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Liver regeneration is a tissue growth process after loss or injury of liver tissue, which is a compensatory hyperplasia rather than
true regeneration, mainly depending on hepatocyte proliferation. Currently, a large number of studies on hepatocyte proliferation
have been conducted. However, studies on the regulation of long noncoding RNA (lncRNA) on hepatocyte proliferation are still
limited. To identify specially expressed lncRNA during rat liver regeneration, high-throughput sequencing technology was
performed, and a total of 2446 lncRNAs and 4091 mRNAs were identified as significantly differentially expressed. Gene ontology
(GO) enrichment analysis was performed to analyze the role of differentially expressed mRNAs, and 695 mRNAs were identified
to be related to cell proliferation. -en, an lncRNA-mRNA coexpression network based on the differentially expressed lncRNAs
and proliferation-related genes was constructed to analyze the potential function of lncRNAs on hepatocyte proliferation, and ten
lncRNAs, NONRATT003557.2, NONRATT005357.2, NONRATT003292.2, NONRATT001466.2, NONRATT003289.2, NON-
RATT001047.2, NONRATT005180.2, NONRATT004419.2, NONRATT005336.2, and NONRATT005335.2, were selected as key
regulatory factors, which may play crucial roles in hepatocyte proliferation during rat liver regeneration. Finally, a protein-protein
interaction (PPI) network was established to illuminate the interaction between proliferation-related genes, and ten hub genes
(Aurkb, Cdk1, Cdc20, Bub1b, Mad2l1, Kif11, Prc1, Ccna2, Top2a, and Ccnb1) were screened with the MCC method in the PPI
network, which may be important biomarkers involved in the hepatocyte proliferation during rat liver regeneration. -ese results
may provide clues for a more comprehensive understanding of the molecular mechanism of hepatocyte proliferation during rat
liver regeneration.

1. Introduction

-e vast majority of the eukaryotic genomes are transcribed
into noncoding RNAs, which can be divided into small
noncoding RNAs (<200 bp) and long noncoding RNAs
(lncRNAs; ≥200 nt) based on transcript size [1]. lncRNAs
can be divided into five categories: sense, antisense, bi-
directional, intronic, and intergenic [2]. Initially, lncRNAs
were considered to be “dark matter,” as byproduct of
transcription of RNA polymerase II, with no biological
function. In the past 20 years, genome-wide identification
of lncRNAs has become possible with the development of

high-throughput technology of RNA-seq, many of which
are involved in various biological functions [3]. Increasing
lncRNAs have been found to play a critical role in bi-
ological processes, like development [4], gene transcrip-
tional regulation [5], chromatin regulation [6], epithelial-
to-mesenchymal transition (EMT) [7], and cell pro-
liferation [8].

In rodents and humans, the liver can grow rapidly after
partial hepatectomy (PH) or acute chemical injury. -is
growth process is known as LR, which is a compensatory
hyperplasia rather than true regeneration [9]. During LR,
quiescent hepatocytes undergo one or two rounds of
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replication and then return to a nonproliferative state [10].
-is process is very complex and regulated by a variety of
growth factors, cytokines and noncoding RNAs [11, 12].
-erefore, the study of the molecular mechanism of hepa-
tocyte proliferation is crucially important to understand the
process of LR and provide clues for the treatment of liver
diseases. Several recent studies have shown that lncRNAs
play a critical role in hepatocyte proliferation [12–14].
However, the study of hepatocyte proliferation during LR is
still largely unknown.

In the present study, high-throughput sequencing
technology was used to identify DE lncRNAs and mRNAs
during rat LR. -en, functional enrichment analysis of
DE mRNAs was performed to screen proliferation-re-
lated genes. Finally, the lncRNA-mRNA coexpression
network and PPI network were constructed based on DE
lncRNAs and proliferation-related genes to elucidate the
molecular mechanism of hepatocyte proliferation during
LR. -ese results lay a foundation for understanding the
regulatory function of lncRNAs on hepatocyte pro-
liferation and provide an important clue for the study of
the LR process.

2. Materials and Methods

2.1. Preparation of 2/3 Hepatectomy Model. -e healthy
adult male Sprague Dawley (SD) rats weighing 210∼250 g
were provided by the Laboratory Animal Center of
Zhengzhou University (Zhengzhou, China). -ese rats
were raised in a controlled temperature room of 19∼23°C
with a relative humidity of 50∼70% and an illumination
time of 12 h/d (8 : 00 to 20 : 00) and permitted to freely have
water and food. A total of 60 rats were taken for the ex-
periment with six rats per group: nine PH groups and one
normal group (CG). -e rats in PH groups were conducted
2/3 PH according to the method of Xu et al. -e rats were
anesthetized and condemned to death at 0, 2, 6, 12, 24, 30,
36, 72, 120, and 168 h after operation. -e right liver lobes
of six rats were mixed at each time point and stored at
− 80°C. All operations conformed to the Animal Protection
Law of China and Animal Ethics.

2.2. RNA Sequencing. RNA sequencing was performed by
the Shanghai OE Biotech (Shanghai, China). In brief, the
mirVana miRNA Isolation Kit (Ambion) was used to extract
the total RNA from liver tissues. -e TruSeq Stranded Total
RNA with Ribo-Zero Gold (Illumina) was used to construct
cDNA libraries.-e purified cDNA libraries were sequenced
on Illumina HiSeq 2500 following the manufacturer’s in-
struction. After filtrating the adaptor and low-quality reads,
clean reads were obtained for subsequent analysis. -e reads
were matched to the rat reference genome using the hisat2
(v2.2.1.0) software. -e StringTie2 (v1.3.3b) software was
used to splice the aligned reads. lncRNA identification in-
cluded two categories: one is known lncRNA, which com-
pletely matches with the known lncRNAs, and the other is
candidate lncRNA lacking protein-coding ability, whose
length is greater than 200 bp and exon is greater than or

equal to 2. -e software CPC (v0.9-r2), CNCI (v1.0), Pfam
(v30), and PLEK (v1.2) were used to predict the protein-
coding ability of transcripts. -e expression of transcription
was calculated by the fragments per kilobase of exon per
million reads mapped (FPKM) method using the bowtie2
(v2.2.9) and eXpress (v1.5.1) software.

2.3. Identification of Differentially Expressed lncRNAs. -e
counts of lncRNAs in each sample were standardized by the
baseMean value using the DESeq (1.18.0) software. Differ-
entially expressed (DE) lncRNAs were identified with fold
change ≥2 or ≤0.5 and p< 0.05 as the threshold. All DE
lncRNAs in nine PH groups underwent hierarchical clus-
tering analysis using the cluster3.0 and treeview software.

2.4. GO Enrichment Analysis. Gene ontology (GO) enrich-
ment analysis of the DE mRNAs was conducted using David
Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/).
-e enrichment analysis consisted of three parts: biological
process (BP), molecular function (MF), and cellular com-
ponent (CC). p< 0.05 is considered statistically significant,
which was calculated by the EASE score.

2.5. lncRNA-mRNA Coexpression Analysis. To explore the
relationship between DE lncRNAs and proliferation-related
genes, a coexpression analysis was performed. Pearson’s
correlation coefficients (PCCs) were calculated between the
DE lncRNAs and the proliferation-related genes, and only
lncRNA-mRNA pairs with PCC ≥0.8 and p≤ 0.05 were
selected and considered as coexpression. -en, these
lncRNA-mRNA pairs were used to construct a coexpression
network, which was visualized by the Cytoscape v3.6.1
software. -e node degree was determined by the number of
directly connected neighbors to the topological property of
the network.

2.6. Construction of PPI Network and Screening of the Key
Gene. To illustrate interactions between proliferation-related
DE mRNAs, the string database (https://string-db.org/) was
used to construct a protein-protein interaction (PPI) network.
Only the interacting pairs with combined score ≥0.4 were
selected and considered to be significant. -e PPI network
was visualized by using the Cytoscape v3.6.1 software. -en, a
Cytoscape plugin cytoHubba was used to identify the key
genes adopting the MCC method.

2.7. RT-PCR Validation. RNA-seq results were validated by
RT-PCR, and the primers are listed in Table 1. cDNA was
synthesized using the cDNA Reverse Transcription Kit
(Takara, Tokyo, Japan). -e qRT-PCR was performed using
Q-SYBR Green Supermix (Bio-Rad). Primers were also
designed to amplify β-actin as an endogenous control. -e
expression of each lncRNA was represented as fold change
using 2− ΔΔCt methods.
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3. Results

3.1. Sequencing and Identification of lncRNAs during Rat LR.
To identify the expression of lncRNAs during rat LR, 10
cDNA libraries were constructed from the regeneration rat
liver at different time points after surgery. -e Illumina
HiSeq X Ten platform was used to sequence these cDNA
libraries, and a total of 1116M raw reads were produced.
After filtering adaptor sequences and low-quality reads,
1084.09M clean reads were obtained.-e percentage of clean
reads varied from 90.73 to 95.29%, and the percentage of GC
content varied from 48.77 to 51.08% in each library. Ap-
proximately 95.91–97.83% of clean reads were selected for
further research after mapping the clean reads to the rat
reference genome (Table 2).

3.2. Identification of DE lncRNAs and DE mRNAs. -e ex-
pression abundance of the lncRNAs was evaluated by FPKM

(fragments per kB per million reads) using DESeq. A total of
2446 lncRNAs were determined to be differentially
expressed during rat LR, with 1120 upregulated, 731
downregulated, and 595 up/downregulated lncRNAs
(Figure 1(a) and Table S1). To explore the similarity of gene
expression, hierarchical clustering was adopted to analyze
the expression of DE lncRNAs (Figure 2(a)). To further
explore the interactions of DE lncRNAs at different stages:
initial stage (2–6 h), proliferation stage (12–72 h), and ter-
mination stage (120–168 h), a Venn diagram was con-
structed using these DE lncRNAs (Figure 2(c)). Among
them, 272 DE lncRNAs were common to all three stages.

-rough high-throughput RNA-seq, the expression
profile of 28635 mRNAs was measured. Among them, 4091
mRNAs were found to be differentially expressed, of which
2,256 were upregulated, 1,686 were downregulated, and 149
were up/downregulated (Figure 1(b) and Table S2). Hier-
archical clustering was employed to analyze the expression

Table 1: Primer sequence.

Gene name Sense primer Antisense primer Product length
NONRATT003289.2 AATGCCAGGCCATGCTAAGGAC GCTCTGCCAGGTGACTGCTTC 180
NONRATT001466.2 TCTGCTGTTGACATTGGCGAAGG CTAGCATGTGAGAGGTGACGTGAC 189
NONRATT004419.2 AGCCTCCTGAGTCCTGGAATTCTG GTGAGTCGTGAGTGAGCTGAAGTG 133
NONRATT005336.2 AAGCTCAACACTGCCTGAGTCTTC GCATGAGCCTTGGAGGACATCTG 112

Table 2: Overview of RNA-seq.

Sample raw_reads raw_bases clean_reads clean_bases valid_bases (%) GC (%) Mapped reads
0 h 119.65M 17.95G 115.99M 17.05G 94.99 50.92 111716504 (96.32%)
2 h 120.14M 18.02G 116.69M 17.17G 95.25 50.57 113657852 (97.40%)
6 h 119.57M 17.94G 116.13M 17.09G 95.29 50.26 113238482 (97.51%)
12 h 119.91M 17.99G 117.68M 16.68G 92.75 49.88 114912884 (97.65%)
24 h 119.27M 17.89G 117.28M 16.23G 90.73 48.77 114629815 (97.74%)
30 h 88.95M 13.34G 85.96M 12.64G 94.74 50.29 83564746 (97.21%)
36 h 120.15M 18.02G 116.44M 17.16G 95.22 50.62 113908105 (97.83%)
72 h 91.48M 13.72G 88.07M 12.9G 93.98 51.08 86032773 (97.68%)
120 h 120.82M 18.12G 116.34M 17.12G 94.47 50.97 112635056 (96.82%)
168 h 96.06M 14.41G 93.51M 13.73G 95.28 50.71 89681397 (95.91%)
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Figure 1: Number of DE lncRNAs and DE mRNAs at different time points during rat LR. (a) Number of upregulated and downregulated
lncRNAs at nine time points. (b) Number of upregulated and downregulated mRNAs at nine time points.
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Figure 2: Analyses of DE lncRNAs in the RNA-seq libraries. (a) Hierarchical clustering analysis of DE lncRNAs at nine time points of rat
LR. (b) Hierarchical clustering analysis of DE mRNAs at nine time points of rat LR. (c) Venn diagram showing the DE lncRNAs at three
stages of rat LR. (d) Venn diagram showing the DE mRNAs at three stages of rat LR.
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Figure 3: GO enrichment analysis of the DEmRNAs. (a)-e top 30 significant GO terms in GO enrichment analysis at p value <0.05. Green
represents biological processes, red represents cellular components, and blue represents molecular functions. (b) GO terms associated with
cell proliferation at the biological process level.
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similarity of DE mRNAs (Figure 2(b)). Venn analysis was
conducted to explore the differences of DE mRNAs at
different stages (Figure 2(d)).

3.3. GO and KEGG Enrichment Analysis. GO enrichment
analysis was employed to determine the function of
deregulated genes during rat LR, and 689 significant GO
terms (451 under BP, 116 under CC, and 122 under MF)
were enriched. -e top 30 GO terms of the three groups are
listed in Figure 3(a) (Table S3). -e most enriched BP terms
were response to drug, cell division, and chromosome
segregation. As for CC, the most enriched terms were

cytoplasm, nucleus, and nucleoplasm. -e most enriched
MF terms were related to binding activity. Of these BP terms,
41 were associated with cell proliferation involving 695
mRNAs, corresponding to 585 genes (Figure 3(b) and
Table S3).

3.4. Coexpression Network Construction Based on DE lncRNAs
and Proliferation-Related DE mRNAs. -e coexpression
analysis of the screened proliferation-related DE mRNAs
and DE lncRNAs found 18343 significant coexpression
pairs, of which 17547 pairs were positively correlated
(PCC≥ 0.8) and 796 pairs were negatively correlated
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Figure 4:-e top 10 lncRNAs and their interaction mRNAs. V and ellipse represent lncRNAs and mRNAs, respectively. Upregulated genes
are labeled in red, downregulated genes are labeled in green, and up/downregulated genes are labeled in yellow.

Table 3: Expression levels of the top 10 lncRNAs during rat LR.

lncRNAs 0 h 2 h 6 h 12 h 24 h 30 h 36 h 72 h 120 h 168 h
NONRATT003557.2 1 1 1 1 14.67 15.41 10.44 1 1 1
NONRATT005357.2 1 1 1 9.79 119.12 59.69 71.42 32.46 1 1
NONRATT003292.2 1 1 1 1 43.68 40.42 28.50 18.78 1 1
NONRATT001466.2 1 1 1 1 20.37 23.28 24.66 13.95 1 1
NONRATT003289.2 1 1 1 1 69.44 53.97 38.69 23.26 6.55 1
NONRATT001047.2 1 1 1 1 1 1 4.86 1 1 1
NONRATT005180.2 1 1 1 1 9.81 9.02 10.33 1 1 1
NONRATT004419.2 1 1 1 1 1 6.87 6.87 7.5 1 1
NONRATT005336.2 1 1 1 1 1 6.83 1 1 1 1
NONRATT005335.2 1 1 1 1 6.89 6.44 5.27 1 1 1
Text in bold denotes the expression level higher than the control.
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(PCC≤ − 0.8) (Table S4). Subsequently, a coexpressed net-
work was constructed using screened lncRNA-mRNA pairs,
and it was found that some lncRNAs could interact with
multiple mRNAs. According to nodes and connectivity, the
top 10 lncRNAs were selected, which may exert important
regulatory roles in hepatocyte proliferation, lncRNAs
NONRATT003557.2 (degree� 178), NONRATT005357.2
(degree� 178), NONRATT003292.2 (degree� 177), NON-
RATT001466.2 (degree� 176), NONRATT003289.2
(degree� 176), NONRATT001047.2 (degree� 175), NON-
RATT005180.2 (degree� 175), NONRATT004419.2
(degree� 173), NONRATT005336.2 (degree� 173), and
NONRATT005335.2 (degree� 169) (Figure 4). -e ex-
pression levels of the top 10 lncRNAs during rat LR are
shown in Table 3. Among them, NONRATT005357.2 had
the highest difference at 24 h in regenerating the liver, and
the fold change was 119.

3.5. Construction of PPI Network Based on Proliferation-Re-
lated Genes. To better elucidate the interaction network of

proliferation-related genes, a PPI network containing 551
nodes with scores greater than or equal to 0.4 was con-
structed using the string database (Figure 5(a)). Moreover, a
cytoHubba plugin was used to select the top 10 key genes
from the PPI network using the MCC method. -e 10 key
genes were Aurkb, Cdk1, Cdc20, Bub1b, Mad2l1, Kif11,
Prc1, Ccna2, Top2a, and Ccnb1 (Figure 5(b)). -e expres-
sion levels of the 10 key genes during rat LR are shown in
Table 4. -e median of multiple mRNAs corresponding to
one gene is taken as its expression level. Among them, Cdk1
had the highest difference at 24 h in regenerating the liver,
and the fold change was 109.

3.6. Quantitative Real-Time PCR Validation. We validated
the high-throughput RNA-seq results by performing qRT-
PCR analysis of differentially expressed lncRNAs; the ex-
pression patterns revealed similar conclusions (Figure 6). Our
RNA-seq results showed lncRNAs NONRATT003289.2,
NONRATT001466.2, NONRATT004419.2, and NON-
RATT005336.2 were upregulated during rat LR.
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Figure 5: PPI network of proliferation-related genes. (a) PPI network of 551 genes. (b) Top 10 hub DEmRNAs of the PPI network.-e node
color changes gradually from yellow to red in the ascending order according to scores with the MCC method.

Table 4: Expression levels of 10 key genes during rat LR.

Genes 0 h 2 h 6 h 12 h 24 h 30 h 36 h 72 h 120 h 168 h
Aurkb 1 0.02 1 1 41.88 26.57 23.96 14.00 3.72 1
Cdk1 1 1 1 1 109.01 66.43 80.87 42.31 3.63 1
Cdc20 1 1 1 1 36.85 27.36 25.84 13.01 2.83 1
Bub1b 1 1 1 1 38.34 26.78 22.37 12.92 5.08 1
Mad2l1 1 1 1 1 20.26 13.71 13.11 7.02 1 1
Kif11 1 1 1 1 20.48 13.24 11.22 7.31 2.12 1
Prc1 1 1 1 1 46.88 29.75 27.15 16.27 3.59 1
Ccna2 1 0.05 1 1 49.97 31.85 30.16 15.45 3.92 1
Ccnb1 1 1 1 1 60.31 37.31 37.82 18.90 3.45 1
Top2a 1 0.18 1 1 49.62 34.69 23.24 14.75 3.03 1
Text in bold and text in italics denote the expression level higher and lower than the control, respectively.
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4. Discussion

In rodents and humans, the liver can grow rapidly after
partial hepatectomy or acute chemical injury. -is growth
process is known as LR, which is a compensatory hyperplasia
rather than true regeneration, mainly depending on the
proliferation of hepatocytes [9]. To explore the regulatory
roles of lncRNAs in hepatocyte proliferation during rat LR,
high-throughput RNA-seq was performed to identify
lncRNAs and mRNAs. In the present research, 2446 DE
lncRNAs and 4091 DE mRNAs were identified. To in-
vestigate the function of DE mRNAs during rat LR, GO
enrichment analysis was performed. -e result indicated
that a large number of GO terms were associated with re-
sponse to stress, cell proliferation, oxidation-reduction,
regulation of transcription, metabolism, and apoptosis,
which were considered to be important activities in LR
[15–17]. Of these GO terms, 41 were associated with cell
proliferation, involving 695 mRNAs.

-rough coexpression network analysis, a total of 18343
coexpression pairs were obtained based on DE lncRNAs and
proliferation-related DE mRNAs. Among these coexpression
pairs, 95.7% were positively correlated and 4.3% were neg-
atively correlated. -ese results indicate that lncRNAs may
regulate the expression of genes mainly in a positive way. It

was also found that some lncRNAs could be coexpressed with
multiple mRNAs, suggesting that lncRNAs could regulate
multiple mRNAs. According to nodes and connections, the
top 10 lncRNAs (NONRATT003557.2, NONRATT005357.2,
NONRATT003292.2, NONRATT001466.2, NON-
RATT003289.2, NONRATT001047.2, NONRATT005180.2,
NONRATT004419.2, NONRATT005336.2, and NON-
RATT005335.2) were selected. -ese lncRNAs were con-
nected to 158 common DE mRNAs, respectively, such as
Slc25a16, Cdk1, Rfc3, Brca2, Mcm7, Cdca7, Hat1, Chaf1b,
Rfc4, andMcm4.-ese findings indicated that these lncRNAs
and their interaction genes may play an important role in
hepatocyte proliferation during rat LR.

cytoHubba, a Cytoscape plugin, could provide 11 to-
pological analysis methods to explore important nodes in
biological networks including maximal clique centrality
(MCC). MCC, a new method, has a better precision in
identifying hub proteins. -rough the MCC method, 10
hub mRNAs were selected including Aurkb, Cdk1, Cdc20,
Bub1b, Mad2l1, Kif11, Prc1, Ccna2, Top2a, and Ccnb1.
Aurkb (aurora kinase B) was involved in regulation of
chromatin, glycolysis metabolism, regulation of telome-
rase activity, regulation of zygote development, and
turnover of kinetochore microtubules [18–22]. It was also
associated with AKT signaling pathway, MAPK signaling
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Figure 6: Validation of differentially expressed lncRNAs by qRT-PCR.
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pathway, inflammatory pathway, DNA damage response
pathway, Wnt signaling pathway, and PI3K/Akt/NF-κB
signaling pathway [21, 23–27]. Cdk1 (cyclin-dependent
kinase 1) was involved in cell cycle, mitosis, DNA end
resection, homologous recombination, DNA damage
checkpoint, anaphase spindle dynamics, cytokinesis,
chromosome biorientation, apoptosis, cell proliferation
and survival, and DNA synthesis [28–35]. It also played an
important role in AMPK signaling pathway, AKTsignaling
pathway, Golgi checkpoint signaling, PDK1-PI3K/Akt
signaling pathway, type I interferon signaling, and p53
signaling pathway [36–40]. Cdc20 (cell division cycle 20),
an APC activator protein, could regulate mitosis, cell cycle,
and presynaptic differentiation [41–44]. It was also in-
volved in Wnt/β-catenin signaling pathway and p38
MAPK signaling pathway. Bub1b (BUB1 mitotic check-
point serine/threonine kinase B) and Mad2l1 (mitotic
arrest deficient 2 like 1) were involved in the spindle
checkpoint during mitosis [45–48]. Kif11 (kinesin family
member 11), a microtubule motor, played a vital role in
regulating the transport of β-actin mRNA and cell motility
through physically interacting with ZBP1, which could
govern the direction of migration by responding to di-
rectional cues in chemotaxis [49, 50]. Prc1 (protein reg-
ulator of cytokinesis 1), a cell cycle protein, played an
important role in ensuring proper cell division through
directly acting on protein (FIP), and P53 could regulate the
transcription of Prc1 [51, 52]. Ccna2 (cyclin A2) was a key
factor in cell cycle, and Ccna2 repression regulated by
miR-22 could inhibit HCC cell proliferation and tumor-
igenesis [53, 54]. It was also a prognostic biomarker for
several cancers, such as ER+ breast cancer, pancreatic
ductal adenocarcinoma, and colorectal cancer [55–57].
Top2a (DNA topoisomerase II alpha), a key enzyme in
DNA replication, was recruited to ultrafine anaphase
bridges (UFBs) by TopBP1 to ensure faithful separation of
sister chromatids, and these proteins played an important
role in maintaining genome stability [58]. Top2a was
overexpressed in hepatocellular carcinoma and associated
with early age onset, shorter patient survival, and che-
moresistance [59]. Ccnb1 (cyclin B1) was a key factor in
cell cycle and regulated by STAT3 via the E2F modulating
G2-M phase checkpoint [60]. High expression of Ccnb1
was associated with poor prognosis in HCC patients, and
knockdown of Ccnb1 could significantly inhibit cell
proliferation, migration, and invasion in HCC [61].
-erefore, these genes may play a vital role in hepatocyte
proliferation during LR.

5. Conclusions

In this study, the comprehensive expression abundance of
lncRNAs and mRNAs was identified by RNA-seq analysis
during rat LR. -e lncRNA-mRNA coexpression network
and PPI network based on lncRNAs and proliferation-re-
lated genes were constructed, and 10 key lncRNAs and 10
key mRNAs were determined that may play crucial roles in
hepatocyte proliferation. Our study provides a new idea to
better understand the mechanism of LR.
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