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Abstract: The astounding development of optical sensing imaging technology, coupled with the
impressive improvements in machine learning algorithms, has increased our ability to understand
and extract information from scenic events. In most cases, Convolution neural networks (CNNs) are
largely adopted to infer knowledge due to their surprising success in automation, surveillance, and
many other application domains. However, the convolution operations’ overwhelming computation
demand has somewhat limited their use in remote sensing edge devices. In these platforms, real-time
processing remains a challenging task due to the tight constraints on resources and power. Here,
the transfer and processing of non-relevant image pixels act as a bottleneck on the entire system.
It is possible to overcome this bottleneck by exploiting the high bandwidth available at the sensor
interface by designing a CNN inference architecture near the sensor. This paper presents an attention-
based pixel processing architecture to facilitate the CNN inference near the image sensor. We propose
an efficient computation method to reduce the dynamic power by decreasing the overall computation
of the convolution operations. The proposed method reduces redundancies by using a hierarchical
optimization approach. The approach minimizes power consumption for convolution operations
by exploiting the Spatio-temporal redundancies found in the incoming feature maps and performs
computations only on selected regions based on their relevance score. The proposed design addresses
problems related to the mapping of computations onto an array of processing elements (PEs) and
introduces a suitable network structure for communication. The PEs are highly optimized to provide
low latency and power for CNN applications. While designing the model, we exploit the concepts
of biological vision systems to reduce computation and energy. We prototype the model in a Virtex
UltraScale+ FPGA and implement it in Application Specific Integrated Circuit (ASIC) using the TSMC
90nm technology library. The results suggest that the proposed architecture significantly reduces
dynamic power consumption and achieves high-speed up surpassing existing embedded processors’
computational capabilities.

Keywords: CNN; embedded vision; FPGA; pixel-parallel processing

1. Introduction

As convolutional neural networks (CNN) finding their way more and more into a
wide range of vision-based applications, there has been a significant focus on realizing
low power custom hardware accelerators to attain their services on the edge/remote
devices [1–4]. However, CNNs are computationally intensive, consuming vast amounts
of dynamic power and computational resources [5]. On top of that, a major challenge
in deploying CNNs to the edge is the high data volume of image sensors, impacting the
channel bandwidth from the sensor interface to the embedded processor [6]. With the
advancement of imaging systems (i.e., cameras), the number of pixels residing in a single
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frame is ever increasing. For example, a video camera transmitting full HD video frames
(1920 × 1080) at 30 fps will require a data bandwidth of 1492 megabits per second (Mbps).
The demand is even higher for newer 4K and 8K imaging technology. Therefore, it is getting
difficult to get real-time performance on embedded platforms for high-density captures.

One exciting research approach to tackle this problem is associating the processing
architecture close to the image sensor and focusing resources on possible events [7]. There
has been a growing interest to find methodologies to incorporate more and more computa-
tion near the vision-sensor interface. The urge can be readily sensed, as several national
research agencies and funding organizations, such as DARPA, NSF, and Missile Defence
Agency (MDA), have come forward, calling for novel research works in this direction [8,9].
DARPA is soliciting research proposals for fast event-based neuromorphic vision-sensors
to enable intelligent sensing for DoD applications [8]. Missile Defence Agency (MDA) is
seeking innovative designs for optimized bio-inspired vision sensors capable of detecting
objects from high-definition images. The idea is to deploy a computation model directly in
the sensor to avoid data transmission latency, minimize the bandwidth of sensor-processor
communication, and alleviate the burden imposed on the backend processor.

Several approaches are discussed in the literature to bring the computational unit near
the sensor and perform parallel operations [10–12]. The general practice is to integrate a
fine grain processor with the pixel circuit, which does not deteriorate the pixel circuit’s
fill-factor [13]. However, with the increase in computational complexity, the fine-grain
processor’s area increases and subsequently fails the operation. Therefore, these approaches
generally compute relatively simple functions near the sensor and do not offer redundancy
reduction techniques that can be leveraged in vision-based CNN operations. In contrast,
we aimed to integrate an inference architecture near the sensor plane.

In this paper, we introduce an event-based smart image sensor design with an inte-
grated CNN computation layer. The proposed setup maps the sensor pixels to an array
of parallel processors to facilitate CNN operations in addition to relevance detection
(as shown in Figure 1b). The design aims to minimize memory, power, and computational
requirements by reducing data redundancies and dynamic power consumption. The com-
putational layer operates in a unified framework to realize a high-level application and can
be re-purposed for different CNN applications. The pixel processors are specially designed
to perform convolution operations and are highly optimized to hide latency and reduce
external memory access. We propose a scoring based method that scores image patches
based on their relevance. Here, we adopt a hierarchical optimization approach to perform
computation on different regions based on their saliency score. The design assigns compu-
tational resources to different image patches based on the score. Our model emulates the
biological vision system to reduce the computation cost of the architecture. The objective
of this work is to support time-critical complex applications where the silicon-footprint
constraint is lightly maintained.

The main contributions of this paper are:

• We present a hardware model to enable CNN inference near the sensor for different
vision applications.

• We present a scoring-based approach to reduce computation burden and improve
power efficiency for pixel processors.

• A suitable communication structure for pixel data propagation to minimize interconnection.

The remaining sections of this paper are organized as follows. Section 2 discusses the
related works in the literature. We discuss the background concept in Section 3. Section 4
provides a detailed explanation of our design. We evaluate our model in Section 5.
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Figure 1. (a) conventional image processing system and (b) our proposed system; information with relevant information is
processed for inference computation at the sensor.

2. Related Work

There are a number of hardware architectures found in the literature that aim to pro-
vide acceleration for CNN applications while reducing computational redundancies [14–17].
And, there are some approaches that attempt to exploit the high bandwidth available near
the sensor interface by bringing the computation closer to the image sensor [7]. In this
section, we describe these approaches separately in the same order. Afterward, we discuss
and identify the distinction of our proposed model.

While the widespread practice of running a CNN is to use a GPU as the hardware
accelerator, their deployment on embedded devices encounters limitations, such as cost
and power budget [18–20], whereas the computational demand of CNN architecture
usually overwhelms conventional sequential processors to meet the real-time performance
requirements. This has necessitated the emergence of a plethora of novel architectures.
These architectures typically employ large numbers of multiply-accumulate (MAC) units
but vary significantly in their interconnection network, memory hierarchy, and dataflow
approach. However, most of these works either push hardware performance to the extreme
or focus primarily on implementing the computation reduction scheme.

A common approach to designing CNN accelerators considers implementing a generic
uniform hardware core for convolution that can be used in a time-shared form to execute
different convolution layers. The solution offers flexibility, but the solution’s performance
and efficiency vary for different CNN and often suffers from performance and energy degra-
dation. To improve efficiency on CNN inference accelerators, authors in Reference [21]
executed convolution operations in CNN as matrix multiplications by rearranging the
input feature maps. However, the overhead of memory accesses and execution times
associated with the rearrangement is large.

In Reference [22], the authors proposed a high accuracy accelerator for convolutional
layers where zero skippings and clock gating are used to minimize computations. Even
though the design improves power consumption, it does not fully exploit the redundancies
available within the computation model.

In Reference [23], the authors introduced a dynamic precision and voltage scaling
approach for different layers of AlexNet to save power. The work in Reference [24]
proposed a power-aware architecture for VGG-based CNNs. These works only concentrate
on the efficiency of the hardware and do not discuss in detail how to adopt these schemes
on high throughput architectures.

Reference [25,26] proposed a low-power computation approach based on two types
of convolutions for convolutional and pooling layers of the CNN. The lightweight low-
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precision convolutions predict the max-pooling layer’s output while a high-precision
convolution prepares the final result. However, the work solely focuses on reducing the
architecture’s power consumption and does not discuss other hardware optimizations.
Another problem with the solution is that it always assumes that the convolution layer is
always followed by a pooling layer, which is often not true.

Recently, Xilinx has released Deep Learning Processing Unit (DPU), a configurable
computation engine for CNNs [27]. The parallelism that can be achieved in DPU is
dependent on the target device and application. It includes a set of instructions and
supports a wide range of CNN models. While DPU has reported promising results for
different CNN models, the approach does not discuss any optimization schemes adopted
in its hybrid computing array to reduce redundancy and save power. Furthermore, the
feasibility study of coupling the DPU near the image sensors has not been carried out yet.

In focal-plane processing architectures, the processing circuitry is incorporated near
the pixels of the image sensor [10,11,28]. Bringing the computation in the sensor can
offer distinct advantages in terms of data reduction and power efficiency. However, these
designs perform relatively simple operations, for example extracting temporal contrast
in each pixel. There are other designs that perform simple convolutional operations to
compute low-level features. Despite offering some performance improvement, the data
bandwidth is not fully utilized in these implementations.

Darpa’s ReImagine program aims to demonstrate that a single, reconfigurable ROIC
architecture can accommodate multiple modes of imaging operations that may be defined
after a chip has been designed [8]. The program seeks ROI-based efficient computation
models to enable real-time analysis. Even though preliminary works have shown promising
results, the landscape of the high-level computation part is still in progress.

Other works exist that employ an array of pixel processors to perform CNN inference [7,29].
In Reference [7], the authors present a software programmable integrated vision chip that
can provide sensor-level SIMD parallel processing capability. The architecture embeds a
processor in each of its 256× 256 pixels and uses a microcontroller to operate the vision chip.
However, the proposed method performs different parts of the network computation in
serial and often relies on external hardware for additional computation. In Reference [29],
the authors proposed a pixel processor array (PPA) vision sensor designed to perform
CNN inference close to the sensor. The implementation is application-specific and is highly
optimized for digit recognition. Here, the authors focus on techniques that require only a
small number of bits per pixel. They used a checkerboard storage mechanism to reduce
hardware requirements. The adopted representation somewhat compromises the accuracy
of the model. In contrast, we perform region-level optimizations in our processing array to
avoid a significant decrease in accuracy.

Our method differs from the works mentioned above by using a hierarchical redun-
dancy reduction model into a high throughput inference architecture. We integrate the
CNN computation layer directly near a vision-sensor. Our goal is to adopt possible opti-
mization mechanisms in the inference layer that can rip the full benefit of an event-based
sensor. The approaches found in the literature provide solutions at best for generic neu-
ral network structures. CNN structures are widely being used in different application
domains. We believe further optimization can be achieved by designing hardware architec-
tures specifically for image pixels as input features. The pixel processors proposed in our
work are specifically designed to explore redundancies to reduce network traffic, power
consumption, and improve computation capabilities. Besides, the programmability of the
inference structure makes the same chip convenient for different applications.

3. Background

In this section, we briefly discuss some background information related to our in-
sensor inference architecture.
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3.1. Exploring Parallelism in Convolution

Convolutional layers are the central part of CNN. The underlying arithmetic unit is a
simple but computationally expensive operation. For an input image frame I, the equation
representing the convolution operation of CNN is shown below:

S f ,y,z =
C

∑
c=1

m

∑
i=1

m

∑
j=1

Ic,x+i,y+jK f ,c,i,j. (1)

Here, the convolution kernel (K) is assumed to have a square size of m×m and takes
an input frame of C channels. The convolution layers extract features hierarchically in the
form of feature maps by convolving the input feature maps (IFM) with weight kernels. The
operation is performed on each pixel of the IFM for every output channel. It is possible to
exploit the parallelism available within the convolution operation and map the pixels into
an array of processing elements to achieve fast computation. A conventional CNN model
contains several convolutional layers connected in series followed by fully connected
layers. To perform convolution, In our architecture, we map the input frame on an array of
processing elements (PEs), where each processor is specifically designed to perform the
operation shown in Equation (1) in parallel and generate output for the next layer. PEs
within a region are designed to perform the regional convolution operation and facilitate
optimum execution.

3.2. Spatiotemporal Redundancies

The vision sensor’s primary job is to sense the field of view and generate a stream
of pixels for a backend processor corresponding to the scenic event. The functionality is
similar to the biological eye-brain setup. Except, a human eye has around 130 million
pixels, with only 1.3 million synaptic connections to the brain. The setup indicates a
1% sparsity. Researchers believe this massive sparsity is critical for power and latency
trade space and helps avoid sending repetitive information to the brain. Natural images
tend to exhibit a positive correlation within local regions, and only a reduced amount of
information is passed onto the higher processing part. Based on the information-theoretic
considerations, in the biological vision system, the role of early sensory processing is
to reduce redundancy [30]. According to this model, the visual system uses an internal
model to predict incoming signals and reduces redundancy by removing the repeated
components [31,32].

In our approach, we hypothesize that when we divide the image frame into logical
regions, the homogeneous regions usually comprise the bulk of the redundancies. We
identify these regions by measuring the data variation. The equation for calculating
variance in an image patch is shown in Equation (2).

σ2 =

n

∑
i=1

(xi − µ)2

n
. (2)

Here, µ represents the mean value. However, the square operation consumes consider-
able hardware resources. In contrast, we would like to design an efficient hardware circuit
to measure data variation in a distributed manner. Therefore, in this work, we simplify
operation by calculating the mean absolute deviation (MAD) to identify spatially repetitive
regions. The formula for calculating MAD is shown in Equation (3).

MAD =

n

∑
i=1
|xi − µ|

n
. (3)

We evaluate our approach by observing the data distribution in MNIST, FashionM-
NIST, and CIFAR10 datasets. The results are shown in Figure 2. As we can see, for the first
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two datasets, we have a significant number of regions where the MAD value is close to
0. However, for CIFAR10, there is less number of homogeneous regions. This is because,
in CIFAR10, we have a very high foreground to background pixel ratio, and the chosen
region size is comparable to the actual image size. Still, there are several regions with a
MAD value of close to zero.

(a) (b) (c)

Figure 2. Distribution of mean absolute deviation (MAD) where image is divided into 4 × 4 patches for (a) MNIST,
(b) FashionMNIST, and (c) CIFAR10 datasets.

There are 8.3 million pixels in a 4 K image and around 33 million pixels in 8 K.
Therefore, it is understood that similar resource management is required for advancing
technologies to provide real-time performances. In our approach, we emulate the func-
tionality of the biological vision system to assign computation to regions based on their
Spatio-temporal relevance. The model allows us to remove redundancies at different stages
of the computation model.

3.3. CNN Optimization

CNN optimization is an actively researched area to gain computational efficiency in
hardware. Quantization, activation pruning are common practices in CNNs to reduce
overheads associated with arithmetic operations. Different encoding based quantization
schemes can be found in the literature, such as fixed-point linear quantization, logarithmic
quantization, and binarization [33–35]. CNN accelerators supporting low precision can
result in a resource-efficient solution. For example, a single DSP48E2 slice, an available
computation unit in Xilinx MPSoC, can perform two 8-bit multiplications simultaneously
with a maximum multiplication of 18-bit and 27-bit data [36]. In contrast, a multiplication
of two 32-bit data will require four DSP slices. This indicates that the 8-bit model can
achieve up to 8 times the computing performance compared to the 32-bit design on an
FPGA board with a fixed number of DSP48E2. Therefore, in our approach, we opted for
reduced-precision operations in low-scoring image regions whenever we can.

4. Proposed Model

In this section, we provide a detailed description of our proposed in-sensor CNN
inference architecture.

The design considers a standard imager depicted in Figure 3a, where each sensing unit
in the photodiode array has an analog to digital converter (ADC), and a local memory [37].
The imager data is transferred to a Relevance computation layer (RCL). The design places
the image sensor and the computation planes at separate layers. The incoming image frame
is logically divided into M image regions where N × N pixels reside in each patch. The
RCL layer comprises an array of Relevance Computation Units (RCU), where each RCU
calculates the relevance score for each region.

The incoming image frames may include pixel regions with noise and interference,
which may get misidentified as events. Therefore, before initiating the relevance com-
putation on the image frames, noise-canceling mechanisms can be enforced to eliminate
noises and clutters from the pixel data. This step is necessary since natural images are
often filled with clutters and noises, which will degrade the performance of event-based
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processing models. The unwanted noise can be managed by passing the image frame
through a low-pass filter or a median filter. For instance, in Reference [38], the authors
implemented a weighted median filtering mechanism to filter out impulsive noise with
the least area overhead. In Reference [39], the authors present an efficient modified hybrid
median filter-based implementation that can improve the visibility of high-quality incom-
ing images with a high frame rate. For this work, a similar technique can be adapted to
generate inference-free data while keeping the hardware cost minimal. The noise reduction
can be performed as a separate layer before the RCL or integrated within the RCL.

PEPE
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B B
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B B
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(a) (b)
Figure 3. (a) Parallel image sensor with analog to digital converter (ADC). (b) Data movement within the processing
element (PE) array.

The RCL layer is followed by an inference computation layer (ICL) to perform infer-
ence near the sensor. In the ICL layer, convolution operations are performed by mapping
the image pixels to an array of processing elements (PE). Based on the saliency scores
calculated in the RCL layer, relevant regions are scheduled to the ICL for computation. The
output of RCL is forwarded to an intermediate buffer for following operations by the ICL.
To reduce interconnections, we have one pixel-streaming channel per region between the
intermediate buffer (IB) and the ICL layer RPU. These streaming channels can stream pixel
values for different image regions in parallel. Besides, there is a global controller unit and
an on-chip memory unit to facilitate CNN operations. The controller is used to schedule
operations in the computation layers and maintains synchronization. Figure 4 shows the
dataflow of our proposed architecture. The off-chip memory is used to store weights and
outputs of different layers. This is because a CNN model’s data volume is generally too
high to store it locally in on-chip memory. However, we accommodate a global on-chip
memory in our design to hide off-chip memory access latency. The controller module
pre-fetches the required data from the off-chip memory to the on-chip memory to mask
data transportation time. The weights are then forwarded to the PEs, where the compu-
tation is performed. The proposed architecture is shown in Figure 5. The intermediate
buffer acts as a queue and storage unit for keeping relevant image patches forwarded by
the RCU modules. If an incoming image frame is divided into M regions, we have M
RCUs in the RCL layer. However, the number of RPUs is limited in the ICL layer and far
less than the number of RCUs. Therefore, image patches are required to be scheduled to
RPUs. Here, the intermediate buffer is used to hold image patches while previous patches
are processed in the ICL layer. However, it is possible to remove the intermediate buffer
from our processing chain. In that case, based on the data demand, the controller will
be required to collect image pixels directly from the relevant RCUs and forward them to
the RPUs.

In the next subsection, we will provide a detailed explanation of the computation
layers and the controller module to illustrate the design flow.
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Figure 5. The proposed architecture of our inference computation model. Relevance computation layer (RCL) and inference
computation layer (ICL) layers are shown.

4.1. Relevance Computation Layer (RCL)

The RCL layer operates on a region parallel basis. Here, we have a dedicated RCU
for each logical region of the incoming image frame. Within each RCU, operations are
performed in sequential. The RCU performs the relevance function on each image pixel
and accumulates the relevance score for all pixels in a region. For spatial relevance infor-
mation, we calculate the MAD value for each region (shown in Section 3). We use this
value to rank the image regions based on predefined thresholds. The regions are cate-
gorized into three types: high-relevance (11, regions comprising objects), mid-relevance
(01, regions with background context information), and low-relevance (00, homogeneous
irrelevant background). The formula to measure spatial relevance score (SRS) is shown in
Equation (4).

SRS =


11 , MAD > Th1
01 , Th1 ≥ MAD > Th2
00 , MAD ≤ Th2

. (4)

For temporal saliency, we compare the incoming pixel to its temporal neighbors. The
number of temporal mismatches within a region is compared against a temporal threshold
value to determine temporal relevance (0 or 1). The threshold values used in the RCU are
empirical and can be adjusted for different scenarios. A high threshold value will decrease
the number of activated ROI regions.

We use 3-bit data to represent each region’s Spatio-temporal relevance, where 2-bits
for spatial relevance score (SRS) and a single bit for temporal relevance (TRS). Based on the
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SRS and TRS values, the computation for a given region is determined. This is shown in
Table 1. Here, the TRS value of one accounts for the temporal relevance of that region.

Table 1. Inference computation based on the salience score.

TRS SRS Region Processor Region Output

1 11 Active Driven by current state (full-precision)
1 01 Active Driven by current state (reduced-precision)
0 (11/01) Inactive Driven by previous state

(0/1) 00 Inactive Forced to Zero

4.2. Inference Computation Layer (ICL)

The ICL layer is designed to perform the convolution operations and comprises
multiple sub-region that can operate independently from each other. The ICL layer in-
terfaces directly with the RCL layer and operates on the incoming pixels to perform
convolution. The generated outputs are stored in an output buffer, from where they are
redirected to the memory or the ICL layer to perform the computation for the consecutive
convolution layers.

The ICL layer comprises a set of Region Processing Units (RPU) and a group of PEs
operating under each RPU. The number of RPUs are less than the RCUs in the RCL plane.
Therefore, image regions from the RCL are scheduled on the ICL to perform convolution.
While scheduling computation on the RPU layer, the relevance score dictates the nature of
computation for image patches. All the RPUs operate in parallel, as well as the PEs within
it. However, each RPU receives the pixels associated with that region sequentially. Within
the RPU, each PE operates as a pixel forwarding unit to broadcast pixels to all the PEs
within the region (shown in Figure 3b). Each PE locally stores its neighboring pixel values
required to perform convolution operation and forward other pixels. We used the pixel
broadcasting model, indicated in Figure 3b, to fast populate the PEs in different regions.
The RPUs receive the global start signal from the controller in parallel. The start signal is
then propagated through the PE array, similar to the pixel forwarding network shown in
Figure 3b. This way, we can minimize latency by initiating convolution operation on each
PE right after it finishes forwarding pixels to the next unit. The output of the ICL is stored
in an output buffer (OB). For activation, our design performs ReLU operation. The output
data is transferred to the OB in a similar data forwarding network as shown in Figure 3b.

Towards the end of the convolution operations, the output is transferred to a second
acceleration module for computing the fully connected layers (or any other layers that
cannot be mapped on ICL). Since the computational requirement of the fully connected
layer is not immense, it can be implemented in a dedicated hardware, or it can be imple-
mented on a low power sequential processor with vector processing units, such as neon
processors [40]. We opted for the latter design option for our implementation, where we
stream the output to a low-power processor for further processing.

4.3. Processing Element (PE) Design

PEs are the building block of our near-sensor architecture. We adopted specific
optimization schemes in our PE architecture to minimize redundancy on the input feature
map and minimize power consumption. These are specially designed pixel processors that
can perform computation on convolution kernel. Each PE has local buffers to store weights,
feature maps, and partial output data locally. It reduces access to external memory during
the CNN operation. The PE has a vector MAC unit to perform convolution operation. The
structure of the PE is shown in Figure 6a.
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Figure 6. (a) Internal design of our PE module. Here, a pair of PPUs share weight buffer and pixel buffer between them. (b)
Controller functions.

Each PE performs 8-bits convolution operations on its corresponding pixel. The MAC
unit’s 8-bit multiplication module is built from 4-bit multiplication units and executes the
Karatsuba multiplication algorithm. All the PEs in a logical region receives a common 1-bit
relevance signal from the corresponding RPU. If the relevance bit is 0, PEs of that region
only performs an approximate convolution operation based on the most significant bits
(4-bits). The full-precision convolution is only performed when the relevance bit is high.
Besides, we employ zero-skipping to exploit the sparsity of the weights and data in our
architecture. Here, the PE activates a multiplication unit within the vector MAC unit if
both the pixel and the weight are non-zero.

Resource Sharing

The neighboring PEs in the ICL layers are designed to perform convolution operations
on adjacent pixels that have overlaps within their kernel regions. Therefore, it is efficient to
share specific resources among them. In our architecture, each pair of PEs along the rows
share their weight and pixel buffers. The sharing of kernel weights is straight forward
since every PE operates with identical weight values. The pixel regions differ between
two row-wise neighbors by one column of pixels for a stride size of 1. Therefore, the pixel
values are arranged column-wise in the shared buffer. The sharing of resources in a PE is
shown in Figure 6a.

4.4. Controller

The controller acts as a control unit responsible for maintaining the coherency between
different layers of the architecture. The functionality of the controller module is listed in
Figure 6b. The unit acts as a custom scheduler that keeps track of the output feature maps
in the ICL processors and governs data flow from one layer to the next. At the beginning of
the inference processing, once the data is acquired from the RCL layer, the controller sends
the global start signal to the ICL processors, and the processing begins. The output of the
ICL is multiple feature maps correspond to different output channels. The controller knows
the time quantum required to generate each of these feature maps and forward them to the
output buffer as they are prepared. As mentioned before, an RPU in the ICL layer operates
on an image patch at a time. Here, the Controller schedules image patches from the RCL
layer to the ICL layers. The controller module handles the accumulation and transferring
of data to the intermediate buffer at the right cycle. Here, the CNN model may require
multiple iterations on the ICL layer to complete all the convolutional layers’ computation.
This is accomplished by move output data and weights among the ICL layer, intermediate
buffer, and on-chip/off-chip memory. Here, the controller unit governs communication
and maintains synchronization. The controller ensures that the RCL does not forward the
next image frame while the ICL is busy computing the previous one. When ICL finishes
the convolution operations, the output is forwarded to a sequential processor where fully
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connected layers are implemented. While sending pixel data of the feature maps to the ICL,
the controller ensures routing of overlapping pixels for convolution. Besides, the controller
can update the weights stored in the ICL layer PEs. Figure 7 illustrates the operation flow
of the controller module. The controller initiates processing by resetting the PE array in the
ICL layer and clear all buffers. Then, it reads the saliency data and labels relevant regions
to indicate the type of computation. If no new relevant regions are found, the controller
goes back to the initial state. Otherwise, necessary data and parameters are read from the
off-chip memory to the global memory and then forwarded to the RPUs. The data can
be pre-fetched to hide the latency of off-chip memory reads. Once weights are loaded,
image patches are scheduled to the RPU, and a start signal is sent to begin computation
on the PE array. The controller sets up the control signal for the input mux of the RPUs
to ensure appropriate IFMs are loaded to the RPU. The controller ensures a continuous
stream of weights and IFM data at regular intervals to the PE module to ensure convolution
operation. Once the output is generated and forwarded to the output buffer, the controller
transfers the data to the global on-chip memory. From there, the data is written back to
the off-chip memory if required. At this point, the controller clears the output buffer and
PE registers to begin computation on the next image patch. Once all computation for an
incoming image frame is done, the controller moves back to the initial state.

Reset PE array
Clear buffers

Initiate
Processing

Read SRS and TRS
value from RCUs
Label regions with
relevance score

Initiate weights and
data fetch from off-

chip mem. to on-chip
mem.

Clear Output buffer
Clear PE partial sum
registers
Schedule new patches to
RPUs
Send Control Signal to
input mux of RPU

Initiate Control
signals to start
operation in PE

array

Load weights to
PE array
Load IFMs to PE
array

Collect result from
output buffer
Initiate write
operation to off-chip
mem

Relevance
computation in

RCL done

weights for conv. layers and network
parameters are fetched.
IFM points are fetched if required. network weights are loaded

from the global on-chip mem.
to PE array.
IFMs are loaded if required.

relevant regions are
transferred from RCL to the IB

Read data for the first
iteration is complete

TRS = 1,
SRS > 0

computation for first
iteration done,
request data for next
operation

new patch
loaded to ICL

For the first conv. layer mux is set to
load data from the IB
For the consecutive layers data is
loaded from mem.

data transferred
request data from
off-chip mem.

request data

output data
generated

request new region

processing
complete

Figure 7. Operation flow of the controller module.

4.5. CNN Layer Scheduling and Execution

The architecture handles CNN models with multiple layers by scheduling them in the
ICL layer. For the first convolution layer, input feature maps are forwarded from the RCL
layer to the ICL layer. The RCL propagates the SRS and TRS score to the controller module.
For regions with TRS value 0, we do not carry out the convolution, and outputs generated
from the previous frame is reused. The controller does not map these regions to the ICL.
This is the same case for regions with an SRS score of 0. Therefore, the controller only
forwards the relevant regions with a non-zero SRS and TRS score from the RCL layer to
the ICL. At the beginning of the execution, the RPU fetches the necessary data to populate
the PEs with appropriate weights. Then, the IFMs are loaded onto the PEs in the ICL layer
as described before. Within each PE, the convolution operations are executed in parallel.
To initiate execution in the PE, a start signal is sent from the RPU to all the PEs. Besides,
one single bit relevance signal is sent to dictate the nature of the computation (4-bit or
8-bit). The ICL layer’s output is forwarded to the output buffer (OB), from where they
are routed to the appropriate memory for further computation. While routing the data
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from the OB, max-pooling operations are performed if required by the model. For the
subsequent convolution layers, IFMs are rerouted from the output feature maps of the
preceding layers to the ICL layer. Here, we use a multiplexer to mux data between the IB
and the global on-chip memory, as shown in Figure 5. The controller synchronizes this
operation by loading new weights to ICL before initiating the next layer operation’s start
signal. Once all the convolution layers are computed, the OFMs can be either saved back to
the off-chip memory or sent to an accelerator/sequential processor for further processing.
The design flow is shown in Figure 4.

4.6. Relevance Propagation

Usually, CNN models comprises multiple convolution layers where each layer feeding
to the next. However, as we have described, we only compute relevance on the incoming
image frame from the sensor. As the data propagates through the model, computation
of an image region depends on the output of the multiple image regions generated from
the previous layer. This is due to the pooling and window operations of the CNN. In an
image sensor, a new frame is generated at each time quantum. Generally, consecutive
image frames do not have drastic changes in all its pixel regions. Therefore, it is efficient to
preclude static region from repeated operations even within the CNN model. In our archi-
tecture, we opted for a systematic relevance propagation model to minimize computation
on the consecutive CNN layers. Here, we tag each incoming image frame region with the
calculated relevance score. As the feature map regions propagates through convolutional
layers and merge with each other due to overlaps, we merge the relevance score for those
regions, as well. The computation is performed in the controller module and accomplished
by a bit-wise OR operation between the relevance scores of the regions. For instance, if
there are four OFM regions that are contributing to an IFM region of the following layer,
the computation will be skipped if all the OFM regions have TRS of 0. The relevance
propagation is explained in Figure 8.

REGION 2

REGION 1

REGION 3

Conv. 1

Conv. 2

Conv. 3

Conv. 4

non-relevant

relevant

input frame conv1 output conv2 output conv3 output

(a) (b)

Figure 8. (a) Relevance propagation of regions across different convolutional neural networks (CNN) layers. (b) Region-level
computation initiation.

4.7. Region-Level Event vs. Pixel-Level Event

As discussed above, in the RCL layer, we identify important events in a region level.
This means we label image patches with a relevance score not individual pixels. RCUs
are tasked to compute the relevant data in a distributed manner. The approach is in
contrast with popular approaches where events are detected on a pixel-basis. For instance,
in Reference [41], the authors demonstrated an event camera simulator, where events
are detected based on motion, optical flow, depth, and other indexes. In their work, the
rendering engine operates on a pixel basis. The problem behind this approach is that if
we design a high-level inference engine that collects pixels from this event camera, the
inference module will not be able to leverage the events detected by the earlier stages. At
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best, the inference engine can operate whenever there is a change in events. However, every
time there is a change in events, the high-level reasoning algorithm will be performed over
the whole frame. With our region-level event detection approach, the designed inference
layer can localize the computation, and any new events will initiate computation only in a
specific region. This is shown in Figure 8.

5. Results
5.1. Evaluation Infrastructure

We implement the full RTL-to-GDSII flow on Application Specific Integrated Circuit
(ASIC) for the Image Sensor at the block level at 0.9 V supply voltage using the TSMC
standard cell library for 90 nm technology. We used Synopsys VCS to simulate and
behavioral check of the RTL. These RTLs are written in a hardware description language
(HDL). Then, Synopsys Design Compiler converts the RTL to gate-level netlist. Maintaining
the Synopsys design constraint, we extract the GDSII for fabrication. Besides, for evaluating
and developing the concept, we start the implementation on the Virtex Ultra scale plus
FPGA board (xcvu440) using Vivado design suite 2018.2. While developing in the FPGA,
we emphasize on reusing the RTL design in ASIC. The RTL is initially analyzed in Vivado to
achieve maximum frequency by breaking the critical and high fan-out paths and optimize
the RTL to reduce the critical path delay.

5.2. Implementation Details

In this work, we implemented our architecture for 8-bit integer operations where
PEs are designed to perform convolution. The attention module on the RCU operates
independently on each image region and calculates the data variation. For low-relevance
regions, PEs are only activated to perform 4-bit convolutions.

In this implementation, we designed each RPU with 8× 8 PE units. Here, we designed
eight instances of RPU that comprise the ICL. This indicates that the ICL layer will have
512 PEs corresponding to 8 RPUs. These RPU can be programmed to realize one or multiple
consecutive CNN layers. The data transfer time between the off-chip memory to the on-
chip acts as a performance bottleneck to the architecture. To minimize this, while loading
input data from the off-chip memory to on-chip memory, we use a ping-pong buffering
scheme to hide latency.

We simulate our architecture with different region sizes in the ICL. Figure 9a illustrates
our analysis. Here, the y-axis on the right indicates the number of clock cycles for latency
in RPUs. The y-axis on the left denotes the number of units utilized for resources, such as
flip flops and LUTs. The figure indicates an increase in area overhead and latency with
the increase in region size. In contrast, the performance of ROI degrades in a broader
region because the regions cannot preclude redundant information. In addition, it asserts
high latency that breaks the benefit of parallelism. Based on this analysis, in Figure 9a, we
consider the 8× 8 region size as the optimal region size in the ICL layer.

(a) (b)

Figure 9. (a) Analysis for different RPU region sizes. (b) Off-chip memory access analysis for VGG16 model.
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5.3. Performance Analysis

Each RPU in ICL has 64-PEs, and each RCU in RCL operates on 64 pixels. The resource
utilization in the FPGA and layout extracted parameters in ASIC have been tabulated in
Tables 2 and 3. We report a maximum frequency of 350 MHz and 380 MHz in FPGA and
ASIC, respectively. We provide the mentioned frequency to every module in our design to
maintain synchronization. From Table 3, we can see that on average, each PE has an area
overhead of 145,00 µm2. The survey in Reference [42] reports that the minimum silicon
footprint of an ADC in 90 nm technology is 59,000 µm2. Therefore, to avoid performance
degradation, we found that using an additional computational layer in parallel to the
sensor is the most viable option for sensor level CNN integration. However, the total
area will shrink considerably with improved silicon technology. In our implementation,
we have a dedicated RCU for each input image region and eight RPUs in the ICL layer
for inference computation. Therefore, for the VGG16 model, with the input frame size of
224× 224, we will require 784 RCUs in the RCL layer. However, RCUs are lightweight
modules and consume limited resources. The 784 RCU will account for 42 k LUTs and
22 flip-flops, comparable to a single RPU. For this design, the 8 RPUs in the ICL layer will
require 350 k LUTs and 390 k flip-flops in total.

Table 2. FPGA resource utilization of the RPU in the ICL.

LUT FF DSP LUTRAM Frequency (MHz) Dynamic Power (W)

PE 682 725 2 -
350

0.023
RPU 43,727 48,430 128 - 1.082
RCU 53 27 - 8 0.005

Table 3. Layout extracted parameters of RPU and Relevance Computation Units (RCU) module.

- - Power (mW) - -

Module Area (µm2) Internal Switching Leakage Total Delay (µs) Freq. (MHz)

RPU 925,685 8.67 5.191 0.428 14.289 0.413 380
RCU 1715.2 0.279 0.005 0.008 0.293 0.17 380

We exhibit the benefit of integrating the relevance computation layer by analyzing the
energy consumption of the RCU and RPU in ICL. The energy overhead in our architecture
is the added RCUs in the RCL layer, and the RCUs are active at all times. However,
Tables 2 and 3 indicate that, compared to an RPU, an RCU only consumes 0.5% of energy,
whereas an inactive RPU only draws leakage power, and the leakage power in our design is
2.5%∼3.0%. The RCL and ICL layers are designed to compute the convolution operations
of the CNN model. Considering our design to a design without the RCL layer, we found
that our architecture will save energy in convolution operations, if the ROI is less than the
size of the image frame. We tested it on the input image stream of 224× 224 frames to a
VGG16 model and computed the energy savings on the first convolutional layer. We see
that the energy consumption decreases in our proposed architecture as the size of the ROI
decreases, whereas a baseline architecture (design without saliency computation layer)
consumes constant energy for convolution layers regardless of the size of the ROI. This
is shown in Figure 10a. The sequential processor in the architecture is used to implement
other computational layers in the high-level processing model. For an arm A53 core
implemented as the sequential processor, the estimated power consumption is 500 mW.



Sensors 2021, 21, 1955 15 of 20

100%60%20%

10 mJ

20 mJ

30 mJ

40 mJ

percentage of ROI region

En
er

gy

baseline design proposed design
(a) (b)

Figure 10. (a) Energy consumption analysis of the convolution layer in our proposed architecture. (b) Computational
redundancy analysis for VGG16 model.

The proposed architecture eliminates computational redundancies by reducing the
number of multiplication operations in CNN layers. We analyzed the reduction in com-
putational redundancies on the VGG16 model. This is shown in Figure 10b. Here, we
assume that the size of the ROI in the incoming image frame is 30% (estimated from the
first three entries in Table 4). The figure indicates that the proposed model performs fewer
multiplications than a baseline design (without visual attention) in the first five layers. For
the consecutive layers, the ROI size increases due to the relevance propagation model and
the computation load is equal for both designs. The computational savings in the first five
layers result in around 13% reduction in total energy consumption. Next, we investigate
the off-chip memory access for the ICL layer. The off-chip memory is accessed to fetch
weights of the convolution layers and store OFMs containing only the relevant regions.
The OFMs may need to be read back to the on-chip global memory pool for the next layer
operation if the global memory is not large enough to accommodate OFMs. It is the same
if the CNN model has intermediate functions that need to be performed on a separate
module. Figure 9b shows the off-chip memory access for different convolution layers of the
VGG16 model. Here, we compared our proposed design with the same baseline design as
described above. We see a considerable reduction in memory access on the first few layers
(up to 3.3× decrease on the first convolution layer). However, in our calculation, we do not
consider any compression mechanism. Further reduction can be achieved by adopting a
suitable compression mechanism in the architecture. For instance, in Reference [22], the
authors employed a Run-length compression (RLC) mechanism to reduce the off-chip
memory accesses. The RLC coding exploits the zeros in the feature maps to save off-chip
memory bandwidth. A similar encoding approach can be explored in our design to curtail
memory read/write volume.

Table 4. Region-level temporal relevance analysis on MOT17 datasets.

Dataset Description (30 fps) Resolution Avg. ROI Size

MOT17-08 Crowded pedestrian street (stationary camera) 1920 × 1080 41.60%
MOT17-03 Pedestrian street at night (stationary camera) 1920 × 1080 25%
MOT17-01 People in a square (stationary camera) 1920 × 1080 28.29%
MOT17-12 Busy shopping mall (moving camera) 1920 × 1080 69.43%

Next, we seek to estimate the typical size of the ROI in an image frame. We explore
different object tracking datasets and developed a simulator to simulate the behavior of
region-level event detection of our image sensor. We specifically tested on MOT17 dataset
for a real-world scenario [43]. The dataset contains different video clips of people walking
around various public places (intersection, square, etc.). We use four different MOT17
datasets to evaluate our temporal relevance model. Table 4 indicates the average number
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of non-relevant regions for each dataset. As we can see, for the first three datasets, on
average up to 75% of the regions can be avoided on each frame for repetitive computation.
However, for the last dataset, we have a comparatively less number of irrelevant regions.
Because, in this case, the images are captured from a moving camera. Therefore, it is
understood that our attention-based approach provides greater power and computational
savings for static camera positions. Figure 11 provides a pictorial view of our ROI simulator.
Besides, we calculated the spatial redundancy on MNIST and FashionMNIST dataset. The
average spatial redundant regions are 50% and 29%, respectively. The results indicate that
our architecture will save power at all times.

(a) (b) (c) (d) (e)

Figure 11. Region-level temporal relevance computation. (a) Original image, (b) computed motion pixels, (c,d) identified
relevant image regions at time t and t + 1, (e) Avg percentage of ROI regions over time.

Next, we evaluate the impact of region-aware processing on the performance of the
different inference models implemented in our sensor architecture. We found that we
do not see a drop in accuracy when we perform region-aware training (replacing non-
relevant regions with zero-valued pixels during training). This is tested on two different
models (Lenet-5, VGG16) for three different datasets (MNIST, FashionMNIST, and mosquito
species [44]). However, the threshold value used to identify non-relevant regions needs to
be adjusted for different datasets. Nevertheless, we were able to exclude 30-to-50% regions
for all three datasets.

In our architecture, we perform low-precision operations on regions that have lower
relevance scores. The approach was inspired by Reference [45], where the authors used
different bit-width operations in different CNN layers. We evaluate whether the approach
affects the detection accuracy of the implemented inference. We tested it on the YOLOv3
model and calculated the precision metric for the MOT17-05 dataset. Precision is defined
as the ratio of correct detections to the sum of correct detections and false detections. A
substantial value of the precision metric indicates high detections. The formula is shown in
Equation (5).

Precision =
TP

TP + FP
. (5)

Here, TP indicates True Positive, and FP indicates False Positive. The calculated
precision data is shown in Figure 12a. The figure suggests that the detector can identify
objects on images with reduced bit-width on non-relevant regions.

Text

(a) (b)

Figure 12. (a) Precision of our object detection model on MOT17-05 dataset. Here, bit-width ratio indicates the ratio between
reduced-precision and full-precision convolution operation. (b) Energy consumption comparison with Reference [22] for
the first 6 convolution layers of VGG16.
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5.4. Performance Comparison

Our architecture’s novelty relies on the implementation of the convolutional layers
mapped on an array of pixel processors. We evaluated the performance of our architecture
and compared them to a similar work found in the literature. The authors in Reference [46]
presented an inference architecture that fully embeds a CNN network on a pixel processor
array (PPA) near the vision sensors and demonstrated results for the MNIST dataset.
However, the approach does not perform attention-based processing like us. We evaluated
our architecture with them to make a fair comparison. The result is shown in Table 5.
For the first two convolution layer, our proposed architecture can exhibits 5.1× speed-up
compared to Reference [46]. Therefore, we can argue that our architecture outperforms
the work in Reference [46]. Next, we compare our work to an FPGA-based SIMD CNN
accelerator design [47]. The results are shown in Table 6 which indicated performance
improvements in our design.

Table 5. Performance comparison I.

- Convolution Layers Latency Fmax Accu.

CNN-PPA (Lenet-5) [46] 160 µs - 93%
Our Design (Lenet-5) 31.2 µs 350 MHz 98.8%

Table 6. Performance comparison II.

- FPS Fmax

Accelerator [47] (VGG16) 11.8 150 MHz
Our Design (VGG16) 25.16 350 MHz

We performed an energy consumption analysis of our proposed model and compared
the work with Reference [22]. The results are shown in Figure 12b. We compared the
energy consumption for the first six convolution layers of the VGG16 model. As the
figure suggests, our proposed model reports better energy management for the first few
layers of the VGG16 model. However, the work in Reference [22] starts to save more
energy from the 5th convolution layer and onward. The result is aligned with our previous
computations, as our earlier results suggest that the ROI regions spread across the image
frame as data propagates through the convolutional layers. Nevertheless, it should be
noted that the work reported in Reference [22] exploits zero values in the IFMs to save
energy. In our architecture, it is possible to attain greater energy savings by adopting a
similar methodology.

The novelty of our work relies on the attention-based CNN processing near the sen-
sor and relevance propagation. Therefore, we focused on highlighting the region-based
computation model in this work. However, the modular nature of our design allows the
integration of additional optimization methods to improve performance and reduce com-
putational redundancy. For instance, in Reference [48], the authors presented MobileNetV2,
which can significantly reduce the memory footprint needed during inference compu-
tation. The PE array can be conveniently configured in our architecture to implement
depthwise separable convolution layers to carry out CNN operations. There are other
optimization schemes that can be integrated within our attention-based approach [49]. In
our future work, we plan to explore methods to combine optimization mechanisms to
improve inference performance in the sensor.

6. Conclusions

This work presents an in-sensor inference processing architecture for reducing redun-
dancies by executing only the relevant regions. We leverage the insights of biological vision
systems to reduce Spatio-temporal redundancies in an image sensor. The proposed method
includes a novel relevance score-based computation approach that facilitates fast execution
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of CNN operations directly near the image sensor. We provide efficient data management
and communication mechanism to facilitate efficient operation. A rule-driven controller
module is proposed that can be configured to facilitate similar CNN models using the same
architecture. In our future work, we plan to investigate data-driven approaches to perform
inference operations in the sensor. The simulation result of our architecture shows that
considerable power saving is possible in redundant regions with a significant speedup.
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