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Abstract

The recognition and classification of White Blood Cell (WBC) play a remarkable role in

blood-related diseases (i.e., leukemia, infections) diagnosis. For the highly similar morphol-

ogy of different WBC subtypes, it is too confused to classify the WBC effectively and

accurately for visual observation of blood cell smears. This paper proposes a Deep Convo-

lutional Neural Network (DCNN) with feature fusion strategies, named WBC-AMNet, for

automatically classifying WBC subtypes based on focalized attention mechanism. To obtain

more localized attention of CNN, the fusion features of the first and the last convolutional

layer are extracted by focalized attention mechanism combining Squeeze-and-Excitation

(SE) and Gather-Excite (GE) modules. The new method performs successfully in classifying

monocytes, neutrophils, lymphocytes, and eosinophils on the complex background with an

overall accuracy of 95.66%, better than that of general CNNs. The multi-classification accu-

racy of WBC-AMNet with the background segmentation is over 98% in all cases. In addition,

Gradient-weighted Class Activation Mapping (Grad-CAM) is employed to visualize the

attention heatmaps of different feature maps.

Introduction

The analysis of White Blood Cell (WBC) images can assist clinical medicine experts in diag-

nosing many blood-related disorders such as leukopenia, Acute Leukemia (AL), agranulocyto-

sis, etc. Importantly, AL is a malignant clonal disease of hematopoietic stem cells. Without

special therapy, the average survival period is about three months, and even some patients died

within a few days of diagnosis. AL is commonly classified into Acute Lymphoblastic Leukemia

(ALL) and Acute Myelogenous Leukemia (AML) [1]. The survival rate of AML within five

years is 40% [2], and in five cases in Europe, the annual survival rate of the disease is only 19%

[3]. Therefore, the automated detection and classification of WBC sample images are of con-

siderable reference value for leukemia diagnosis.

However, the presence of dyeing impurities and cytoplasm with low image contrast makes

the microscopical differences between WBC more challenging to distinguish [4, 5].
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In recent years, machine learning methods have been used for image classification of

blood cells and have achieved excellent results in medicine. Standard high-performance clas-

sification methods and algorithms include Neural Network (NN), K-Nearest Neighbors

(K-NN), Support Vector Machine (SVM), etc. The flexible neural tree algorithm of multi-

classification NN cancer had an average accuracy rate of 98.6% on the mixed lineage leuke-

mia [6]. The tumor diagnosis method based on the concept of biomarker association network

could correctly classify all 72 samples for the WBC dataset [7]. Dichotomous classification of

acute WBC samples achieved accuracy up to 86% [8]. Based on the multi-class SVM, an effi-

cient hierarchical blood cell image recognition and classification method were proposed,

with an average recall of 95.3% for six classifications of blood cells [9]. The advent of deep

learning has led to experimentation with Convolutional Neural Network (CNN) in models

for WBC classification [10].

At present, CNNs combining various methods have been successfully applied to the WBC

classification [11, 12]. A recognition system, WBCsNet, based on deep convolution, was pro-

posed to classify five categories on three different public WBC datasets with an accuracy of

96.1% [13]. A classification scheme involving CNN was proposed to classify 17092 images of

normal peripheral blood cells with the best overall classification accuracy of 96.2% [14]. A

CNN model with 32 feature maps achieved the accuracy of 88.25% and 81.74% in leukemia

versus healthy and multi-classification of all subtypes, respectively [15]. Fifteen classifications

were performed on 18365 peripheral blood smears using ResNeXt with an accuracy of more

than 90% [16]. As powerful tools to assist physicians in diagnosing blood-related diseases,

CNN algorithms still need further research on the generalizable properties and the explicit

mechanisms of models detecting WBC images of blood smears.

Attention mechanism, as a standard feature extraction method, was widely used in deep

learning and image classification in recent years due to its excellent performance and can be

divided into Channel Attention Mechanism (CAM) and Spatial Attention Mechanism (SAM)

[17]. We propose a method for automatically classifying WBC subtypes images in this paper.

The new method, named WBC-AMNet, is based on attention mechanism and Deep CNN

(DCNN), which well decreases the attention dispersing phenomenon due to the complex back-

ground of images.

The rest of this paper is presented below. Section 2 describes the material of WBC images in

different contexts and elaborates the WBC-AMNet model in detail. The experimental results

with different backgrounds and visual analysis are explored in section 3. A conclusion is

drawn in the last section.

Materials and methods

WBC image datasets

In our experiment, the first WBC image dataset is from the Blood Cell Count Dataset (BCCD).

BCCD contains the WBC images of eosinophils, monocytes, lymphocytes, and neutrophils

cells. All images have complex background. Before our experiment, the enhanced 12515

images from BCCD have been divided into the training set, test set, and validation set. The

details of the BCCD are described in Table 1.

Another public WBC images dataset (WBCs dataset) from the Kaggle repository incorpo-

rates 4358 raw WBC images segmented in single cells, which eliminates the interference of

complex background. The WBCs dataset has been labeled as seven different WBC subtypes,

and four of them are used in our experiment (Table 1). Images from the WBCs dataset are in

RGB color space, 112 × 112 pixels, and JPEG format. During the training of our model, the

dataset is divided into 60% for training, 20% for validation, and 20% for testing.
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Several schematical images of two datasets with or without background segmentation are

shown in Fig 1.

Methods

The pipeline of our approach for classifying the WBC images are described following. In the

first, the WBC images of the online source are taken from blood smears under microscopes

and labeled by experts.

And then, the images are pre-processed: all images are resized to 224 × 224 pixels to fit the

model; the random rotation (by an angle of -14 * 15 degree), cropping, and flipping are used

to eliminate the effects of irrelevant information and noise of images; and color distorting is

conducted to make images clear. By color distorting, the brightness, contrast, saturation, and

chromaticity of the image are adjusted by random factors taking values in (0, 1).

Table 1. Descriptions of BCCD and WBCs dataset.

Dataset Description Category Division Subtypes Number

BCCD 12515 images 320 × 240 4 training set (9957) neutrophils 2499

monocytes 2478

lymphocytes 2483

eosinophils 2497

test set(2487) neutrophils 624

monocytes 620

lymphocytes 620

eosinophils 623

validation set(71) neutrophils 48

monocytes 4

lymphocytes 6

eosinophils 13

WBCs Dataset 4358 raw images 112 × 112 4 - neutrophils 2025

monocytes 576

lymphocytes 1586

eosinophils 171

https://doi.org/10.1371/journal.pone.0261848.t001

Fig 1. Sample images from BCCD (The first row) and the WBCs dataset (The second row). Among them, (a) and (e) are

neutrophils, (b) and (f) are monocytes, (c) and (g) are eosinophils, and (d) and (h) are lymphocytes.

https://doi.org/10.1371/journal.pone.0261848.g001
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After that, the images are input to the proposed WBC-AMNet with a part of parameters

pre-trained on the ImageNet dataset to train and fine-tune the model. The WBC-AMNet is

implemented the proposed focalized attention mechanism, and Grad-CAM is conducted to

visualize the attention.

Finally, the classification results of WBC images are obtained and assist in diagnosing. Fig 2

depicts the flowchart of our method for the classification of different WBC subtypes.

At the training stage, the modes are performed on Baidu AI Studio platform with Tesla

V100 GPU. The DCNNs model are implemented in the PaddlePaddle 1.7.2 deep learning

framework of Python 3.7.

WBC-AMNet model

Our WBC-AMNet model is based on DCNN architecture with focalized attention mechanism.

DCNN architecture mainly refers the WBCsNet [13] and uses the group convolution strategy.

Group convolution strategy. The group convolution strategy was employed in ResNeXt,

while adopting the idea of VGG stacking and split-transform-merge of Inception [18]. Group

convolution improves the accuracy while reducing the number of hyperparameters, sketch

map as Fig 2b. Group convolution can not only significantly reduce the amount of model cal-

culations [19], but also improve the accuracy of WBC-AMNet.

The focalized attention mechanism is mainly realized by Squeeze-and-Excitation (SE) mod-

ule and Gather-Excite (GE) module.

Squeeze-and-Excitation (SE) module is a computational module constructed based on the

CAM [20]. The core idea of the SE module is to model the interdependencies between feature

channels, namely, use the global average pooling to squeeze the WBC feature map, perform a

nonlinear transformation by excitation, finally superimpose on the input features, and recali-

brate the feature channels by adaptive learning. The structure of the SE module is shown in

Fig 2c.

Let U = [u1, u2, . . ., uC] 2 RH×W×C be the input, and K = [k1, k2, . . ., kc] denote the kernel

set of filters in learning, ki denotes the parameter of the i–th filter ðkc ¼ ½k
1

c ; k
2

c ; . . . ; kC
c �Þ. After

a series of transformations, we get F = [f1, f2, . . ., fc], then (Eq 1) [21]:

f c ¼ kc � U ¼
XC

s¼1

ks
cu

s ð1Þ

Fig 2. Flowchart of our method.

https://doi.org/10.1371/journal.pone.0261848.g002

PLOS ONE WBC-AMNet: Automatic classification of WBC images

PLOS ONE | https://doi.org/10.1371/journal.pone.0261848 January 27, 2022 4 / 19

https://doi.org/10.1371/journal.pone.0261848.g002
https://doi.org/10.1371/journal.pone.0261848


where � denotes convolution. Thus, we can obtain the result F after SE module (Eq 2):

FðUÞ ¼
XC

s¼1

ks
c � us ¼

XC

s¼1

FMscale ððFMexðFMsqðu
sÞ;WÞ; usÞ ð2Þ

Based on the SE module, the Gather-Excite (GE) further exploits the feature context in the

CNN by introducing a pair of operators ξG (step-wise deep convolution) and ξE [22]. The core

of the GE module is to use different filters layer by layer on the feature map, which makes

WBC-AMNet aggregate the features extracted by WBC accordingly. Gather can effectively

aggregate feature responses on a large spatial scale, and then excite is used to redistribute the

aggregated information to local features. The structure of the GE module is displayed in Fig

2d. After processing by GE module, WBC-AMNet focuses on local features more precisely and

improves the feature extraction ability greatly.

Let V be the output V 2 R
H
a½ �� W

a½ ��C
; v 2 R

H
a½ �� W

að �
� �

, then, the result G after GE module can

be obtained as (Eq 3):

G ¼
XC

s¼1

xEðus; xGðuÞsvÞ ¼
XC

s¼1

xEðus; xGðus � Ts
tðv;aÞÞÞ ¼

XC

s¼1

us � gðxGðus � Ts
tðv;aÞÞÞ ð3Þ

where� is the hadamard product, τ(v, α) = {αv + θ: θ 2 [−bα − 1], [2α − 1]]2/4}, α: the selected

range ratio. T{�} denotes the tensor and g is the well-defined mapping.

The fused features of the first and last convolutional layers in the model are input to the SE

module, while the feature maps of the last convolutional layer are input to the GE module.

Then, the features of the SE module and GE module are fused to obtain the attentional fea-

tures, and the attentional features are finally fused with the original features of the last convolu-

tional layer. The output of the model is depended on the type of WBC in the dataset. The

method of fine-tuning is implemented to obtain the optimal parameters of WBC-AMNet by

transfer learning and gradient learning rate strategy.

Fig 2a depicts the focalized attention mechanism with DCNN architecture for WBC image

classification, where the ReLU activation function is ReLU(x) = max(0, ωT x + b).� is an ele-

ment-wise multiplication operator, namely, the input X and the input Y are multiplied ele-

ment-by-element, and the output elements at each position are stored in the returned result,

Out = X� Y. And� is an element-wise add operator, namely, the input X and the input Y are

added element-by-element, and the output elements at each position are saved in the returned

result, Out = X� Y.

The idea of focalized attention mechanism guides the WBC-AMNet construction base on

the backbone of SE-ResNeXt implemented GE module and group convolution strategy

(Table 2).

SE-ResNeXt. This module is used directly with residual networks of ResNeXt model to

build SE-ResNeXt [20]. The innovation of the attention mechanism significantly improves the

performance of the ResNeXt model with no additional calculative cost.

Attention visualization

WBC-AMNet only outputs numerical results such as accuracy, but it is difficult to intuitively

understand the essential features and locations that the model finally extracts. To explain the

effect of focalized attention mechanism in more vivid detail, we visualize the feature extraction

and attention heatmap of WBC-AMNet using the Grad-CAM method [23]. Assume that the

penultimate layer produces m features maps Fm(Fm 2 RH×W for any C) and Fm
ij is the activation
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of Fm at location (i, j). Grad-CAM obtains the gradient information of the score gc for class C

and uses the average value of all gradients as the weight of the feature map. After weighting the

extracted features, the ReLU operation finally highlights the crucial regions in the WBC images

through the class-discriminative localization map Grad-CAM Lc
Grad� CAM (Eq 4). Grad-CAM

does not require retraining of the proposed model, and it visualizes the local position in the

WBC image which allows WBC-AMNet make the final decision.

LC
Grad� CAM ¼ ReLU

X

m

1

M

X

i

X

j

@gC

@Fm
ij

 !

Fm

 !

ð4Þ

Evaluation

This paper analyzes the performance of classification using indexes including Accuracy (Eq 5),

Specificity (Eq 6), Precision (Eq 7), and F1-score (Eq 8). They are calculated as follows:

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ ð5Þ

Specificity ¼ ðTNÞ=ðTNþ FPÞ ð6Þ

Precision ¼ ðTPÞ=ðTPþ FPÞ ð7Þ

Table 2. Comparison of CNN structure between WBC-AMNet and other models.

stage Output ResNet-50 (32 × 4d) SE-ResNeXt-50 WBC-AMNet

conv1 112 × 112 7 × 7, 64, stride2 7 × 7, 64, stride2 7 × 7, 64, stride2 7 × 7, 2048, stride2

conv2 56 × 56 3 × 3, max pool, stride2 3 × 3, max pool, stride2 3 × 3, max pool, stride2
1� 1; 64

3� 3; 64

1� 1; 256

2

6
6
4

3

7
7
5� 3

1� 1; 128

3� 3; 128

1� 1; 256

fc; ½16; 256�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

� 3

C = 32

1� 1; 128

3� 3; 128

1� 1; 256

fc; ½16; 256�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

� 3

C = 32

–

conv3 28 × 28 1� 1; 128

3� 3; 128

1� 1; 512

2

6
6
4

3

7
7
5� 4

1� 1; 256

3� 3; 256

1� 1; 512

fc; ½32; 512�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

� 4

C = 32

1� 1; 256

3� 3; 256

1� 1; 512

fc; ½32; 512�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

� 4

C = 32

–

conv4 14 × 14 1� 1; 256

3� 3; 256

1� 1; 1024

2

6
6
4

3

7
7
5� 6

1� 1; 512

3� 3; 512

1� 1; 1024

fc; ½64; 1024�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

� 6

C = 32

1� 1; 512

3� 3; 512

1� 1; 1024

fc; ½64; 1024�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

� 6

C = 32

–

conv5 7 × 7 1� 1; 512

3� 3; 512

1� 1; 2048

2

6
6
4

3

7
7
5� 3

1� 1; 1024

3� 3; 1024

1� 1; 2048

fc; ½128; 2048�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

� 3

C = 32

1� 1; 1024

3� 3; 1024

1� 1; 2048

fc; ½128; 2048�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

� 3

C = 32

fc(SE(cov 1 + cov 5) + GE), [128, 2048]

fc((SE(cov 1 + cov 5) + GE) + SE), [128, 2048]

1 × 1 global average pool 1000-d fc, softmax global average pool 1000-d fc, softmax global average pool 1000-d fc, softmax

https://doi.org/10.1371/journal.pone.0261848.t002
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F1‐score ¼ ð2TPÞ=ð2TPþ FNþ FPÞ ð8Þ

Among them, True Positive (TP) indicates accurately identified positive data labels; False Posi-

tive (FP) indicates incorrectly identified positive data labels; True Negative (TN) indicates cor-

rectly identified negative data labels; False Negative (FN) indicates incorrectly identified

negative data labels.

Experiment

Tri-classification results of BCCD

We perform a tri-classification analysis of WBC images from BCCD. Due to the presence of

combined immune receptors based on T cell receptors in addition to T cells in neutrophils

and monocytes, and they are derived from granulocyte monocyte progenitor cell [24, 35]. So

we take monocytes and neutrophils cells as a set named MTD. The results of the search for

epoch, batch size parameters, and the corresponding evaluation indexes are given in Table 3.

Detailed data for WBC subtypes with different parameters are presented in S1 Table in S1 File.

Fig 3 shows the change of objective function value in the training processing. As the number

of iterations increases, the training accuracy improves rapidly in the initial stage, and then it

converges to 1.00 gradually.

Our model reaches optimal performance when epoch = 20 and batch size = 32, at which

point the accuracy reached 95.66%. Under the optimal parameters, we analyze in detail the rec-

ognition and classification ability of WBC-AMNet for three WBC subtypes. In Table 4, the

Table 3. Training results of tri-classification of BCCD images under different epoch and batch size.

Epoch Batch size WBC subtypes Accuracy (%) Specificity (%) Precision (%) F1-score (%)

15 32 3 90.71 90.71 90.74 90.70

20 16 3 94.93 94.94 95.03 94.93

20 32 3 95.66 94.70 95.67 95.66

25 32 3 95.13 95.13 95.14 95.11

30 32 3 93.81 93.81 93.97 93.69

https://doi.org/10.1371/journal.pone.0261848.t003

Fig 3. Classification accuracy versus the number of iterations in the training phase. (epoch = 20 and batch

size = 32).

https://doi.org/10.1371/journal.pone.0261848.g003
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classification accuracy of lymphocytes is particularly outstanding, the precision of lymphocytes

even reached 100%.

We use ROC curves and confusion matrices to visually show the classification performance

of WBC-AMNet for each WBC subtype. The abscissa of the Receiver Operating Characteristic

(ROC) curve is the FP Rate (FPR) and the ordinate is the TP Rate (TPR). The Area Under

Curve (AUC) is defined as the area enclosed by the coordinate axis under the ROC curve. The

larger the value of AUC, the better the performance of the model.

In Fig 4a, the solid lines of different colors represent the ROC curves of different WBC sub-

types, and the blue dashed line represents the overall macroscopic average ROC curves. The

AUC of the WBC-AMNet model is 0.99. All ROC curves demonstrate a high TPR and a low

FPR. The ROC curves of each type are close to the upper left corner and far from the pure

opportunity line. They indicate the solid tri-classification ability of the proposed model. The

misclassification problem between MTD and eosinophils is reflected in the confusion matrix

in Fig 4b. Both types of cells are easily confused with each other, whereas lymphocytes do not

appear to be misclassified at all. The problem of misidentification between these two subtypes

of WBC is also a common challenge for existing classifiers [11, 25].

We compare the tri-classification results obtained using our method with 10 general CNN

models: VGG [26], ShuffleNetV2 [27], DPN [18], InceptionV4 [19], AlexNet [28], DistResNet

[29], MobileNet-V1 [30], MobileNet-V2 [31], ResNet [29], SE-ResNeXt [32], as shown in

Table 5. Detailed data for some of the models on the three WBC subtypes can be found in S2

Table in S1 File.

The accuracy of MobileNet-V1, MobileNet-V2, ResNet, DistResNet, and SE-ResNeXt are

all over 93%, but the accuracy of WBC-AMNet is still significantly improved. The accuracy of

WBC-AMNet is nearly two times higher than that of VGG, and other evaluation metrics also

have significant differences. The simple structure of VGG makes it less practical for WBC

Table 4. Training results when epoch = 20 and batch size = 32.

WBC subtypes Accuracy (%) Specificity (%) Precision (%) F1-score (%)

lymphocyte 100.00 95.50 100.00 100.00

MTD 95.50 91.65 95.81 95.65

eosinophil 91.65 100.00 91.07 91.36

total 95.66 94.70 95.67 95.66

https://doi.org/10.1371/journal.pone.0261848.t004

Fig 4. ROC curve and confusion matrix. (a) ROC curve of three subtypes of WBC. (b) Confusion matrix of three

subtypes of WBC.

https://doi.org/10.1371/journal.pone.0261848.g004
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classification in complex background. Compared with ResNet and SE-ResNeXt, the accuracy

of the proposed model is improved by about 2%, which is a surprising result. The high accu-

racy and other statistics demonstrate that introducing the feature fusion strategy and the focal-

ized attention mechanism in complex background can significantly and effectively improve

the WBC-AMNet classification ability. To visually analyze the training results of other models,

we compare the confusion matrices in Fig 5.

VGG (Fig 5a) is a conventional CNN model, which identifies all WBC subtypes as MTD.

Compared with MobilNetV2 (Fig 5b), WBC-AMNet improves the problem of misclassifying

eosinophils as MTD. It reduces the number of eosinophils misclassified by nearly one third.

Table 5. Training results when epoch = 20 and batch size = 32.

ID CNN model Accuracy (%) Specificity (%) Precision (%) F1-score (%)

1 VGG 50.02 33.33 16.67 22.23

2 ShuffleNetV2 79.41 83.33 81.81 80.99

3 DPN 87.45 90.73 87.82 88.15

4 InceptionV4 90.59 88.25 93.48 90.27

5 AlexNet 93.00 91.73 93.85 92.55

6 DistResNet 94.29 92.80 95.74 93.93

7 MobileNet-V1 94.17 93.60 94.63 94.07

8 MobileNet-V2 94.45 94.45 94.41 94.37

9 ResNet 93.12 93.13 93.32 93.17

10 SE-ResNeXt 93.93 93.93 94.07 93.97

11 WBC-AMNet 95.66 94.70 95.67 95.66

https://doi.org/10.1371/journal.pone.0261848.t005

Fig 5. Confusion matrices of other CNN models. (a)VGG. (b)MobileNetV2. (c)ResNet. (d)SE-ResNeXt.

https://doi.org/10.1371/journal.pone.0261848.g005
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ResNet (Fig 5c) addresses the problem of misclassifying MTD as eosinophils to a certain

extent. The introduction of the focalized attention mechanism allowed WBC-AMNet to target

attention to valuable features. SE-ResNeXt (Fig 5d) improves the problem of misclassifying

MTD as eosinophils and shows unexpected results in predicting MTD. The combination of

focalized attention mechanism and feature fusion allows WBC-AMNet to obtain local atten-

tion moreover.

Quad-classification results of BCCD

Monocytes and eosinophils are essential references for diagnosing diseases such as monocytic

leukemia and an underlying allergic state, respectively [33, 34]. Accordingly, quad-classifica-

tion is performed using WBC-AMNet for eosinophils, monocytes, lymphocytes, and neutro-

phils, with approximately 2480 training images and 620 test images for each subtype of WBC.

Based on the results of the tri-classification parameter search, we refer to its optimal parame-

ters (epoch = 20, batch size = 32), and the statistical results of different WBC subtypes are

shown in Table 6. Due to a small proportion of monocytes and eosinophils are misclassified,

resulting in their slightly lower accuracy. Detailed data for WBC subtypes with different

parameters are presented in S3 Table in S1 File.

Comparing the results in Table 4, we find that lymphocytes still maintain a high classifica-

tion accuracy. However, after reclassifying the MTD, the accuracy of eosinophils decreased,

and the accuracy of neutrophils and monocytes is also not high. We speculate that a misclassi-

fication problem occurred [35]. Although the accuracy of neutrophils is high, the predicted

result is not as well as it should have, resulting in a low F1-score. Conversely, although the

accuracy of monocytes is low, it is incredibly predictive. The above phenomenon indicates that

WBC-AMNet has a good classification ability for neutrophils, but the precision is higher for

monocytes.

Fig 6a shows that the classification results are not satisfactory except for lymphocytes,

reflected in the confusion matrix in Fig 6b. The quad-classification method identified mono-

cytes and eosinophils as neutrophils several times, verifying our speculation. Other identifica-

tion of WBCs as neutrophils is more numerous, but there are no cases of neutrophils

identified as monocytes. Compared with monocytes, WBC-AMNet extracts the features of

neutrophils more accurately.

Based on the 11 CNN models, the results and statistical data are shown in Table 7. Com-

pared to Table 5, the classification ability of VGG is significantly improved on the quad-classi-

fication problems. The new model with the introduction of focalized attention mechanism has

a significant improvement in accuracy compared to ResNet. The operation of feature fusion

makes the classification accuracy of WBC-AMNet better than that of the best model SE-Res-

NeXt nowadays. Accuracy and other data intuitively reflect the important guiding significance

of feature fusion for the model to extract features and process them.

Table 6. Training results of different WBC subtypes.

WBC subtypes Accuracy (%) Specificity (%) Precision (%) F1-score (%)

eosinophils 82.50 82.50 91.46 86.75

neutrophils 93.43 93.43 73.70 82.40

monocytes 84.03 84.03 98.67 90.77

lymphocytes 96.94 96.94 99.17 98.04

total 89.22 89.22 90.72 89.48

https://doi.org/10.1371/journal.pone.0261848.t006
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Classification results of WBCs dataset

We use our method to classify the WBC images from WBCs dataset. These WBC images are

all without complex background. In this section, we compare our method with 3 representative

methods: From Tables 5 and 7, it can be found that MobileNetV2 has a higher accuracy rate.

Comparing ResNet and SE-ResNeXt with WBC-AMNet, respectively, we will get the effect of

introducing attention mechanism and GE module. On the premise of the same parameters

(epoch = 20, batch size = 32), we choose MobileNetV2, ResNet and SE-ResNeXt to train and

compare them with WBC-AMNet.

Tri-classification of WBCs dataset. First, the tri-classification results of different WBC

subtypes are analyzed in Table 8. Slightly different from the BCCD, WBC-AMNet has a higher

classification accuracy for neutrophils in the WBCs dataset, regardless of the model. Except for

the intermediate cell, the classification accuracy of WBC-AMNet is above 99%, which is a satis-

factory result. However, the accuracy of the intermediate cell is slightly lower, and we will

reclassify it in the next section to further explore the reason. As shown in Fig 7, our model has

the best performance among 4 methods in the view of 4 indexes: Accuracy, Specificity, Preci-

sion and F1-score.

The accuracy of WBC-AMNet combined with the focalized attention mechanism is nearly

4% higher than that of ResNet. WBC-AMNet also achieves more than 1% higher accuracy

than SE-ResNeXt, not only due to the introduction of GE module but also thanks to the

Fig 6. ROC curve and confusion matrix. (a) ROC curve of four subtypes of WBC. (b) Confusion matrix of four

subtypes of WBC.

https://doi.org/10.1371/journal.pone.0261848.g006

Table 7. Statistical results of nine classic CNN models.

ID CNN model Accuracy (%) Specificity (%) Precision (%) F1-score (%)

1 AlexNet 82.31 82.32 86.12 82.70

2 ShuffleNetV2 83.43 83.43 85.80 83.53

3 DPN 84.84 84.84 87.50 85.28

4 VGG 86.81 86.81 88.49 87.03

5 DistResNet 87.74 87.73 89.95 88.02

6 InceptionV4 87.94 87.94 90.41 88.23

7 MobileNet-V1 86.13 86.13 88.96 86.48

8 MobileNet-V2 88.82 88.82 90.85 89.02

9 ResNet 86.65 86.65 88.08 86.81

10 SE-ResNeXt 87.78 87.78 89.43 87.91

11 WBC-AMNet 89.22 89.22 90.72 89.47

https://doi.org/10.1371/journal.pone.0261848.t007
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operation of feature fusion. Regardless of the model, the classification accuracy of intermediate

cells is lower than that of other cells. But for lymphocytes, the accuracy of the proposed model

has increased, which is the main reason for the increase in total accuracy.

The AUCs of lymphocytes and neutrophils in Fig 8 are both 1.00, and the AUC of interme-

diate cells and the whole is 0.99. From Fig 8b, we can observe that a tiny number of intermedi-

ate cells (i.e. MTD) are still misclassified as lymphocytes, which is different from the

conclusion of the BCCD. We suspect believed to be caused by different problems in different

contexts misclassification. The confusion matrices of the four models depict in S5 Fig in

S1 File.

In Fig 9, the solid lines of different colors represent the ROC curves of different WBC sub-

types, and the blue dashed line represents the overall macroscopic average ROC curves. The

AUC of MobileNetV2 (Fig 9a) is 0.98, the AUC of ResNet and SE-ResNeXt is 0.99. WBC-AM-

Net improves the classification of all three WBC subtypes. From Fig 9a and 9b, the light blue

curve is slightly lower, which intuitively shows that the classification capabilities of

Table 8. Tri-classification results of images from WBCs dataset.

ID CNN model WBC subtypes Accuracy(%) Specificity(%) Precision(%) F1-score (%)

1 MobileNetV2 intermediate cell 84.46 84.46 89.29 86.81

lymphocyte 94.75 94.65 96.78 95.71

neutrophil 99.26 99.26 95.70 97.45

total 95.06 95.06 95.00 95.00

2 ResNet intermediate cell 77.70 77.70 95.04 85.50

lymphocyte 95.91 95.91 96.83 96.37

neutrophil 99.51 99.50 92.63 95.94

total 94.48 94.48 94.58 94.32

3 SE-ResNeXt intermediate cell 85.14 85.14 97.67 90.97

lymphocyte 98.74 98.74 95.15 96.91

neutrophil 99.75 99.75 98.05 98.90

total 96.90 96.90 96.93 96.82

4 WBC-AMNet intermediate cell 93.24 93.24 97.18 95.17

lymphocyte 99.37 99.37 97.23 98.29

neutrophil 99.01 99.01 99.26 99.13

total 98.16 98.16 98.16 98.15

https://doi.org/10.1371/journal.pone.0261848.t008

Fig 7. Tri-classification line chart of WBCs dataset.

https://doi.org/10.1371/journal.pone.0261848.g007
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MobileNetV2 and ResNet for intermediate cells are little poor. Comparing Figs 8a to 9, SE-R-

esNeXt has improved over the previous two models, and WBC-AMNet is more stable for the

classification of intermediate cells.

Quad-classification of WBCs dataset. The classification results and statistics of our

method and three compared methods for the four WBC subtypes are listed in Table 9. The

classification rate of WBC-AMNet in eosinophils becomes almost twice as high as that of

MobileNetV2 and ResNet. Since both triple and quadruple classifications are improved, we

conclude that WBC-AMNet gets the best performance among four methods.

MobileNetV2 has serious misclassification problems when recognizing eosinophils and

monocytes, resulting in a low accuracy of these two subtypes of WBC. Except for eosinophil,

ResNet has a higher accuracy for other WBC subtypes. However, since the number of images

of eosinophils in the WBCs dataset is small, it has little effect on the overall accuracy. With the

SE module, the accuracy of SE-ResNeXt has been significantly improved. Especially for eosino-

phils, SE-ResNeXt is about 35% higher than ResNet. Such a large increase in accuracy verifies

the importance and effectiveness of using the attention mechanism strategy. The classification

Fig 8. ROC curve and confusion matrix. (a) ROC curve of three subtypes of WBC. (b) confusion matrix of three subtypes of WBC.

https://doi.org/10.1371/journal.pone.0261848.g008

Fig 9. ROC curve. (a) MobileNetV2. (b) ResNet. (c) SE-ResNeXt.

https://doi.org/10.1371/journal.pone.0261848.g009
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accuracy of monocytes is still not satisfactory. By integrating the GE module, the recognition

accuracy of WBC-AMNet in monocyte is improved by nearly 10% compared with SE-Res-

NeXt. Moreover, WBC-AMNet has an accuracy rate of over 95% for each WBC subtype. So

far, we can come to the conclusion: WBC-AMNet has achieved effective WBC classification on

WBCs dataset. Fig 10 shows that for quad-classification, our model, comparing to other 3

methods, still gets the higher scores of Accuracy, Specificity, Precision and F1-score.

Table 9. Quad-classification results of images from WBCs dataset.

ID CNN model WBC subtypes Accuracy(%) Specificity(%) Precision(%) F1-score (%)

1 MobileNetV2 eosinophils 50.00 50.00 77.27 60.71

neutrophils 98.02 98.02 95.66 96.83

monocytes 69.82 69.83 84.38 76.42

lymphocytes 97.79 97.78 91.42 94.50

total 92.31 92.30 91.90 91.86

2 ResNet eosinophils 61.76 61.76 91.30 73.68

neutrophils 98.77 98.77 95.47 97.09

monocytes 84.48 84.48 87.50 85.96

lymphocytes 96.20 96.20 95.90 96.05

total 94.49 94.49 94.40 94.32

3 SE-ResNeXt eosinophils 97.06 97.06 97.06 97.06

neutrophils 99.75 99.75 98.78 99.26

monocytes 85.34 85.34 92.52 88.79

lymphocytes 97.79 97.78 96.26 97.02

total 97.02 97.01 96.96 96.97

4 WBC-AMNet eosinophils 97.06 97.06 97.06 97.06

neutrophils 99.75 99.75 99.02 99.38

monocytes 95.69 95.69 97.37 96.52

lymphocytes 97.78 97.78 98.10 97.94

total 98.39 98.39 98.39 98.39

https://doi.org/10.1371/journal.pone.0261848.t009

Fig 10. Quad-classification line chart of WBCs dataset.

https://doi.org/10.1371/journal.pone.0261848.g010
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In Fig 11a, the AUC value of 1.00 is reached for all WBC subtypes. There is almost no mis-

classification problem in Fig 11b. The confusion matrices of the four models are demonstrated

in S6 Fig in S1 File.

In Fig 12, MobileNetV2 has an AUC of 0.98, ResNet has an AUC of 0.99, SE-ResNeXt and

WBC-AMNet has an AUC of 1.00. The closer the AUC is to 1.00, the better the performance

of the model. It can be seen from AUC that the performance of the model is improved after

introducing the attention mechanism. Comparing Fig 12 with Fig 11a, the AUCs of Mobile-

NetV2 and ResNet are lower on eosinophils and monocytes, the ROC of SE-ResNeXt on

monocytes is slightly lower, and WBC-AMNet has reached 1.00 on all WBC subtypes, which

means that WBC-AMNet is significantly improved compared to other CNN models.

Visualization analysis

The attention of different feature maps of WBC-AMNet is visualized in the background of sin-

gle-cell segmentation. Firstly, the heatmap is obtained by a regular convolution operation. The

first heatmap has highlighted regions spread over almost the whole WBC image and is very

distracting. In order to focus the attention, the strategies of focalized attention mechanism and

feature fusion are further introduced. The first and last convolutional layers in the model are

Fig 11. ROC curve and confusion matrix. (a) ROC curve of four subtypes of WBC. (b) Confusion matrix of four subtypes of WBC.

https://doi.org/10.1371/journal.pone.0261848.g011

Fig 12. ROC curve. (a) MobileNetV2. (b) ResNet. (c) SE-ResNeXt.

https://doi.org/10.1371/journal.pone.0261848.g012

PLOS ONE WBC-AMNet: Automatic classification of WBC images

PLOS ONE | https://doi.org/10.1371/journal.pone.0261848 January 27, 2022 15 / 19

https://doi.org/10.1371/journal.pone.0261848.g011
https://doi.org/10.1371/journal.pone.0261848.g012
https://doi.org/10.1371/journal.pone.0261848


feature fused and fed into the SE module. At this point, the area of the highlighted region in

the heatmap is significantly reduced, and the red part starts to accumulate in the cell nucleus.

Then, the feature map of the last convolutional layer is input to the GE module and fused with

the features of the SE and GE modules to obtain the attentional features. The attentional aggre-

gation is slightly reduced, and almost all of them are on the WBC nuclei. Finally, the attention

features are fused with the original features of the last convolutional layer. The final heat map

obtained reflects the superiority of the WBC-AMNet model. By implementing focalized atten-

tion mechanism and deep feature fusion, attention is highly focused on vital and partial loca-

tions of the WBC nuclei. Our proposed method extracts the effective critical information in

the WBC cell nuclei and avoids the influence of too much redundant and invalid information

on the results (Fig 13).

Conclusion

In this paper, we propose a new DCNN, WBC-AMNet, for automatic classification of WBC

images based on focalized attention mechanism and deep feature fusion strategy. The atten-

tion of different feature maps of WBC-AMNet is visualized using the Grad-CAM method,

which extracts the critical practical information from the WBC cell nuclei and avoids the

influence of too much redundant and invalid information on the results. Experimental results

show that WBC-AMNet gets the better performance than that of several existing models.

Although the classification effect of our model is satisfactory, the mathematical mechanism

of network architecture is still unclear. In the future, we intend to study the deep learning

network from the perspective of mathematics and test more medical image data using our

model.

Fig 13. WBC-AMNet visualization analysis of attention to different feature maps.

https://doi.org/10.1371/journal.pone.0261848.g013
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14. Acevedo A, Alférez S, Merino A, Puigvı́ L, Rodellar J. Recognition of peripheral blood cell images using

convolutional neural networks. Computer Methods and Programs in Biomedicine. 2019; 180:105020.

https://doi.org/10.1016/j.cmpb.2019.105020 PMID: 31425939

15. Ahmed N, Yigit A, Isik Z, Alpkocak A. Identification of leukemia subtypes from microscopic images

using convolutional neural network. Diagnostics. 2019; 9(3). https://doi.org/10.3390/

diagnostics9030104 PMID: 31450720

16. Matek C, Schwarz S, Spiekermann K, Marr C. Human-level recognition of blast cells in acute myeloid

leukaemia with convolutional neural networks. Nature Machine Intelligence. 2019; 1(11):538–544.

https://doi.org/10.1038/s42256-019-0101-9

17. Nan Y, Xi W. Classification of press plate image based on attention mechanism. In: 2019 2nd Interna-

tional Conference on Safety Produce Informatization (IICSPI); 2019. p. 129–132.

18. Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J. Dual path networks. In: 31st Annual Conference on Neural

Information Processing Systems (NIPS); 2017.

19. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-ResNet and the impact of

residual connections on learning. In: 31st AAAI Conference on Artificial Intelligence; 2017. p. 4278–

4284.

20. Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-Excitation Networks. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence. 2020; 42(8):2011–2023. https://doi.org/10.1109/TPAMI.2019.

2913372 PMID: 31034408

21. Khan MM, ShorifUddin M, Parvez MZ, Nahar L. A squeeze and excitation ResNeXt-based deep learn-

ing model for Bangla handwritten compound character recognition. Journal of King Saud University—

Computer and Information Sciences. 2021. https://doi.org/10.1016/j.jksuci.2021.01.021

22. Hu J, Shen L, Albanie S, Sun G, Vedaldi A. Gather-excite: Exploiting feature context in convolutional

neural networks. In: 32nd Conference on Neural Information Processing Systems (NeurIPS); 2018.

23. Selvaraju R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from

deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer

Vision (ICCV); 2017. p. 618–626.

24. Attar A. Changes in the cell surface markers during normal hematopoiesis: a guide to cell isolation.

Global Journal of Hematology and Blood Transfusion. 2014; 1(1):20–28. https://doi.org/10.15379/2408-

9877.2014.01.01.4

25. Wang Q, Wang J, Zhou M, Li Q, Wen Y, Chu J. A 3D attention networks for classification of white blood

cells from microscopy hyperspectral images. Optics & Laser Technology. 2021; 139:106931. https://

doi.org/10.1016/j.optlastec.2021.106931

26. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: 3rd

International Conference on Learning Representations (ICLR); 2015.

27. Ma N, Zhang X, Zheng H, Sun J. ShuffleNet V2: Practical guidelines for efficient CNN architecture

design. In: Proceedings of the European Conference on Computer Vision (ECCV); 2018.

28. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks.

In: NeurIPS; 2012.

29. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR); 2016. p. 770–778.

30. Howard A, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. In: arXiv preprint arXiv:1704.04861; 2017.

PLOS ONE WBC-AMNet: Automatic classification of WBC images

PLOS ONE | https://doi.org/10.1371/journal.pone.0261848 January 27, 2022 18 / 19

https://doi.org/10.1016/j.compmedimag.2020.101699
http://www.ncbi.nlm.nih.gov/pubmed/32000087
https://doi.org/10.1016/j.eswa.2020.113211
https://doi.org/10.1016/j.eswa.2020.113211
https://doi.org/10.1016/j.measurement.2020.108643
https://doi.org/10.1016/j.measurement.2020.108643
https://doi.org/10.1016/j.cmpb.2017.11.015
http://www.ncbi.nlm.nih.gov/pubmed/29173802
https://doi.org/10.1016/j.cmpb.2019.105020
http://www.ncbi.nlm.nih.gov/pubmed/31425939
https://doi.org/10.3390/diagnostics9030104
https://doi.org/10.3390/diagnostics9030104
http://www.ncbi.nlm.nih.gov/pubmed/31450720
https://doi.org/10.1038/s42256-019-0101-9
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/TPAMI.2019.2913372
http://www.ncbi.nlm.nih.gov/pubmed/31034408
https://doi.org/10.1016/j.jksuci.2021.01.021
https://doi.org/10.15379/2408-9877.2014.01.01.4
https://doi.org/10.15379/2408-9877.2014.01.01.4
https://doi.org/10.1016/j.optlastec.2021.106931
https://doi.org/10.1016/j.optlastec.2021.106931
https://doi.org/10.1371/journal.pone.0261848


31. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L. MobileNetV2: Inverted residuals and linear bottle-

necks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR);

2018.

32. Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks.

In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. p. 5987–5995.

33. Khan A, Eker A, Chefranov A, Demirel H. White blood cell type identification using multi-layer convolu-

tional features with an extreme-learning machine. Biomedical Signal Processing and Control. 2021;

69:102932. https://doi.org/10.1016/j.bspc.2021.102932

34. Baker F, Silverton R. Introduction to haematology. Introduction to Medical Laboratory Technology

(Fifth Edition): Butterworth-Heinemann. 1976; p. 549–558.

35. Fuchs T, Puellmann K, Wang C, Han J, Beham AW, Neumaier Michael, et al. Trilineage sequencing

reveals complex TCR & Transcriptomes in Neutrophils and Monocytes Alongside T Cells. Genomics,

Proteomics & Bioinformatics. 2021. https://doi.org/10.1016/j.gpb.2019.02.004

PLOS ONE WBC-AMNet: Automatic classification of WBC images

PLOS ONE | https://doi.org/10.1371/journal.pone.0261848 January 27, 2022 19 / 19

https://doi.org/10.1016/j.bspc.2021.102932
https://doi.org/10.1016/j.gpb.2019.02.004
https://doi.org/10.1371/journal.pone.0261848

