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The tremendous variety of morphologies among microorgan-
isms may allow them to thwart ingestion by the amoeboid cells 
that patrol pond water and the tissues of animals. Indeed, fila-
ment formation by bacteria can limit uptake by phagocytes 
(Justice et al., 2008). In this issue, Prashar et al. provide mecha-
nistic support for the concept that a filamentous morphology  
allows bacteria to resist death by phagocytosis.

In the normal sequence of events in phagocytosis, outlined 
in the late nineteenth century and refined by 130 years of mi-
croscopy and cell biology, phagocytic cells such as macro-
phages engage particles by receptor-mediated binding to ligands 
on microbe surfaces. Receptor signaling leads to the formation 
of actin-rich, cup-shaped extensions of the cell surface, which 
enclose particles into membrane-bound intracellular organelles 
(Swanson, 2008). These phagosomes then mature by progressive 
fusion with other membranous compartments in the cell, includ-
ing secretory granules, endosomes, and lysosomes (Flannagan  
et al., 2009). The mixing of phagosomal and lysosomal contents 
kills ingested microbes by delivering them into an acidic, hy-
drolase-rich environment. Ingestion, maturation, and killing 
have long been considered sequential, nonoverlapping activities.

But to be a useful hunting tool or a robust arm of host de-
fense, phagocytosis must overcome microbes in all their vari-
ous microscopic forms (Fig. 1). To ask how the framework for 
killing by phagocytosis is altered when a macrophage engages 
an elongate object, Prashar et al. (2013) examined phagocyto-
sis of filamentous bacteria, which begins after macrophage ex-
ploratory movements locate a free filament end (Möller et al., 
2012). Once engaged, the macrophage constructed an elon-
gated tubular phagocytic cup comprised of a sleeve of plasma 
membrane with an actin-rich cuff, which pulled the filament 
into the cell as if sucking in a long spaghetti noodle. The cup 
membrane remained contiguous with the plasma membrane 
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until it reached the distal end of the filament, at which point the 
cup closed into a discrete phagosome inside the cell. Earlier 
fluorescence microscopy of phagocytosis by macrophages and 
by Dictyostelium discoideum amebae had shown that membrane 
phospholipid and protein profiles change even before a phago-
cytic cup closes into the cell (Botelho et al., 2000; Dormann  
et al., 2004; Mercanti et al., 2006; Golebiewska et al., 2011). 
Prashar et al. (2013) identified similar lateral heterogeneity in 
membrane organization. Remarkably, fusion with early endo-
somes, late endosomes, and lysosomes began before filaments 
were fully internalized into the cell, such that the various stages 
of phagosome maturation were arranged along the length of the 
tubular phagocytic cups. This extends the earlier studies by 
showing that the mechanisms which maintain distinct organ-
elle identities do not require organelles to be physically sepa-
rate from each other inside the cell.

The delayed closure of elongated phagocytic cups com-
promised macrophage antimicrobial activities. The actin cuff 
around the filament formed a tight ring that could limit egress of 
large dextrans delivered into the phagocytic cup from lysosomes. 
Nonetheless, while the phagocytic cup membranes remained 
contiguous with the plasma membrane, protons and lysosomal 
enzymes leaked out. Complete cup closure was required for 
phagosome acidification and the full degradative capacity of 
macrophage defenses. This suggests that adopting a filamentous 
morphology allows bacteria to lessen the toxicity of microbici-
dal compounds delivered into the phagosome. Consistent with 
this idea, Prashar et al. (2013) determined that the survival and 
growth of Legionella pneumophila in macrophages correlated 
with filament length.

Studies of phagocytosis are undoubtedly important for 
understanding host defense against infections, but they also pro-
vide a vantage point for asking how cells organize cytoplasm 
for the complexities of microscopic life. Fc receptor–mediated 
phagocytosis of particles coated with IgG proceeds by a zipper-
like mechanism, in which the patterns of IgG ligands on a parti-
cle surface guide the distribution of phagocyte signaling that 
shapes a phagosome (Swanson and Baer, 1995). This localized 
signaling is modulated by feedback regulation related to the 
physical properties of the particle. For example, macrophages 
presented with long, rod-shaped particles coated with IgG re-
spond differently depending on the orientation of their initial 
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showing that PI3K-dependent regulation of phagocytosis is spa-
tial rather than temporal. The 3 phosphoinositide products of 
PI3K may be part of a system for gauging the three-dimensional 
distribution of phagocytic receptor signaling, a mechanism of 
spatial integration that regulates cellular commitment to phago-
cytosis (Zhang et al., 2010). In the battles with the exotic geom-
etries of microbial life, it may be necessary for a phagocyte to 
decide whether a particle is small enough to eat or should instead 
be held outside and engaged as extracellular prey. Accordingly, 
the narrow end of a filament presents a stimulus that is below 
the size threshold for PI3K-dependent regulation, so the macro-
phage begins slurping it in, with a considerable amount of lyso-
somal spittle dribbling out.
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contact with those particles. Particles contacted end-on are read-
ily ingested, but particles contacted along their long face are not 
(Champion and Mitragotri, 2006). This regulation of Fc recep-
tor signaling by surface topology could explain why macrophages 
ingest filaments only after locating a filament end. But it is a 
puzzling observation, not least because a macrophage will engage 
a planar surface coated with IgG as if to engulf it—a response 
termed “frustrated phagocytosis” (Wright and Silverstein, 1984). 
Why should phagocytosis proceed on an impossibly large pla-
nar surface but not against the side of a rod-shaped particle?  
Although still unresolved, these fascinating questions about 
shape-sensing in phagocytosis have been addressed by recent theo-
retical and experimental studies (Clarke et al., 2010; Dieckmann 
et al., 2010; Tollis et al., 2010).

Another puzzling relationship between Fc receptor signal-
ing and the physical dimensions of the prey concerns the role of 
phosphatidylinositol 3-kinase (PI3K) in phagocytosis. PI3K is 
required for phagocytosis of microspheres larger than 3 µm in 
diameter, but not for phagocytosis of smaller microspheres (Araki 
et al., 1996; Cox et al., 1999). This suggests that phagocytosis is 
regulated by a PI3K-dependent feedback related to particle size. 
How does that work? It could be that PI3K relieves a feedback 
inhibition of Fc receptor signaling that begins only after some 
delay, such that it becomes rate-limiting only for the phagocyto-
sis of larger particles that take more time to ingest. Prashar et al. 
(2013) excluded that possibility by examining the effects of PI3K 
inhibition on the phagocytosis of filaments. In the presence of 
the PI3K inhibitor LY294002, phagocytosis of IgG-opsonized 
sheep erythrocytes was inhibited but the phagocytosis of fila-
ments was not. This suggests that formation of the narrow aper-
ture for sucking in a noodle occurs below the PI3K-dependent 
size threshold. Moreover, once a phagocytic response was initi-
ated, it continued for as long as necessary to ingest the filament, 

Figure 1. Extreme phagocytosis. H.S. Jennings’ account (Jennings, 
1976) of observations by Rhumbler in 1898: “Ameba verrucosa coiling 
up and ingesting a filament of Oscillaria. The animal settles upon the 
middle of an Oscillaria filament, envelopes it, and lengthens out along it 
(a). Then one end bends over (b), so that a loop is formed in the filament 
(c). The amoeba then stretches out on the filament again, bends it over 
anew, and the process is repeated until the filament forms a close coil 
within the amoeba (c to g).”
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