 and Zip3, are required for formation of most COs and also

mediate normal SC assembly. Zip3 is present along fully formed

SC with the number and distribution expected for CO designated

sites, in S. cerevisiae and C.elegans [21,22,25,26]. Finally, regions

surrounding emerging COs are structurally modified as suggested

by localized separation of sister chromatids at sites of ongoing

recombination [16]. Later, when chiasmata emerge, they are

characterized by extended regions of sister axis separation flanking

the position of an established CO (see example in ref. [27]).

CO placement along homolog pairs is non-random at several

levels: First, CO assurance guarantees formation of at least one

CO per bivalent (e.g. ref. [28]). Second, CO homeostasis enhances

CO formation at the expense of NCOs when initiating DSBs are

artificially reduced [29]. Third, CO interference reduces the

frequency of COs in regions adjacent to established COs resulting

in maximally spaced COs [30].

The three levels of CO control indicate communication along

chromosomes between sites of ongoing recombination. CO

interference reduces CO frequencies over large physical distances,

.100 kb in yeast and .100 Mb in higher eukaryotes [8,31]. CO

assurance and CO homeostasis suggest mechanism(s) that sense

overall CO and/or DSB levels, affecting the outcome of ongoing

recombination events. Timing, mechanism and the functional

relationship between CO control and meiotic recombination

pathway(s) are poorly understood. CO control is thought to

operate on randomly distributed recombination interactions, a

non-random subset of which become designated as future COs

with the remainder progressing to NCOs. CO designation likely

occurs no later than zygotene, as suggested by occurrence of

cytological markers of CO-designation at this stage, and by

concurrent appearance of CO specific recombination intermedi-

ates [11]. Linkage between CO assurance and CO interference

was inferred from coordinate loss or retention of both features in

certain mutant situations [29,32]. Conversely, CO interference is

retained in two zmm mutants (zip4D, spo16D) despite apparent loss

of CO assurance, indicating that separable pathways contribute to

CO control [28]. Structural chromosome components responsible

for CO control also remain unknown. Normal interference

distribution of CO-designation marker Zip2 in zip1D suggests

that the SC central element is not required for crossover

interference [22]. Notably, in zip1D, CO designation sites/Zip2

foci exhibit interference distribution, while CO interference is

defective, indicating uncoupling between chromosome morpho-

genesis and events on the DNA level [22].

The widely conserved AAA+ ATPase Pch2 performs important

functions in cell cycle control, recombination and chromosome

morphogenesis during mutant and WT meiosis. Identified as a

yeast mutant that bypasses meiotic arrest in zip1D, Pch2 also

mediates mutant delay/arrest in C. elegans and Drosophila [33–38].

During yeast WT meiosis, Pch2 mediates timely resolution of

double Holliday junctions and formation of COs and NCOs

[35,37]. Processing of a subset of recombination intermediates also

depends on Pch2 in mouse [36]. In yeast, Pch2 further mediates

assembly of structurally normal SC, controlling installation of axis

component Hop1 and SC central element protein Zip1 along

meiotic chromosomes in a pattern of alternating hyperabundance

[37]. This pattern likely arises due to uniform loading of Hop1 and

Zip1 at base levels along the length of the SC, corresponding to

the uniform appearance of the SC detected by electron

microscopy, in combination with additional domainal loading of

either protein. Absence of Pch2 results in uniform localization

patterns of Hop1 and Zip1 along the length of meiotic

chromosomes [37].

Here, we have investigated the interplay between meiotic

chromosome morphogenesis and CO control in yeast. We

demonstrate intimate coordination between controlled CO

distribution and axial element morphogenesis, as suggested by

frequent association between Zip3-marked CO-designation sites

and domains of preferential Hop1/Red1 loading. Association

between Zip3 and Hop1/Red1 becomes detectable prior to

substantial SC polymerization, consistent with axis differentiation

at future CO sites early during meiosis. Furthermore, Hop1-Zip3

association is detected in ndt80D-arrested cells indicating its

Author Summary

In the germ line of sexually reproducing organisms,
haploid gametes are generated from diploid precursor
cells by a specialized cell division called meiosis. Reduction
by half of chromosome numbers during the first meiotic
division depends on genetic exchange, resulting in the
formation of crossovers. Without crossovers, pairs of
homologous chromosomes frequently fail to separate,
resulting in unbalanced gametes with a surplus or deficit
of individual chromosomes. Along a given chromosome,
crossovers form in different locations in different cells, but
distribution of crossovers within each cell is controlled in
two ways: first, at least one crossover is formed along each
homolog pair, irrespective of size; second, a crossover in a
given interval reduces the frequency of crossovers in
adjacent chromosome regions. Here, we identify functions
of the evolutionarily conserved protein Pch2 in suppress-
ing additional crossovers in adjacent regions and ensuring
homolog segregation under certain conditions. Pch2
further controls the assembly of chromosome axis protein
Hop1 at future crossover sites. Our findings reveal that
chromosome axes undergo structural changes at the same
positions where crossovers occur. Thus, axis remodeling
and crossover placement are linked via Pch2.

Pch2 Links Axis Remodeling and Crossover Control
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establishment independent of and prior to double Holliday

junction resolution. Pch2 controls chromosome axis status by (i)

specifying amount and pattern of chromosomal Hop1, (ii) limiting

Zip3 positions along pachytene chromosomes and (iii) mediating

global axis shortening. While competent for CO formation at

normal levels, pch2D is defective in controlling the distribution of

COs along chromosome arms. In pch2D, (i) CO interference is

defective, and (ii) spore viability is drastically reduced upon global

reduction of initiating DSBs. The pch2D phenotype is dramatically

modulated by incubation conditions, including temperature,

suggesting the existence of Pch2-independent back-up systems

for crossover interference and for maintenance of normal spore

viability despite reduced DSB levels. We propose a model where

Pch2 mediates establishment of multiple CO control modules

along each chromosome, with potential effects on CO interference

and chiasma function.

Results

Pch2 localizes to chromosome arms during the early
zygotene stage

Pch2 mediates domainal hyperabundance of axis protein Hop1

along pachytene chromosomes [37]. Loss of domain structure in

pch2D during zygotene suggests Pch2 functions at or before this

stage. To examine Pch2 localization throughout meiosis I

prophase, an isogenic SK1 strain homozygous for N-terminally

36HA-tagged Pch2 ( = HA-Pch2) was induced to undergo

synchronized meiosis at 33uC. The 36HA-tagged Pch2 construct

used here complements Pch2 function as suggested by its ability to

confer arrest in zip1D. It is identical to a construct previously

examined in a different strain background (data not shown, A.

Hochwagen, personal communication, see Materials and Methods

for details; [33]).

Pch2 localization was examined at all stages of meiosis I

prophase. At specified time points, cells were surface spread and

immunodecorated with antibodies against the HA-epitope, and

SC central element component Zip1 [20]. Cells progressed

through meiosis with appropriate timing [11]: Late leptotene

nuclei, containing ,10 Zip1 staining foci, first appear at 2 hrs

(Figure S1). Zygotene nuclei carrying multiple Zip1 foci (‘‘early

zygotene’’) and/or Zip1 in partial lines (‘‘late zygotene’’) are

prominent at 4 to 5 hrs (Figure 1A, 1AE, and 1I). Pachytene cells

exhibiting mostly continuous lines of Zip1 along most of the 16

homolog pairs reach peak levels between 4 to 7 hours and

disappear shortly before the onset of nuclear divisions (Figure 1M

and Figure S1).

In pachytene nuclei, multiple Pch2 foci of comparable

intensities are detected on most of the chromatin mass

(Figure 1M–1P). The majority of Pch2 foci is associated with

Zip1, but cells frequently also contain ,five grouped foci in a

crescent-shaped, Zip1-free chromatin region, likely corresponding

to the nucleolus (Figure 1K and 1O; see ref. [33]). In pachytene

nuclei, 21 (67 S.D.) Pch2 foci residing outside the nucleolus

(referred to as chromosomal Pch2 hereafter) are detected (n = 149

nuclei; Figure 1O). Pch2 is also present at chromosomal and

presumed nucleolar positions in early and late zygotene nuclei

where 16 (65 S.D.) Pch2 foci are detected (n = 25 nuclei), some of

which localize to several Zip1-free regions, suggesting localization

to unsynapsed chromosomes. Together, these data indicate that

Pch2 starts localizing abundantly to chromosome arms during the

early zygotene stage, reaching maximum levels during the

pachytene stage. Nucleolar and chromosomal Pch2 staining

exhibits comparable intensities here, yet appears more prominent

in the nucleolus in an earlier report [33]. Such differences could be

due to effects of different spreading protocols and/or imaging

systems.

Pch2 localizes to crossover-designated sites
Pch2 promotes timely formation of recombination products

[37], and plays roles in CO control (see below). Zip3 is a

cytological marker for CO-designated sites, forming interference-

distributed foci along pachytene chromosomes with numbers

corresponding to COs [22]. To examine localization of chromo-

somal Pch2 with respect to ongoing recombination interactions,

meiosis was induced in strains homozygous for HA-Pch2 and C-

terminally GFP-tagged Zip3. (ZIP3-GFP complements ZIP3

function as suggested by spore viabilities .85%, normal CO

levels by physical analysis and WT-like progression through

meiosis (G.V.B. and O. Nanassy, unpublished)).

Cells from a synchronous time course carried out at 33uC were

spread and stained with appropriate antibodies. Anti-Zip1

antibody was used to determine stages of cells. Number and

localization patterns of Zip3 in zygotene and pachytene nuclei

correspond well with earlier reports [21–23]. Pachytene nuclei

contain 61 (66 S.D.) Zip3 and 31 (612 S.D.) Pch2 foci (n = 42

nuclei; see Figure 2E–2H). Importantly, a substantial number of

Pch2 foci colocalizes with Zip3: In pachytene nuclei, 54% (617%

S.D.) of Pch2 foci are associated with Zip3 foci, compared to 18%

(610% S.D.) fortuitous colocalization (n = 17 nuclei; see Materials

and Methods for details on analysis of fortuitous colocalization).

Colocalization of Pch2 with Zip3 is also observed in zygotene

nuclei where 44 (616 S.D.) Zip3 and 25 (612 S.D.) Pch2 foci are

detected (n = 28 nuclei; Figure 2A–2D). Of the Pch2 foci detected,

58% (618% S.D.) colocalize with Zip3, compared to 13% (610%

S.D.) fortuitous colocalization (n = 13 nuclei). Similar localization

patterns are observed in the same strain incubated at 30uC (data

not shown). Together, these data demonstrate that chromosomal

Pch2 partially and/or transiently associates with Zip3-marked

CO-designated sites. This association could be related to Pch2’s

function in CO placement and/or CO-associated domain

organization (see below).

Association between Hop1/Red1 hyperabundance
domains and crossover-designated sites

To gain insights into positional identities of Hop1-enriched axis

domains, Zip3 and Hop1 localization were examined in a

synchronous WT time course at a time when pachytene cells are

abundant [11]. In WT, at t = 7 hrs, .50% of undivided nuclei are

at the pachytene stage, as indicated by Zip1 staining patterns (data

not shown). In the same cell population, Hop1 and Zip3

localization are remarkably similar in number and position:

Hop1 localizes to 55 (613 S.D.) foci while Zip3-GFP localizes to

56 (613 S.D.) foci per nucleus (Figure 3A–3D; n = 68 nuclei).

When Hop1 and Zip3 localization patterns in the same nuclei are

compared, a striking correspondence in position emerges: 72%

(610% S.D.) of Zip3 foci colocalize with Hop1, and 73% (615%

S.D.) of Hop1 foci colocalize with Zip3. Fortuitous colocalization

in the same nuclei is 17% (67% S.D.) and 17% (68% S.D.),

respectively. These results suggest that CO-designated recombi-

nation interactions frequently localize to chromosome domains

enriched for Hop1.

To examine Zip3 localization relative to another axis protein

and to determine the stage of meiosis in the same cells, spread

nuclei were triple-stained for Red1, Zip3, and Zip1 in a strain

homozygous for C-terminally HA-tagged Red1 (Red1-HA) [17]

and Zip3-GFP. High levels of colocalization between Zip3 and

Red1 were observed at both the zygotene and pachytene stages

(Figure 3E–3H). In zygotene nuclei, 57 (616 S.D.) Red1 foci and

Pch2 Links Axis Remodeling and Crossover Control

PLoS Genetics | www.plosgenetics.org 3 July 2009 | Volume 5 | Issue 7 | e1000557



Figure 1. Association of Pch2 with WT chromosomes at different stages of SC polymerization. (A–H) Early zygotene nuclei; Zip1 (A,E),
and HA-Pch2 (B,F). (I–L) Late zygotene nucleus. (M–P) Pachytene nucleus. Arrows indicate rDNA clusters, identified by Pch2 localization pattern and
lack of Zip1 (K,O). Spread zygotene and pachytene nuclei are identified base on extend of Zip1 staining. Colors are indicated by the corresponding
labels. Meiosis was induced at 33uC.
doi:10.1371/journal.pgen.1000557.g001
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50 (619 S.D.) Zip3 foci are detected: 65% (610% S.D.) of Zip3

foci colocalize with Red1, and 55% (614% S.D.) of Red1 foci

colocalize with Zip3 (n = 72 nuclei; Figure 3I–3M). In pachytene

nuclei, Red1 localizes to 53 (611 S.D.) foci, and Zip3 to 55 (615

S.D.) foci; 59% (610% S.D.) Zip3 foci colocalize with Red1, and

60% (614% S.D.) Red1 foci colocalize with Zip3 (n = 57 nuclei;

Figure 3N–3R). Thus, Red1 is also frequently associated with

chromosome regions designated to undergo CO formation.

Together, these results have two key implications: Association of

Zip3 and Hop1/Red1 (i) at the same sites along pachytene

chromosomes suggests spatial linkage between Hop1-enriched

domains and CO placement, and (ii) temporal coincidence with

CO/NCO differentiation during the zygotene stage [10,11].

We note that not all Zip3 foci are associated with Hop1/Red1

in every cell. This association may be transient and/or only a

subset of Zip3 associates with Red1/Hop1. Furthermore, Zip3

occupies presumed CO designation sites only during the

pachytene stage, while it localizes to centromeres in pre-zygotene

cells [22,24]. In pre-zygotene cells, Zip3 is detected at small

numbers and rarely colocalizes with abundantly staining Hop1 or

Red1 (data not shown).

Normal association between Zip3 and Hop1 depends on
Dmc1, but not on Ndt80

We next investigated Hop1 and Zip3 localization in dmc1D and

ndt80D, two meiotic mutants exhibiting distinct recombination

blocks: In the absence of Rad51-paralog Dmc1, hyperresected

DSBs accumulate, and COs and NCOs are eliminated, consistent

with a role of Dmc1 in strand invasion (G.V.B., unpublished data;

ref. [39]). Without transcription factor Ndt80, NCOs appear

normally, but double Holliday junctions accumulate and COs are

reduced accordingly [10]. Cells further arrest in ndt80D at a bona

fide normal pachytene stage, as suggested by formation of viable

spores upon induction of Ndt80 [40].

In dmc1D at 33uC, Zip3 localizes to nuclei abundantly, although

at reduced numbers. At a time when most cells have completed

DSB formation (t = 5 hrs; G.V.B., unpublished data), 33 (67 S.D.)

Zip3 foci are detected (n = 58 nuclei), compared to ,50 Zip3 foci

in WT cells (Figure 4A–4C and 4P). In dmc1D, maximum Zip3

localization is reached at t = 5 hrs, as indicated by comparable

numbers of foci at t = 4 and t = 6 hrs (data not shown). Thus,

Dmc1 is required for association of Zip3 with meiotic chromo-

somes at normal levels. Hop1 also localizes at high levels to meiotic

chromosomes in dmc1D, but poor spreading in these cells interferes

with quantitation of Hop1 foci. Of the Zip3 foci detected in dmc1D,

77% (611% S.D.) colocalize with Hop1, compared to 26% (68%

S.D.) fortuitous colocalization. About 10% of dmc1D nuclei further

exhibit WT-like patterns of Zip3 staining, with several Zip3 foci

located in a linear array, consistent with staining along condensed

chromosome axes. In these nuclei, Zip3 again colocalizes with-

Hop1 at high levels (Figure 4A–4C). In summary, Zip3 foci form

with reduced numbers in dmc1D, but tend to be associated with

Hop1.

In ndt80D at 33uC, at a time when most cells have undergone

pachytene arrest (t = 8 hrs), Zip3 and Hop1 localize to meiotic

chromosomes with patterns and numbers similar to wild-type

pachytene nuclei (compare Figure 4J and 4K with Figure 4D and

4E). Both Zip3 and Hop1 are detected as foci, with 50 (69 S.D.)

Zip3 foci and 63 (68 S.D.) Hop1 foci detected (n = 51 nuclei).

Colocalization between Hop1 and Zip3 is also high in ndt80D, with

76% (611% S.D.) of Zip3 foci colocalizing with Hop1, similar to

the WT pachytene stage (n = 51 nuclei; Figure 4F and 4L).

We conclude that Dmc1 is required for normal levels of both

Zip3 localization and Hop1-Zip3 co-staining domains. Important-

ly, association of Zip3 and Hop1 is independent of NDT80,

Figure 2. Association of Pch2 with CO designation marker Zip3 at different stages of synapsis. (A–D) Spread nucleus during early
zygonema from a strain carrying HA-Pch2 and Zip3-GFP, stained with antibodies against HA- and GFP-epitopes as well as Zip1. (E–H) Spread
pachytene nucleus. Arrow indicates rDNA cluster (G). Colors are indicated by the corresponding labels. Meiosis was induced at 33uC.
doi:10.1371/journal.pgen.1000557.g002

Pch2 Links Axis Remodeling and Crossover Control
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Figure 3. Association of axis components Hop1 and Red1 with CO–designation marker Zip3 at different stages of synapsis. (A–D)
Spread pachytene nucleus stained with antibodies against Hop1 and Zip3-GFP. (E–H) Spread pachytene nucleus labeled with antibodies against
Red1-HA and Zip3-GFP. (I–R) Spread nuclei from time course shown in (E–H) stained with antibody against Zip1 as well as Red1-HA and Zip3-GFP. (I–
M) Spread zygotene nucleus. (N–R) Spread pachytene nucleus. Colors are indicated by the corresponding labels. Yellow colors in (A,E,I,N) indicate
overlap between the indicated protein signals. Meiosis was induced at 33uC.
doi:10.1371/journal.pgen.1000557.g003

Pch2 Links Axis Remodeling and Crossover Control
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indicating that it is established prior to and independent of double

Holliday junction resolution into COs.

Pch2 controls levels and distribution of Hop1 loading
Pch2’s role in chromosome morphogenesis was examined in

more detail by analyzing patterns and levels of Hop1 localization

in ndt80D-arrested cells. Detection of 63 (68 S.D.) Hop1 foci in

ndt80D confirms that Hop1 localizes as foci rather than in lines

along pachytene-arrested chromosomes (Figure 4K). Conversely,

in both NDT80 and ndt80D nuclei, with maximized visualization of

near-background signals, Hop1 foci frequently coalesce into lines,

consistent with continuous localization of Hop1 at base levels

along pachytene chromosomes (data not shown).

Absence of Pch2 affects Hop1 patterns similarly in ndt80D and

NDT80 (compare Figure 4H and 4N; ref. [37]): Hop1 localizes as

continuous, mostly uniform lines along the 16 homolog pairs.

Quantitative analysis further identifies roles of Pch2 in controlling

both Hop1 loading levels and patterns: Hop1 signal intensities are

Figure 4. Effects of Dmc1, Pch2, and Ndt80 on Zip3 and Hop1 localization and SC length in WT and pch2D. (A–P) Spread nuclei from
dmc1D (A–C), WT (PCH2) (D–F), pch2D (G–I), PCH2ndt80D (J–L), pch2Dndt80D (M–O) were stained with antibodies against Hop1 and Zip3. Colors are
indicated by the corresponding labels in the individual channels. Regions of overlap between Zip3 and Hop1 are indicated by yellow color. Note the
patchy versus continuous Hop1 localization in WT (E,K) versus pch2D (H,N). White arrow in (H) indicates the Hop1 stained nucleolus in pch2D. (P)
Numbers of Zip3 foci per nucleus determined in spread nuclei in dmc1D (t = 5 hrs), WT (t = 7 hrs), pch2D (t = 7 hrs), PCH2ndt80D (t = 8 hrs),
pch2Dndt80D (t = 8 hrs), respectively. P-values are from two-sided Wilcoxon rank sum tests. Error bars represent 95% confidence intervals. (See also
Figure S2 for analysis of Hop1 domains in WT and pch2D.) (Q–V) Nuclei from WT (Q–S) or pch2D (T–V) from parallel time courses were spread and
stained with antibodies against Hop1 and Zip1. Note discontinuous staining of Hop1 and Zip1 in WT (Q,R) compared to continuous staining patterns
for both proteins in pch2D (T,U). (W) Twenty well-spread nuclei were selected and the combined contour length of Zip1 and Hop1 was determined in
WT and pch2D (see Materials and Methods). The average SC/axis length was 34 mm (61.8 mm C.I.) in WT and 40 mm (62.2 mm C.I.) in pch2D,
indicating a significant increase in pch2D versus WT (p = 0.00023; two-sided Wilcoxon rank sum test). Error bars represent 95% confidence intervals.
Meiosis was induced at 33uC.
doi:10.1371/journal.pgen.1000557.g004

Pch2 Links Axis Remodeling and Crossover Control

PLoS Genetics | www.plosgenetics.org 7 July 2009 | Volume 5 | Issue 7 | e1000557



,three-fold increased in pch2D (p,0.0001; see Figure S2A for

details). The Hop1 staining observed in pch2D could be due to a

uniform increase exclusively or concurrent Hop1 redistribution.

To examine this question, number and contour length of high

intensity Hop1 signals were determined in 20 WT and pch2D
nuclei (see Materials and Methods for details). In pch2D, strong

Hop1 signals exhibit ,two-fold increased average contour lengths

and are present at reduced numbers (see Figure S2B, S2C;

p,0.0001; two-sided Wilcoxon rank sum test). If extra loading had

occurred universally, patterns of strong Hop1 signals would be

similar in WT and pch2D. We conclude that the more uniform

Hop1 signal in pch2D is due to an overall increase in Hop1 signal

intensities concurrent with changes in Hop1 loading patterns.

Together, these findings have four important implications. (i)

Hop1 is a prominent component of pachytene SC. (ii) In WT,

Hop1 is present along chromosome axes in a mostly continuous

pattern at base levels, with hyperabundance at distinct chromo-

some domains [37]. (iii) Pch2 controls both overall levels and

patterns of Hop1 localization along meiotic chromosomes. (iv)

Changes in Hop1 localization are caused by absence of Pch2,

rather than being an indirect result of meiotic arrest.

Pch2 controls axis morphogenesis and number of
crossover-designated sites

Next, the role of Pch2 in controlling Zip3 association with

chromosomes was investigated in WT and pch2D at a time point

exhibiting maximum levels of pachytene cells (.50%; t = 7 hrs) as

well as in ndt80D-arrested cells (T = 33uC): In WT, Zip3 and Hop1

predominantly localize as distinct foci (Figure 4D–4F; see above).

In pch2D (t = 7 hrs), by contrast, Hop1 localizes in continuous lines

and Zip3 foci are occasionally not well separated (Figure 4G; see

above; ref. [37]). Further, in pch2D, Hop1 (but not Zip3) is

detected in the nucleolus (Figure 4H) [33].

In WT nuclei, 56 (61.7 S.E.) Zip3 foci are detected along

meiotic chromosomes (n = 68, see above), while in pch2D, the

average number of Zip3 foci per nucleus is 62 (61.5 S.E.) (n = 64

nuclei; Figure 4D, 4G, and 4P). Accordingly, the number of Zip3

foci in pch2D is significantly increased (P = 0.0026, two-sided

Wilcoxon rank sum test). To exclude possible effects of differences

in meiotic progression, the number of Zip3 foci in WT and pch2D
was also examined in the ndt80D background. In PCH2ndt80D, 50

(61.3 S.E.) Zip3 foci are detected, compared to 67 (61.3 S.E.)

Zip3 foci pch2Dndt80D, reflecting an increase by 34% (Figure 4P).

Again, this increase is statistically significant (p,0.0001, two-sided

Wilcoxon rank sum test). Thus, Pch2 controls the number of Zip3

foci along pachytene chromosomes. Notably, increased numbers

of Zip3 foci are not caused by accumulation of cells at the

pachytene stage in pch2D: In ndt80D arrested cells, the number of

Zip3 foci is substantially increased in pch2D compared to the

corresponding PCH2 strain, indicating that Pch2 controls the

number of Zip3 association sites.

To examine effects of pch2D on chromosome axis length, SC

contour length was measured by staining for Hop1 and Zip1. In

WT pachytene nuclei (identified based on Zip1 staining), Hop1

and Zip1 preferentially localize to alternating domains, whereas

largely overlapping localization patterns are observed in pch2D
pachytene cells (Figure 4S and 4V) [37]. The combined Hop1/

Zip1 SC contour length of an entire chromosome complement is

34 mm (60.9 mm S.E.) in WT, in accordance with published

results (see ref. [41]). In pch2D, the axis length is increased by 18%

to 40 mm (61.2 mm S.E.), representing a significant increase

(p = 0.00023, two-sided Wilcoxon rank sum test; see Figure 4W).

Thus, homolog axes fail to shorten appropriately in the absence of

Pch2.

Roles of Pch2 in controlling the number of Zip3-marked

presumed CO-designated sites, Hop1’s localization to the same

regions, and meiotic chromosome axis length as well as Pch2’s role

in CO interference have important implications for the mecha-

nism of CO control (Discussion).

Double crossovers contribute disproportionately to
genetic distances in pch2D

We examined the roles of Pch2 in recombination in an

interference tester strain carrying twelve pairs of heterozygous

markers, defining nine genetic intervals along three homologs

(designated as intervals 1 to 9 in Figure 5A), [42]. Chromosomes

III, VII, and VIII represent small, large and intermediately sized

yeast chromosomes, respectively. Marked regions span physical

distances of 132 kb, 229 kb and 106 kb, corresponding to WT

map distances of 43 cM, 66 cM and 47 cM, respectively

(Figure 5A; below).

Map distances were determined using tetrads with four viable

spores and Mendelian (i.e. 2:2) segregation at a given pair of

markers: Three types of tetrads can be distinguished (Figure 5B,

boxed region): (i) All four spores exhibit parental marker

combinations, giving rise to a parental ditype (PD); (ii) two spores

are parental and two recombinant, constituting a tetratype (TT);

(iii) all four spores carry nonparental marker configurations,

constituting a nonparental ditype (NPD). The majority of PDs are

derived from tetrads where no CO has occurred. TTs preferen-

tially arise from tetrads that have undergone a single CO, while

NPDs are derived from double COs involving all four chromatids

within an interval (Figure 5B).

Double COs involving two or three chromatids give rise to PDs

or TTs, respectively, and are indistinguishable from tetrads

involving a single or no CO (Figure 5B, lower part). Thus, total

frequencies of double COs are extrapolated from NPD frequencies

[43]. Note that this formula assumes absence of chromatid

interference which has been validated for WT and pch2D (data

not shown).

Following meiosis at 33uC, tetrads from WT and pch2D strains

were dissected and markers were scored. Dissection of WT and

pch2D asci gave rise to .1200 four spore-viable tetrads for each

strain. In WT, genetic distances are similar to those previously

reported (Figure 5C; Table 1), [42]. Map distances are remarkably

similar between WT and pch2D, with two of nine intervals in pch2D
exhibiting a significant increase (intervals 1 and 3). We note an

apparent increase in NPD frequencies in pch2D. Accordingly, in

pch2D double COs when calculated separately, contribute

disproportionally to total map distances in seven intervals (see

Figure 5C, no differences in intervals 4 and 9).

Thus, Pch2 is not required for formation of COs at normal levels

in most genome regions, consistent with prior physical analysis at a

particular recombination hotspot [35,37]. However, Pch2 appears

to limit the occurrence of closely spaced double COs.

Pch2 mediates normal levels of crossover interference
Increased levels of double COs in pch2D raise the question of

Pch2’s role in CO control. Modified coincidence analysis and

analysis of NPD frequencies were used to determine effects of pch2D
on CO interference using the tetrad set generated at 33uC. In

modified coincidence analysis, map distances for each test interval

are determined for two distinct tetrad subsets [31]: Subset P includes

tetrads with parental marker configuration at an adjacent reference

interval (PD; Figure 6A, left column). Subset N includes tetrads with

non-parental marker configuration at the reference interval (TT or

NPD; Figure 6A, right column; Table S1).

Pch2 Links Axis Remodeling and Crossover Control
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Map distances derived from subset P are remarkably similar

between WT and pch2D, with only a single interval exhibiting a

significant increase in pch2D CO frequencies (interval 5P6;

Figure 6A, left panel). In contrast, map distances derived from

subset N are strikingly different between WT and pch2D (Figure 6A,

right panel): In six out of 12 adjacent interval pairs, map distances

are significantly increased in pch2D compared to WT. Thus, Pch2

has no detectable effect on CO frequencies along an interval when

the adjacent interval is parental, but suppresses CO formation in

the same interval when the adjacent interval is recombinant.

Notably, total map distance increases in intervals 1 and 3 in pch2D
can entirely be attributed to subset N tetrads, while map distances

in subset P tetrads are indistinguishable between WT and pch2D
(Figure 5C; Figure 6A, left panel).

Modified coincidence analysis. Interference for each

interval pair was examined by comparing map distances derived

from subset P and subset N tetrads. A reduced map distance in

subset N versus subset P tetrads is indicative of interference. As an

example, in WT, the map distance in test interval 1 is 19 cM when

determined from subset P tetrads ( = 1P2, left panel Figure 6A,

grey bar), but 7 cM for the same test interval when determined

from subset N tetrads ( = 1N2, right panel Figure 6A, grey bar).

Thus, interval 2 strongly interferes with COs in interval 1. (Note

that center intervals are measured twice).

In WT, eight reference intervals interfere significantly with COs

in adjacent test intervals (Figure 6A; asterisks on bars), while no

interference is detected between the remaining four interval pairs

(white dots). In pch2D, interference is abolished in four interval pairs

that exhibit interference in WT. Moreover, interference is reduced

in one interval pair (see Table S1). Interference remains intact

between interval pairs 8 and 9. An apparent gain of interference is

observed between interval pairs 5 and 6 (see Figure 6A, discussion).

The strength of interference between two intervals can be

inferred from the ratio of map distances in subset N over subset P

tetrads ( = N/P), with N/P ratios substantially ,1 indicating

strong interference. In WT at 33uC, N/P ratios were lowest (i.e.

Figure 5. Genetic map distances in WT and pch2D determined by tetrad analysis at 33uC. (A) Test intervals on chromosomes III, VII, and
VIII. Marker order, physical (kb) and genetic sizes (cM) of surveyed chromosome regions are shown. Ovals indicate centromeres; diamonds represent
telomeres. Intervals are referred to by numbers 1–9 throughout the text. (B) Classes of tetrads for a given interval and contributing crossover (CO)
events. Parental ditype tetrads (PD), generated in the absence of COs, and tetratype tetrads (TT), generated when a single CO occurs, are
predominant tetrad classes. Nonparental ditype tetrads (NPD) are generated exclusively by double COs involving all four chromatids. Double COs
involving three chromatids produce TTs, and those involving two chromatids produce PDs. (C) Genetic distances determined for intervals 1–9 (see A)
at 33uC. Contributions of TTs and NPDs to map distances are indicated in different shades. Asterisks indicate significant differences between map
distances in WT and pch2D strains. Error bars represent standard errors (see also Table 1). (D) Frequencies of non-Mendelian segregation ( = gene
conversion) events (i.e. markers deviating from 2:2 segregation) in WT and pch2D at 33uC.
doi:10.1371/journal.pgen.1000557.g005
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,0.5) for interval pairs spanning ,100 kb, consistent with

interference operating over ,100 kb (Table S1). In pch2D, N/P

ratios were generally increased compared to WT, most strikingly

between 50–100 kb. A direct comparison of N/P ratios between

WT and pch2D at various physical distances further confirms that

interference in pch2D tends to be reduced most dramatically at

physical distances below 100 kb, while it is equally strong as WT

interference or stronger .100 kb (Figure 6B). These findings

indicate that interference in pch2D is reduced or abolished over

short physical distances, but is robust over longer distances,

possibly revealing a long range interference system active in the

pch2D mutant (see Discussion).

Analysis of non-parental ditype frequencies. Effects of

pch2D on CO interference were further examined by determining

frequencies of NPDs. Without interference, NPDs occur at

frequencies inferred from TT frequencies, while the presence of

interference results in a significant decrease of NPDs [44]. In WT,

six out of nine intervals exhibit significant interference (Table 1).

In pch2D, interference is lost in all three intervals along

chromosome III, and is reduced in intervals 7 and 8 [41].

Conversely, pch2D exhibits WT-like levels of interference in

intervals 4, 6 and 9. (NPD ratios give similar results, but were

not used due to caveats of this analysis [44]). Notably, interference

as assayed by NPD frequencies is again preferentially lost or

reduced in pch2D in intervals ,100 kb (Table 1).

Together, three conclusions emerge from this analysis: (i) Pch2

is dispensable for CO formation in intervals flanked by parental

genome regions. By implication, major CO pathways function

normally in the absence of Pch2. (ii) Conversely, Pch2 is required

specifically for reducing COs in response to COs in adjacent

chromosome regions. (iii) Pch2 is preferentially required for CO

interference in intervals ranging from 20 kb to 100 kb. CO

interference across intervals appears not to depend on Pch2

(Discussion).

Spore viability and crossover distribution indicate normal
crossover assurance in pch2D

Numerous mutants defective for CO interference also exhibit

intermediate to severe defects in CO assurance, as suggested by

frequent occurrence of tetrads with two viable or zero viable

spores due to homolog nondisjunction (e.g. [28,32]). Such patterns

of spore viability are frequently associated with elevated levels of

non-exchange chromosomes [32]. WT-like patterns of spore

viability in pch2D provide no indication of increased homolog

nondisjunction: Overall spore viability in pch2D at 33uC is 84.0%

compared to WT viability of 82.6%, consistent with normal

homolog disjunction in pch2D. WT like levels of spore viability are

also observed in pch2D at 30uC (see Figure 7 and Figure 8B:

SPO11/’’, black bars; [33]).

Low levels of non-exchange homolog pairs could be rescued by

a backup system that mediates disjunction of non-exchange

chromosomes reducing the reliability of spore viability as a

measure for CO assurance [45]. To directly evaluate whether

chromosomes receive similar numbers of COs in WT and pch2D,

tetrads formed at 33uC were therefore individually inspected for

the number of COs along three pairs of homologs. Tetrads with no

CO in the monitored interval are only marginally increased in

pch2D, by 1%, 6% and 8%, suggesting that similar numbers of

COs are formed along a given interval in WT and pch2D (Figure

S3). Taken together, patterns of spore viability and WT-like levels

of COs across the chromosome segments examined suggest that

CO assurance is functional in pch2D. These findings raise the

possibility that CO assurance and CO interference can be

separated (discussion).

Increased gene conversions are equally associated with
crossovers and noncrossovers in pch2D

Non-Mendelian marker segregation during meiosis (e.g., 3:1 or

1:3) occurs due to gene conversion of markers in association with

meiotic recombination [31]. Gene conversion frequencies are

increased in pch2D at eight markers, 1.2- to 2.0 fold over WT

(Figure 5D; Table S2). Thus, Pch2 plays a role in suppressing gene

conversion. A gene conversion may be flanked by parental or

recombined chromosome arms, suggesting association with a

NCO or a CO, respectively. In WT, at the assayable six central

markers, gene conversions are associated with COs and NCOs at

similar frequencies. In pch2D, at markers where gene conversion is

substantially increased (ade2, met13, cyh2), such events are also

flanked by COs and NCOs with similar frequencies (Figure S4).

Thus, pch2D increases occurrence of gene conversions in both CO

and NCO interactions. Increased gene conversion could be due to

changes in the length of heteroduplex in recombination interme-

diates, repair defects, and/or region-specific changes in DSB levels

(see discussion). Notably, pch2D does not affect DSB levels at a

Table 1. Effects of pch2D on genetic distances and crossover interference in intervals along three chromosomes at 33uC.

Genotype Chromosome III Chromosome VII Chromosome VIII

his4-leu2 leu2-CEN3 CEN3-MAT lys5-met13 met13-cyh2 cyh2-trp5 CEN8-arg4 arg4-thr1 thr1-cup1

Interval name (1) (2) (3) (4) (5) (6) (7) (8) (9)

Interval size kb 25 21 86 57 36 136 35 19 52

Wild type P:N:T 717:5:319 872:0:207 761:5:333 663:5:388 863:1:201 396:20:673 852:3:242 870:1:166 507:9:508

cM 16.860.9 9.660.6 16.560.9 19.860.1 9.760.7 36.461.3 11.960.8 8.360.6 27.461.1

P* .010 .017 .008 ,.0001 .059 ,.0001 .090 .163 ,.0001

pch2D/’’ P:N:T 688:15:328 875:4:216 743:15:381 633:4:402 829:2:211 425:31:616 910:5:240 925:4:179 499:11:513

cM 20.361.3 11.060.8 20.761.2 20.560.9 10.760.7 37.461.6 11.760.8 9.260.8 28.361.2

P* .667 .400 .212 ,.0001 .098 ,.0001 .416 .974 ,.0001

Map distances and standard errors (in centiMorgans; cM) were calculated from parental ditypes (PD), nonparental ditypes (NPD) and tetratypes (TT) according to
Materials and Methods.
*P-values ,0.05 indicate interference. P values indicate the probability that deviations of the observed PD:NPD:TT distribution from the distribution expected for no
interference are due to chance [44].

doi:10.1371/journal.pgen.1000557.t001
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hotspot of recombination and does not change global DSB

patterns along the majority chromosomal loci (A. Hoachwagen,

personal communication; [35,37]).

Suppression of pch2D crossover interference defects at
lower temperatures

Meiotic phenotypes in several mutants are dramatically modu-

lated by incubation temperature, with prominent effects on

processing of recombination intermediates and formation of CO

products (e.g., [11,37]). In pch2D, temperature modulates defects in

recombination progression, but not those in chromosome domain

organization [37]. To examine whether the interference defect

observed in pch2D at 33uC is affected by temperature, we

investigated crossover formation and interference also at 30uC.

Surprisingly, this minor temperature change results in a drastic

improvement in CO interference in pch2D. At 30uC, map distances

along three chromosomes are similar between pch2D and WT (i) for

total tetrads, without increases in NPDs (Figure S5) and (ii) for subset

P tetrads (Figure 8A, left panel). Also, and in sharp contrast to

observations at 33uC, map distances in subset N tetrads exhibit only

minor differences between pch2D versus WT. Only interval pairs

8N9 and 9N8 exhibit significantly higher CO frequencies in pch2D
(Figure 8A, right panel). Modified coincidence analysis suggests that

in pch2D at 30uC, interference is lost in only two interval pairs

(Figure 8A; interval pairs 2-1 and 5-6). NPD frequencies further

indicate loss of interference in pch2D at 30uC in only one interval

(Table S4). Thus, defects in crossover interference can be

suppressed by incubation at lower temperatures.

Pch2 ensures formation of viable spores when DSBs are
reduced

The role of Pch2 in meiosis when DSBs are limiting was

examined in hypomorphic spo11 strain backgrounds. In WT

meiosis, normal homolog segregation is maintained despite

reduction of initiating DSBs to ,20%, of normal levels, likely

due to preferential processing of DSBs into COs versus NCOs

[29]. Levels of initiating DSBs are reduced to ,80%, ,30% or

,20% of normal levels in strains homozygous for spo11-HA,

heterozygous for alleles spo11yf-HA ( = spo11yf) and spo11-HA or

homozygous for spo11da-HA ( = spo11da), respectively [29].

Patterns of tetrad viability in PCH2 and pch2D strains were

determined following sporulation at 30uC on solid medium (n$97

tetrads). Frequencies of four spore-viable tetrads in WT indicate

normal chromosome segregation in .58% of cells despite DSB

reduction to ,20% of WT levels consistent with earlier findings

(Figure 7; Table S3) [29]. Frequency of four spore-viable tetrads

decreases dramatically in pch2D strains hypomorphic for spo11, in

particular when DSBs occur are reduced below levels occurring in

a homozygous spo11-HA strain. Chromosome segregation occurs

normally in only 18% and 8% of meioses in spo11yf/spo11-HA and

homozygous spo11da/’’ strains, respectively, and .50% of meioses

in the same strains generate zero spore-viable tetrads. Such

viability patterns can occur when$two homolog pairs missegre-

Figure 6. Interference in WT and pch2D in nine intervals at
33uC. (A) Modified coincidence analysis. Left column: Map distances for
test intervals ( = Test) determined from tetrads with parental reference
intervals (PD). Right column: Map distances for test intervals determined
from tetrads with nonparental reference intervals (TT, NPD). Interval
names are given as follows: Test intervals are indicated by the first
number in bold, CO status of the reference interval is indicated by the
letter in italic (P = parental; N = nonparental), and reference intervals are
specified by the number in italic. For interval numbers see Figure 5A.
Error bars are standard errors. Asterisks above bars indicate significant
differences for map distances in bracketed intervals between geno-
types. Asterisks on bars in right column indicate significant differences
between map distances for test intervals within genotypes (indicating
interference). White dots on bars in right column indicate lack of
significant differences between the same pairs of map distances within
a genotype (indicating absence of interference). (B) Strength of CO
interference as a function of physical interval size. Combined interval

length (kb) indicates the physical distance between the two outermost
markers of intervals considered. Ratios of map distances (P/N) were
determined and compared between WT and pch2D. (Ratios ,1 indicate
loss of interference in pch2D and ratios .1 indicate increased strength
of interference in pch2D versus WT). Symbols: *, significant interference
in WT and pch2D; #, no significant interference in WT and pch2D; .,
significant interference in WT, but not in pch2D; m, significant
interference in pch2D, but not in WT.
doi:10.1371/journal.pgen.1000557.g006
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gate. We conclude that Pch2 plays a critical role for spore viability

when DSBs are reduced. Thus, although Pch2 does not play a role

in spore viability at normal DSB levels, it is essential under

conditions of reduced DSB formation.

Incubation conditions modulate spore viability in pch2D
at reduced DSB levels

Following observation of temperature-modulated interference in

pch2D, we next examined whether incubation conditions also affect

spore viability in pch2D at reduced DSB levels. Examining effects

of hypomorphic spo11 on spore viability at 33uC on solid medium,

we find, surprisingly, that spore viabilities are high in the pch2D
strain, a drastic deviation from observations at 30uC (compare

Figure 7 and Figure 8B). Notably, in spo11yf/spo11-HApch2D at

33uC, 75% of tetrads undergo normal meiotic chromosome

segregation as suggested by levels of 4 spore-viable tetrads,

compared to 18% 4 viable spore tetrads in the same strain

sporulated at 30uC in parallel (see Figure 7, orange bars). Similar

results are obtained for pch2D strains homozygous for spo11da/’’

(compare Figure 7 and Figure 8, yellow bars) or for spo11da/

spo11yf (data not shown): At 33uC, these strains give rise to 37%

and 81% four spore-viable tetrads, compared to frequencies of 8%

and 2%, respectively, at 30uC. (In spo11daPCH2/spo11yfPCH2

,48% of tetrads give rise to four viable spores at both 33uC and

30uC). In subsequent experiments, we also discovered that spore

viability patterns in pch2D strains hypomorphic for spo11 are also

affected by culture conditions (see below).

In summary, higher versus lower temperatures oppositely

modulate pch2D defects in CO interference and spore viability at

reduced DSB levels. Conditions that improve spore viability

weaken or eliminate interference and vice versa. Together, these

results have several implications: (i) CO interference and factors

affecting spore viability at reduced DSB levels can be uncoupled in

pch2D. (ii) Effects of temperature on CO interference and the

process that mediates normal spore viability at reduced DSB levels

suggest linkage via Pch2 between both processes. (iii) Pch2

stabilizes both CO interference and spore viability over a wide

range of DSB levels, temperatures, and possibly other environ-

mental conditions (see below).

Reduced spore viability in pch2D despite normal
crossover levels at a recombination hotspot

Additional effects of incubation conditions in pch2D were

revealed during our investigation of recombination defects at

reduced DSB levels. Physical recombination analysis is routinely

performed in liquid medium, while spore viability is determined

following sporulation on solid medium. To ascertain correspon-

dence between these conditions, asci from parallel cultures

incubated at 30uC with solid or liquid medium were dissected

and viability patterns were compared. Surprisingly, WT and pch2D
strains carrying spo11-da/’’ formed four viable spore tetrads at

much higher levels when sporulated at 30uC in liquid versus solid

medium (Figure 9A, compare pink and yellow bars).

To examine CO formation in pch2Dspo11da/’’ under conditions

that result in low levels of four viable spore tetrads, sporulation in

liquid medium was analyzed at 27uC and 30uC: In pch2Dspo11da/

’’, incubation of parallel cultures results in a dramatic decrease in

spore viability at 27uC versus 30uC, while viability patterns are

similar under both conditions in PCH2 (Figure 9A, pink and blue

bars). Accordingly, in pch2D hypomorphic for spo11, spore viability

is modulated not only by temperature, but also by the exact nature

of the sporulation medium.

Final CO levels were examined in PCH2 and pch2D in a

spo11da/’’ background at the HIS4LEU2 hotspot of recombination

(see ref. [11] for details). Surprisingly, CO levels in PCH2 and

pch2D were extremely similar; both at 27uC and 30uC, in four

independent WT and pch2D strains (Figure 9B and data not

shown). Thus, differences in CO formation, at least at the

HIS4LEU2 recombination hotspot, are not responsible for the loss

in spore viability in pch2D at reduced DSB levels.

In summary, pch2D is defective in ensuring normal spore

viability when overall DSB levels are reduced, with viability

patterns suggestive of homolog disjunction defects. pch2D may

affect genome-wide levels or distribution of initiating DSBs, the

efficient designation of DSBs as future COs in genomic regions

outside of the HIS4LEU2 hotspot or the formation of functional

chiasmata (see Discussion). Importantly, our results identify Pch2

as a protein that ensures normal homolog segregation at reduced

DSB levels. Reduction of DSBs or absence of Pch2 alone have

marginal or no effects on homolog segregation, yet both mutant

conditions combined synergistically affect spore viability.

Discussion

The present work provides novel insights into the question of

how chiasma distribution is controlled along the genome of

sexually reproducing organisms. We demonstrate a spatial

association between CO-designated sites and structurally differ-

entiated chromosome axes: Early during meiotic prophase, axis

Figure 7. Spore viability patterns at reduced DSB levels in WT and pch2D at 30uC. Tetrads were dissected from strains with the indicated
genotypes of spo11 alleles. Ratios 4:0, 3:1, 2:2, etc. indicate the frequencies of four-spore viable, three-spore viable, two-spore viable, etc. tetrads.
spo11 hypomorphic mutants form ,80% (spo11-HA/’’), ,30% (spo11-HA/spo11yf), and ,20% (spo11da/’’) of WT DSB levels [29].
doi:10.1371/journal.pgen.1000557.g007
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proteins Hop1 and Red1 preferentially associate with sites

designated to become COs. A key implication of this finding is

that local modifications of chromosome axis and recombination

site selection are coordinated, and are possibly controlled by the

same determinants. Pch2 controls the association of Hop1 with

designated CO sites, the number of designated CO sites along the

genome and CO interference. Identification of pch2D as a mutant

that affects CO/chiasma formation in response to remote

recombination events without playing a major role in overall

CO levels suggests that CO control is mechanistically distinct from

and likely superimposed on basic recombination events. Based on

these data, we propose a model of CO control in which meiotic

chromosomes become organized into multiple modules of assured

CO formation, with concurrent imposition of crossover interfer-

ence. Pch2 is proposed to function as a size determinant for these

modules of chiasma assurance and interference.

Figure 8. CO interference and spore viability in pch2D and WT at different temperatures. (A) Modified coincidence analysis for the same
strains shown in Figure 6, sporulated at 30uC. Note that the apparent lack of interference between intervals 7 and 8 is likely due to large standard
errors in the relatively smaller data set (see Table S1). See Figure 6 legend for details. (B) Spore viability patterns indicative of homolog nondisjunction
for the same strains analyzed in Figure 7, sporulated at 33uC. See Figure 7 legend for details.
doi:10.1371/journal.pgen.1000557.g008
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Correspondence between Hop1-enriched axis domains
and crossover designated sites

Pachytene chromosomes in yeast display a domainal organiza-

tion, where Hop1/Red1 or Zip1-enriched regions occur in an

alternating pattern [37]. Our analysis supports the idea that

hyperabundance domains are layered over a base level of Hop1

(and Zip1) along the lengths of synaptonemal complexes.

Correspondence between Hop1 hyperabundance domains and

CO-designation marker Zip3 establishes a link between domain-

ally modified chromosome axes and positions of future COs [21–

23]. Crossovers and CO designation markers Zip2/Zip3 occur at

different sites in each cell and exhibit interference distribution

[22,46]. By implication, Hop1 hyperabundance domains likely

also form at different positions in different cells along a given

chromosome. Together, these findings suggest that chromosome

axes undergo a differentiation process that is spatially coordinated

with crossover placement.

During WT meiosis, association between Zip3 and Hop1

reaches maximum levels in pachytene nuclei. High levels of Zip3-

Hop1-association are also detected in ndt80D cells arrested at the

pachytene stage (Figure 4L), indicating that association is

established prior to and independent of double Holliday junction

resolution, a recombination step blocked in ndt80D [10]. Thus,

Hop1-Zip3 association is completed prior to and independent of

completion of the majority of COs.

Our findings further suggest that association between Hop1/

Red1 and Zip3 is established during the zygotene stage and can

occur independently of stable strand invasion. Zip3 is the earliest

known marker for designated CO sites [22]. In pre-zygotene cells,

Zip3 localizes to paired centromeres of yeast chromosomes [24].

During the zygotene stage, Zip3 appears to localize abundantly to

additional sites, a process that is completed at the pachytene stage

when Zip3 is found at interference-distributed CO designation

sites, while it is absent from centromeres [24]. In the population of

zygotene nuclei analyzed here, ,50 Zip3 foci are detected,

suggesting that Zip3 occupies multiple non-centromeric positions

at this stage. Zip3 foci colocalize at high levels with Red1 in the

same zygotene cells (Figure 3I–3M). Thus, association between

Red1/Hop1 and Zip3 at designated CO sites appears to be

established during the zygotene stage.

In dmc1D, a mutant defective for strand invasion, Zip3 localizes

to chromosomes with numbers substantially lower than those

observed in normal zygotene nuclei. A subset of these cells,

however, exhibit Zip3 localization with WT-like numbers and

patterns (Figure 4C). A high percentage of Zip3 foci is associated

with Hop1 in such nuclei, raising the possibility that Zip3-Hop1

association can occur independent of Dmc1-mediated strand

invasion. Whether Zip3 localizes to its normal sites in dmc1D cells

is presently unknown.

Hop1/Red1 localize to meiotic chromosomes prior to and

independent of DSB formation, consistent with functions at earlier

stages (G.V.B., unpublished; [13,17]). Several scenarios can

explain the transition between early, pre-DSB association of

Red1/Hop1 with meiotic chromosomes and their association with

Zip3 marked designated CO sites at later stages: Red1/Hop1 may

(i) become associated with future CO sites as an outcome of CO

designation, following relocalization from a more dispersed (pre-

)leptotene localization pattern; (ii) initially be present at all nascent

recombination interactions and later undergo selective stabiliza-

tion at future CO sites; (iii) preferentially localizes to future CO

sites prior to CO designation, possibly participating in CO

designation itself. (iv) Finally, it is possible that Zip3 preferentially

localizes to Hop1/Red1 hyperabundance domains due to

preferential recombination initiation in such domains [17].

Further work is required to determine whether Hop1/Red1

hyperabundance domains assemble at CO designated chromo-

somal positions before or after CO designation, and whether CO

designation is a requirement for association between Hop1 and

Zip3.

Spatial association between structural axis modifications and

markers of nascent recombination interactions have also been

observed in other organisms. (i) In Sordaria, cohesin associated

protein Spo76/Pds5 is depleted from Msh4-marked recombina-

tion sites in a mutant deficient for the meiotic cohesin Rec8. Local

splitting of sister chromatids at the corresponding sites also occurs

in the WT, and it was proposed that intersister connections may

become destabilized as part of the normal process of chiasma

formation [16]. (ii) In an ATM2/2 mouse, SC proteins Sycp3 and

Sycp1 are absent from sites of ongoing recombination [47]. (iii) In

C. elegans, SC component SYP-1 and axis proteins HTP-1/2 are

Figure 9. Spore viability and crossovers in pch2D under different incubation conditions. (A) Spore viability patterns in PCH2spo11da/’’ (left)
and pch2Dspo11da/’’ (right), undergoing meiosis at 30uC (liquid medium), 27uC (liquid medium), or 30uC (solid medium). At least 30 tetrads were
dissected under each condition. (B) Crossover levels at the HIS4LEU2 recombination hotspot. Meiotic cultures were split at t = 0 hrs, and crossover levels
were determined after incubation at 30uC or 27uC for 24 hrs. Asci from the same cultures were dissected to determine effects on spore viability (see A).
doi:10.1371/journal.pgen.1000557.g009
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removed from reciprocal chromosome arms directed by and

dependent on designation of a given recombination interaction as

future CO [48]. These data indicate that locally weakened sister

cohesion and enhanced interhomolog interactions may both

contribute to preferential interhomolog recombination. Such

modifications may be especially important for CO formation

which entails long-lived strand invasion intermediates [10,11]. In

yeast, axis ensemble Hop1/Red1 plays a central role in directing

meiotically induced DSB processing towards homologous chro-

mosomes, with Mec1-dependent Hop1 phosphorylation constitut-

ing a key event in establishing this interhomolog bias [19].

Our results further provide insights into likely dynamics of SC

assembly. SC initiation occurs at Zip3 foci, some of which

correspond to CO-designated sites [21] (N.J., unpublished data).

Conversely, domains enriched for Zip1 alternate with Hop1/Red1

(and Zip3) enriched domains when SC assembly is complete [37].

We propose that in early zygotene nuclei, Hop1/Red1 and Zip1

are present at Zip3-marked sites (see Figure 3I–3L). During SC

polymerization, Zip1 is preferentially deposited in axis regions

distal from Zip3, giving rise to the alternating Zip1/Hop1 pattern

of pachytene chromosomes. Our results are not compatible with a

model of SC assembly where Hop1 is displaced from chromosome

axes as Zip1 polymerizes [13]. Hop1 in association with Zip3, is

present at substantial levels along pachytene chromosomes, both in

WT and in ndt80D, indicating that Hop1 is an integral component

of pachytene chromosomes (this work; [37]).

Pch2 controls meiotic axis morphogenesis
Pch2 plays key roles in establishing and/or maintaining the

distribution of at least two proteins along meiotic chromosome

axes. First, Pch2 controls overall levels and localization patterns of

Hop1. Accordingly, Hop1-enriched domains appear as multiple

discrete foci along WT pachytene chromosomes, while in pch2D,

Hop1 spreads into fewer, more extended structures (Figure S2B,

S2C). Importantly, changes in Hop1 loading in pch2D are not an

indirect consequence of e.g. a delay in meiotic progression: In

ndt80D arrested cells, Hop1 forms distinct foci, while in the

ndt80Dpch2D double mutant, Hop1 loads at increased levels and

localizes uniformly along chromosomes. Pch2 may control Hop1

association with chromosome axes via its chromosomal localiza-

tion. Consistent with this idea, in zip1D, a mutant condition that

eliminates Pch2 specifically from chromosome arms, Hop1 and

Red1 load in a continuous pattern along chromosome axes,

reminiscent of patterns observed in pch2D [13,21,33].

Increased numbers of Zip3 foci along pch2D pachytene

chromosomes further identify a function of Pch2 in controlling

association of Zip3 with meiotic chromosome axes. Increased

numbers of Zip3 foci in pch2D may indicate defects in CO

designation, possibly indicating an increase in the number of CO

designation sites with associated inefficiencies to form functional

chiasmata. Notably, Zip3 represents a CO designation marker in

WT. In several mutants exhibiting reduced CO levels and loss of

CO interference, Zip2 foci form with apparently normal numbers

and distribution, indicating that CO designation on the cytological

level can be uncoupled from the execution of CO formation [22].

Chromosome axis defects in pch2D are indicated by increased

numbers of Zip3 foci and a failure to undergo appropriate axis

shortening. Axis shortening, too, may be an outcome of normal

CO designation. Coordinate increases in axis length and number

of CO designation sites as well as loss of interference in pch2D
support a linkage between axis length and CO control. SC length

and CO numbers are closely correlated in many taxa, including

mammals [41,49], consistent with the idea that CO number and

distribution are controlled via the status of the chromosome axis.

In a mutant situation such as pch2D, changes in axis status may

indicate defects in chromosome axis status, with possible effects on

CO placement and/or formation of functional chiasmata.

Pch2 controls crossover interference, but is dispensable
for CO formation

Pch2 suppresses COs in adjacent chromosome regions without

being required for normal CO formation. In pch2D, map distances

tend to be increased when flanking intervals are nonparental, yet

are at WT levels when neighboring intervals are parental. The

major implication of these results is that functions in CO

interference can be separated from those in CO formation. While

Pch2 is required for timely CO formation, COs form at normal

levels in a pch2D mutant, both at a hotspot of recombination and in

the genetic intervals examined here [35,37, this work]. Conversely,

we consider it as unlikely that Pch2 changes the overall

distribution of COs rather than affecting CO interference: An

overall change in CO distribution should change individual map

distances independent of the presence or absence of a CO in an

adjacent interval.

Pch2 further does not exert a general inhibitory effect on

recombination: (i) DSBs form at normal levels in pch2D when

analyzed at a recombination hotspot or by a genome-wide

approach (A. Hochwagen, personal communication; [35,37]). (ii)

Absence of Pch2 does also not compensate for low DSB levels in

hypomorphic spo11 mutants, e.g. by improving spore segregation.

Thus, Pch2 performs a function in CO control without playing a

role in overall CO levels.

While CO levels in pch2D are normal in the intervals examined

here, the number of Zip3 foci is substantially increased. We

interpret this discrepancy as indicating that CO designation is

increased in pch2D, yet does not result in a corresponding increase

in completed COs. At the same time, we cannot exclude that

somewhat different incubation conditions result in actual increases

in CO levels in pch2D. Cytological studies presented here were

performed in liquid medium, but CO levels along the three

chromosomes were determined following sporulation on solid

medium. Such minor differences may have major effects on CO

levels and distribution in pch2D. Notably, an independent study

from the Alani lab observed increased CO levels in pch2D (see

accompanying paper).

Two classes of COs, one that exhibits interference and the other

that does not exhibit interference, have been proposed to

contribute to total CO levels in the WT [e.g., 11,32,50,51].

Accordingly, in certain mutants, CO reduction is accompanied by

defective interference among residual COs [32]. Identification of

pch2D as a mutant that forms COs at normal levels but is defective

for interference suggests that interference is superimposed on basic

recombination pathways, and that it can be eliminated without

loss of COs.

Absence of Pch2 further results in increased levels of gene

conversion. Association of increased gene conversion levels with

parental and non-parental configuration of flanking chromosome

arms suggests that Pch2 affects this process prior to bifurcation of

the CO and NCO pathways. Increased gene conversion without

increases in DSB levels could occur due to an increased length of

heteroduplexes in ongoing recombination interactions and/or

mismatch repair defects in recombination intermediates. Such

defects could be an outcome of spatial changes in axis

juxtaposition, or due to elimination of other factors.

The biological function of interference is presently mysterious.

Several ideas have been put forward to explain this conserved

phenomenon [e.g., 52]: (i) Closely spaced double COs provides

insufficient sister cohesion resulting in chromosome missegregation
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[53]. (ii) Interference is a byproduct of the CO assurance system

[54]. Linkage between defects in interference, loss of CO

assurance and/or normal homolog segregation and reduced spore

viability in most yeast mutants with interference defects has

complicated our understanding of the function of interference

[e.g., 28,32,55,56]. The current study indicates that short range

interference is not required for normal chromosome segregation

and/or the formation of functional gametes. Notably, all intervals

tested along chromosome III exhibit interference defects here, yet

chromosome segregation (including chromosome III) is normal in

pch2D, as suggested by high spore viability patterns. Based on this

finding, we present a model postulating that interference is a

byproduct of the CO assurance system (see below; [54]).

Role of Pch2 in ensuring spore viability at low DSB levels
Full levels of interference appear dispensable for meiotic

chromosome segregation, yet we demonstrate that a mechanism

compensating for reduced DSBs is critical for viable gamete

formation. Segregation of the 16 homolog pairs is mostly normal

during WT meiosis, even when DSBs are reduced to ,20% of

WT levels (in spo11da; this work; [4,29]). By contrast, in a pch2D
background, DSB reduction to ,80% of WT levels (in spo11yf/

spo11-HA), results in catastrophic reduction of spore viability,

identifying essential functions for mechanisms that compensate for

reduced DSBs during yeast meiosis.

In a pch2D mutant hypomorphic for spo11, two- and zero viable

spore tetrads are highly abundant, a pattern suggestive of defects

in homolog disjunction. Such defects are frequently attributed to a

failure of homolog pairs to acquire sufficient COs for homolog

disjunction. Our analysis of CO levels at the HIS4LEU2

recombination hotspot does not provide evidence for substantial

CO defects in pch2D at reduced DSB levels. CO levels at

HIS4LEU2 may not be representative for genome-wide CO levels

in pch2Dspo11da. Notably, unlike other genome regions, HI-

S4LEU2 does not exhibit CO homeostasis [29]. Alternatively, COs

may form efficiently along the entire genome in pch2Dspo11da, but

fail to undergo appropriate chiasma maturation. Such defects

could affect intersister connections near crossovers resulting in a

failure to maintain cohesion along chromosome arms until onset of

anaphase. Severe defects in spore viability despite substantial CO

formation have also been demonstrated for pch2Drad17D double

mutants, and may be related to the results reported here [35].

Importantly, results presented here define a Pch2-dependent

mechanism that assures homolog segregation at reduced DSB

levels. In yeast, on average.five COs/chiasmata form per

homolog pair (90 COs distributed among 16 homolog pairs).

Accordingly, stabilizing functions in homolog segregation and/or

CO assurance may only manifest themselves when initiating DSBs

are reduced. In organisms with lower wild-type COs levels, similar

defects in chiasma function may result in homolog nondisjunction

at normal DSB levels due to a failure to acquire sufficient COs

(e.g. the XY pair in mammals [47]).

Dependence of the pch2D phenotype on incubation
conditions and implications

Unexpectedly, pch2D defects in CO interference and in spore

viability at reduced DSB levels are partially rescued under certain

conditions. For example, at 33uC, despite loss of most short range

CO interference, some long-range interference (.100 kb) is

retained. Furthermore, at 30uC, pch2D is mostly proficient for

interference, yet reduced DSB levels result in formation of inviable

spores. Pch2 appears to stabilize CO control and spore viability

over a wide range of conditions, including different temperatures

and low DSB levels. In the absence of Pch2, a temperature

decrease of only 3uC results in catastrophic chromosome

missegregation, with no comparable effects in WT highlighting

the necessity of Pch2-mediated stabilization of CO control.

Oppositely stabilizing and destabilizing effects of temperature on

interference and viable spore formation are consistent with the

idea that interference and homolog disjunction assuring chiasma

formation are the outcome of two antagonistically-acting path-

ways. Thus, these functions are separable based on their different

dependence on incubation temperature. One explanation is that

temperature oppositely modulates two chromosome components,

e.g. chromosome axes and chromatin fiber (see below).

We infer the existence in the absence of Pch2 of one or several

default systems that provide partially functional CO control and/

or mechanisms for maintaining high levels of spore viability.

Backup systems for CO control may e.g. utilize basic organiza-

tional features shared with mitotic chromosomes. Roles in CO

control of general structural chromosome components have been

demonstrated in C. elegans [57].

We note that Pch2-independent backup systems appear to

function independent of a properly structured chromosome axis:

Incubation conditions modulate pch2D defects in crossover

placement and spore viability/chromosome segregation, but not

chromosome axis defects. More uniform Hop1 association in

pch2D occurs over a wide range of conditions, at 33uC and 23uC,

and is also evident at 30uC in a different strain background [33].

Drastically different defects in interference and CO homeostasis

are observed under the respective conditions (this work; [37]).

Together, these data indicate that uniform Hop1 association with

chromosome axes is a consequence, not a cause of the initial CO

control defect.

Functions of Pch2 in WT and mutant meiosis
The current work identifies functions of Pch2 during WT

meiosis in chromosome morphogenesis, CO placement and spore

viability/homolog segregation when DSBs are reduced. In C.

elegans and Drosophila, Pch2 prevents meiotic progression in mutant

meiosis when chromosomal events independent of recombination

initiation are defective. No role of Pch2 in WT meiosis has been

detected in these organisms [34,38]. In mouse WT meiosis, Pch2 is

required for efficient completion of recombination, but no role in

mutant meiosis as a checkpoint is apparent [36]. Accordingly,

Pch2 has been described as a checkpoint or a factor required for

normal meiotic progression.

Pch2 modulates axis status, recombination progression and SC

morphogenesis [37, this work]. Thus, Pch2 affects all processes in

WT meiosis that it is proposed to monitor as a checkpoint during

mutant conditions. We propose that control of chromosome axis

status constitutes Pch2’s primary function, with secondary effects

on recombination progression, CO placement and homolog

segregation. Accordingly, changes in axis status may result in

destabilized homolog juxtaposition, with downstream effects such

as delayed double Holliday junction turnover, delayed CO/NCO

formation and aberrantly high levels of non-Mendelian segrega-

tion events [37, this work]. pch2D induced changes in axis status

would likely also affect axis-associated processes under mutant

conditions, with possible consequences for checkpoint activation.

Modulation of underlying defects rather than compromised

monitoring represents an attractive explanation for diverse Pch2

functions in mutant and WT meiosis. Alternatively, Pch2 may

perform unrelated functions in meiotic cell cycle control, CO

placement and gamete viability.

We note that in yeast, pch2D defects in WT meiosis are relatively

subtle, and detectable only under certain conditions (see above).

Corresponding defects in other organisms may also be difficult to
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detect and/or become manifest only under certain conditions.

Consistent with this idea, in Drosophila, a synergistic effect of pch2D
on CO levels has recently been demonstrated in combination with

another mutant [38].

Model: Pch2 as a one-crossover domain size determinant
One key outcome of the current study is that Pch2 appears to

suppress or enhance formation of functional chiasmata at normal

or reduced DSB levels, respectively. Here, we propose a model

integrating these apparently opposing functions of Pch2. Pch2 is

proposed to reorganize chromosome axes into long range CO

control modules, hereafter referred to as ‘One Crossover Modules’

(OCMs). Key features of OCMs include assurance to undergo one

CO, and suppression of additional COs within the same module.

Modules are proposed to tile each bivalent, resulting in formation

of as many COs as OCMs.

Pch2-mediated CO control is proposed to occur in two-steps: (i)

bivalents become organized into a tiling array of OCMs. (ii) CO

designation and interference occur. Cytologically, each OCM

would correspond to a centrally localized Zip3 focus with

associated Hop1 hyperabundance domain extending to both sides

into Hop1-poor regions, reflecting the reach of interference. Pch2

is proposed to function as a determinant for OCM installation.

The stress hypothesis of CO control provides a mechanistic

explanation of how chiasma assurance/maturation and interfer-

ence might be linked along each OCM [27,54]. We propose that

each OCM constitutes an independent stress module. Stress and

stress relief along the axis are hypothesized to mediate crossover

designation and interference, respectively. Specifically, compres-

sion stress along the axis would result in localized axis deformation

with two important consequences, stress relief and CO designa-

tion. Stress relief prevents additional axis deformation events along

each OCM, effectively establishing interference.

By setting a module for stress transmission, Pch2 would promote

CO progression of a DSB proximal to the deformed axis segment,

and coordinately prevent additional DSBs from undergoing the

same fate. OCMs may become installed de novo, or, more likely, be

specified via modification of preexisting chromosome features.

Available data are easily integrated with this model: Pch2

associates with chromosome axes during the early zygotene stage.

At the same stage, CO/NCO differentiation is finalized, axis

domains associated with future COs appear, and the interference

distribution of Zip2/Zip3 becomes established [9,11,22]. Pro-

grammed axis deformation at CO sites associated with stress relief

and CO designation could further contribute to axis shortening.

When defective, this may result in aberrantly long axes (this work).

Moreover, axis deformation may promote assembly of Red1/

Hop1 and Zip3 at CO-designated sites, with aberrant CO

designation/axis deformation resulting in uniform Hop1 axis

association.

Default modules that provide some CO control in pch2D may

result in suboptimal CO designation, aberrant CO positioning, or

increased sensitivity to incubation conditions. Such effects may be

particularly detrimental when DSBs are limiting. Under such

conditions, DSBs normally ensured to become COs may now fail

to induce steps in chromosome morphogenesis associated with

normal chiasma formation.

Control of CO numbers via one-crossover modules provides an

attractive way how recombination frequencies can be controlled in

different organisms and even different sexes. Accordingly, in C.

elegans, each chromosome would be organized as a single module,

while in e.g. mouse, there would be one or two OCMs per

homolog pair. In many species, CO levels between males and

females differ for identical homolog pairs. Setting differently sized

OCMs represent an attractive way to control CO levels in a

chromosome-wide manner. Levels and distribution of COs are

dramatically modulated by temperature and other environmental

factors in many eukaryotes (e.g., [58]). Such sensitivity along WT

chromosomes may be related to the mutant sensitivities revealed

by the current work.

Concluding remarks
In summary, we have demonstrated here that chromosome axes

undergo programmed changes in their global structure that

strikingly parallel the non-random positioning of chiasmata during

meiosis. Unlike other cases of cytologically detectable chromosome

domain organization, including heterochromatin assembly, such

domainal organization is determined individually for each cell, in

accordance with non-random meiotic crossover distribution. Close

functional and temporal coordination between assured crossover

formation and chromosome domain organization identify poten-

tial functions for chromosome axis status in faithful meiotic

homolog segregation.

Materials and Methods

Yeast strains
Strains were of the SK1 background (Table S5). Markers were

introduced by transformation or crossing and were verified by

Southern blot. N-terminally HA-tagged PCH2 was transferred from

the BR strain background [33] by insertion of the URA3 marker

300 bp upstream of PCH2 followed by PCR amplification of the

tagged construct including the marker and transformation into SK1

(strain gift from A. Hochwagen). In the resulting strain, the 36HA-

tag encoding sequence is flanked by 15 and 14 polylinker-encoded

amino acids, respectively (N.J., unpublished data).

Tetrad analysis of recombination on chromosomes III, VII,
and VIII

Haploids mated overnight on supplemented YPD were

transferred to identical batches of sporulation medium (0.5%

potassium acetate, 0.02% raffinose) and incubated at 33uC or

30uC for 72 hrs. Asci were incubated with zymolyase, dissected on

supplemented YPD and replica-printed to appropriate media to

determine marker status. Tetrads exhibiting non-Mendelian

segregation of $5 markers were assumed to be false tetrads and

omitted from further analysis. For calculations of map distances

and NPD frequencies, see text. Standard error calculations were

performed using the Stahl Lab Online Tools. Tetrads with non-

Mendelian segregation for either marker of an interval were

omitted for calculations for that interval. Chi square values were

used to calculate P-values using the Vassar College webpage.

Immunocytology, focus scoring, and statistical analysis
Time courses and meiotic spreads were prepared and

immunostained as described [11]. Chromatin was stained using

DAPI. Hop1 and Zip1 were stained with rabbit anti-Hop1 (F.

Klein) and rabbit anti-Zip1 (S. Keeney) antibodies at 1:300 to

1:1000, except for nuclei shown in Figure 4Q–4V in which mouse

anti-Zip1 antibody (P. Moens) was used at 1:500 dilution. GFP-

and HA fusion proteins were detected with goat anti-GFP

(Rockland) at 1:400 or mouse anti-HA (Covance) antibodies at

1:1000 dilution, followed by incubation secondary antibodies

conjugated to Alexa 488-, Alexa 594-, or Alexa 680 (Molecular

Probes) at 1:2500 dilution. All antibodies were tested for epitope

specificity using appropriate deletion/untagged strains. Images

were captured by a computer-assisted fluorescence microscope

system (DeltaVision, Applied Precision). The objective lens was an
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oil-immersion lens (1006, NA = 1.35). Image deconvolution was

carried out using an image workstation (SoftWorks; Applied

Precision). In double staining experiments, real colocalization was

scored by counting the number of overlapping foci in composite

images. Fortuitous colocalization was evaluated by the misorien-

tation method where one of the two images is rotated by 180u,
ensuring maximum nucleus overlap, and colocalization is

determined by counting the number of overlapping foci [59].

ImageJ was used for processing and quantitative analysis of

images saved as 16bit TIFF files in SoftWorks. To analyze Hop1

distribution patterns, threshold levels were visually adjusted to

maximize signal detection within the DAPI staining area, followed

by measurements of the Hop1 positive area and the mean signal

intensities at above background levels. Subsequently, threshold

levels were set to the mean signal intensity for each image, and a

mask was generated for the Hop1 positive signals exhibitin-

g$average signal intensities. Masks were transferred into Micro-

Measure to determine the number and maximum lengths of

individual Hop1 signals (below). Total SC length in WT and pch2D
strains were measured by a ‘‘blind’’ observer, using MicroMea-

sure. MStat 5.1 was used for data plotting and statistical analysis.

Web resources
Rasband, WS, ImageJ, U. S. National Institutes of Health,

Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997–

2008

Drinkwater N Mstat Statistical Software: http://mcardle.

oncology.wisc.edu/mstat/

Stahl Lab Online Tools: http://www.molbio.uoregon.edu/

,fstahl/

MicroMeasure, version 3.3: (http://www.colostate.edu/Depts/

Biology/MicroMeasure

Supporting Information

Figure S1 Meiotic events in a synchronized time course

expressing HA-Pch2. Stages of cells were determined in spread

nuclei based on staining with an antibody against Zip1. Zip1-

staining was classified as unstained nuclei (presumably corre-

sponding to pre-leptotene or post-pachytene cells), leptonema

(foci), zygonema (foci plus short lines) or pachynema (mostly lines

with little or no foci). Nuclear divisions are determined in DAPI-

stained samples from the same time course, $2 indicates

completion of meiosis I and/or II.

Found at: doi:10.1371/journal.pgen.1000557.s001 (0.37 MB EPS)

Figure S2 Hop1 domains in PCH2ndt80D and pch2Dndt80D. (A)

Mean pixel intensities of Hop1 signals were determined by image

quantitation in ImageJ, following threshold adjustment for

maximum signal detection. Intensities are given in arbitrary units

(AU). p,0.0001 (B) Number of Hop1 domains exhibiting at or

above average intensity. Note that this analysis omits weaker Hop1

positive chromosome regions included in the WT analysis. (C)

Length measurements of individual Hop1 signals detected in 20

PCH2ndt80D (grey) and 20 pch2Dndt80D (red) nuclei, respectively,

ordered by size. Each dot corresponds to a structure measured:

745 Hop1 signals were measured in PCH2ndt80D and 531 Hop1

signals in pch2Dndt80D. Average length of Hop1 structures is

0.73 mm (60.02 mm S.E.) and 1.44 mm (60.05 mm S.E.) in

PCH2ndt80D and pch2Dndt80D, respectively (p,0.0001). All signal

intensities in the examined nuclei are within the linear range of

detection. p-values were determined using the two-sided Wilcoxon

rank sum test in MStat. Error bars represent 95% confidence

intervals (61.96*SE).

Found at: doi:10.1371/journal.pgen.1000557.s002 (0.73 MB EPS)

Figure S3 Number of COs per chromosome in WT and pch2D
at 33uC. No increase in tetrads exhibiting zero COs is observed.

Goodness of fit tests for pch2D versus WT give P-values of ,0.0001

(chromosome III), 0.0016 (chromosome VII), and 0.2328

(chromosome VIII). Significant deviations from the WT along

chromosomes III and VII are likely due to increase of tetrads with

three or more COs per chromosome in pch2D. Numbers of COs

per tetrad for a given chromosome were determined by sorting

printed versions of the tetrads according to the number of COs.

Significance for the tetrad classes exhibiting zero, one, two, and

three COs was determined using the Vassar statistics website (see

Materials and Methods).

Found at: doi:10.1371/journal.pgen.1000557.s003 (0.71 MB TIF)

Figure S4 Crossovers and noncrossovers on chromosome arms

carrying non-Mendelian segregation/gene conversion events in

WT and pch2D at 33uC. Internal markers exhibiting gene

conversions were selected and flanking intervals were categorized

as parental, recombinant, or non-Mendelian.

Found at: doi:10.1371/journal.pgen.1000557.s004 (0.58 MB TIF)

Figure S5 Genetic map distances in WT and pch2D at 30uC.

Genetic distances determined for intervals 1–9 (see Figure 5A).

Contributions of tetratypes (TT) and nonparental ditypes (NPD) to

map distances are indicated in different shades. Error bars

represent standard errors (see Table S4 for numbers of valid

tetrads for each interval). No significant differences between map

distances in WT and pch2D strains were detected.

Found at: doi:10.1371/journal.pgen.1000557.s005 (0.58 MB TIF)

Table S1 Crossover interference on three chromosomes in wild-

type and pch2D at 33uC and 30uC.

Found at: doi:10.1371/journal.pgen.1000557.s006 (1.09 MB PDF)

Table S2 Non-Mendelian segregation in WT and pch2D tetrads

at 33uC and 30uC.

Found at: doi:10.1371/journal.pgen.1000557.s007 (1.05 MB PDF)

Table S3 Spore viabilities in WT and pch2D strains carrying

spo11 hypomorphic mutations.

Found at: doi:10.1371/journal.pgen.1000557.s008 (1.05 MB PDF)

Table S4 Effects of pch2D at 30uC on genetic distances and

crossover interference in intervals along three chromosomes.

Found at: doi:10.1371/journal.pgen.1000557.s009 (0.06 MB

DOC)

Table S5 S. cerevisiae strains used in this study.

Found at: doi:10.1371/journal.pgen.1000557.s010 (0.04 MB

DOC)
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