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A B S T R A C T   

With the amount of medical waste rapidly increasing since the corona virus disease 2019 (COVID-19) pandemic, 
medical waste treatment risk evaluation has become an important task. The transportation of medical waste is an 
essential process of medical waste treatment. This paper aims to develop an integrated model to evaluate COVID- 
19 medical waste transportation risk by integrating an extended type-2 fuzzy total interpretive structural model 
(TISM) with a Bayesian network (BN). First, an interval type-2 fuzzy based transportation risk rating scale is 
introduced to help experts express uncertain evaluation information, in which a new double alpha-cut method is 
developed for the defuzzification of the interval type-2 fuzzy numbers (IT2FNs). Second, TISM is combined with 
IT2FNs to construct a hierarchical structural model of COVID-19 medical waste transportation risk factors under 
a high uncertain environment; a new bidirectional extraction method is proposed to describe the hierarchy of risk 
factors more reasonably and accurately. Third, the BN is integrated with IT2FNs to make a comprehensive 
medical waste transportation risk evaluation, including identifying the sensitive factors and diagnosing the 
event’s causation. Then, a case study of COVID-19 medical waste transportation is displayed to demonstrate the 
effectiveness of the proposed model. Further, a comparison of the proposed model with the traditional TISM and 
BN model is conducted to stress the advantages of the proposed model.   

1. Introduction 

Medical waste, often known as health care waste, is created during a 
variety of medical procedures, including diagnosis, treatment, human or 
animal vaccination, and biological testing (Yong, et al., 2009). The 
corona virus disease 2019 (COVID-19) has produced a sharp rise in 
medical waste globally. Since corona virus has a high degree of spatial 
infectious, latent and viral, the tremendous increase in medical waste is 
a vital transmission medium for the virus and thus poses severe and new 
challenges to medical waste management (Chen, et al., 2021; Zhao, 
et al., 2022). Current research on COVID-19 medical waste mainly fo-
cuses on the selection of waste disposal techniques (Manupati, et al., 
2021), sustainable production and waste management policies (Ahmad, 
et al., 2021; Singh, et al., 2022; Torkashvand, et al., 2021), and the 
vehicle routing problem (Eren and Tuzkaya, 2021; Govindan, et al., 
2021). However, safe transportation within the medical waste treatment 
process is an essential problem in medical waste management (Kumar, 
et al., 2015). To our extent, no research considers the risks of COVID-19 
medical waste transportation. The risks of medical waste transportation 

process will cause enormous loss of life and property, harm the envi-
ronment and soil, and even affect social stability (Kumar, et al., 2015). 
For example, the rebound of the pandemic that broke out in Nanjing in 
July 2020 was caused by the improper handling of the protective 
clothing by airport staff after cleaning the cabin. Therefore, to avoid 
such incidents, identifying and evaluating the potential risk factors in 
the transportation process is a crucial issue that needs to be paid 
attention to. 

Since the occurrence of COVID-19 is sudden and historical data is 
insufficient, the evaluation of risks requires the support of experts in 
related fields. Some researchers have used fuzzy set theory to deal with 
the inadequate data in the context of COVID-19 pandemic, indicating 
that the fuzzy set theory is effective and feasible (Karmaker, et al., 2021; 
Mardani, et al., 2020; Sharma, et al., 2020). The fuzzy set theory pro-
posed by L. A. Zadeh (1965) is an extensive used tool to handle 
ambiguous and confusing real-world problems, which can evaluate ex-
perts’ subjective and inaccurate assessments. Type-1 fuzzy sets are used 
widely to model imprecise information in literature (Liu, 2011; Maniram 
Kumar, et al., 2018; Sayyadi Tooranloo and Ayatollah, 2016). 

* Corresponding authors. 
E-mail addresses: xwliu@seu.edu.cn (X. Liu), wzyu@ahnu.edu.cn (W. Wang).  

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2022.118885 
Received 6 April 2022; Received in revised form 30 July 2022; Accepted 18 September 2022   

mailto:xwliu@seu.edu.cn
mailto:wzyu@ahnu.edu.cn
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.118885
https://doi.org/10.1016/j.eswa.2022.118885
https://doi.org/10.1016/j.eswa.2022.118885
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.118885&domain=pdf


Expert Systems With Applications 213 (2023) 118885

2

Nevertheless, uncertainties are inherent in handling words in a natural 
language, as the same words have various meanings for different persons 
(Boukezzoula and Coquin, 2020). To describe the different opinions 
about the same word, Zadeh (1975) proposed the type-2 fuzzy sets 
(T2FS). However, it has a relatively heavy computational burden in the 
actual application process (Xiaohong and Yingming, 2021). Thus, 
Mendel and John (2002) suggested the interval type-2 fuzzy sets 
(IT2FSs) as a reduced version of the T2FS. It’s worth noting that the 
IT2FS is a particular instance of the T2FS, and its calculation is signifi-
cantly easier than the T2FS. Therefore, it has been extensively utilized in 
many fields, such as maritime transportation (Celik and Akyuz, 2016; 
Pelin and Emre, 2021), green supplier selection (Wu, et al., 2019) and 
waste site selection (Hong, et al., 2021). 

COVID-19 medical waste transportation process involves multiple 
risk factors since COVID-19 has a high degree of spatial infectious, latent 
and viral. Understanding the interactions between risk factors can help 
to control risks (Schulte, et al., 2012). Considering the interaction re-
lationships between the risk factors related to COVID-19, total inter-
pretative structural modeling (TISM) and decision making trial and 
evaluation laboratory (DEMATEL) are commonly used (Karmaker, et al., 
2021; Lakshmi Priyadarsini and Suresh, 2020; Sen, et al., 2021). Sen, 
et al. (2021) applied DEMATEL to investigate the influential factors on 
COVID-19 related deaths and their effects on each other. Lakshmi 
Priyadarsini and Suresh (2020) introduced TISM to understand the 
interrelationship between and among the factors that affect the epide-
miological characteristics of COVID-19. Karmaker, et al. (2021) used 
TISM to visualize the hierarchical structure of mutual relationships be-
tween/among the factors affecting supply chain sustainability in the 
context of COVID-19 pandemic. DEMATEL is a survey to help under-
stand the complex relationship among selected factors, which is inca-
pable of determining the hierarchical structure of complicated systems 
(Wang, et al., 2018). TISM is an enhanced version of interpretive 
structural modeling (ISM), proposed by Sushil (2012), which can iden-
tify the structural relationship between multiple factors and demon-
strate direct and transitive relationships (Li, et al., 2019). Especially, 
Liao, et al. (2021) proposed a double alpha-cut-based consensus mea-
surement method for HFLPRs, which has low computational complexity 
and high accuracy in handling fuzzy information. We refer to the idea 
and propose a new double alpha-cut method to convert the IT2FNs into 
numerical values of 0 or 1, by which we can establish a reachability 
matrix during the calculation of TISM under a high uncertain environ-
ment. After obtaining the reachability matrix, level extraction is used to 
determine the hierarchical relationships among risk factors. Two main 
widely used level extraction methods of TISM are up-type hierarchy 
method and down-type hierarchy method (Zhang, Huang et al., 2021), 
also known as result-first hierarchy extraction method and cause-first 
hierarchy extraction method. However, these two traditional extrac-
tion methods may have some inconsistencies in practice. So we propose 
a new hierarchical extraction method, called the bidirectional extraction 
method to help reflect the dialectical relationship between causes and 
results more realistic and effective. 

As to quantify the risks of the COVID-19 medical waste trans-
portation process, the Bayesian network (BN) provides a very important 
idea for the risk evaluation of systems composed of multiple risk factors. 
BN is popular to solve risk evaluation problems due to its ability to ex-
press dependencies among events, update probability based on new 
evidence and reasoning under uncertainty (Li, et al., 2018). Based on the 
hierarchical structure of risk factors obtained by TISM, BN is applied to 
describe uncertain and complex relationships among various factors 
quantitatively. Moreover, there has been a tendency in studies to 
combine fuzzy set theory with the BN considering the uncertain infor-
mation during the evaluation process. For example, Ghasemi, et al. 
(2021) developed an approach for predicting human error probabilities 
of road tanker loading operation by using fuzzy set theory and BN. 
Yucesan, et al. (2021) use the fuzzy Bayesian network (FBN) to deter-
mine the occurrence probabilities of the failure modes and apply the 

model in an industrial kitchen equipment manufacturing facility. Guo, 
et al. (2020) combined the FBN with an improved similarity aggregation 
method to assess the storage tank accident risk, FBN is used to identify 
the critical events of the storage tank accident. Abbassinia, et al. (2020) 
developed a dynamic model of human error assessment in emergencies 
in the petrochemical industry based on FBN and fuzzy-AHP-TOPSIS 
method. Based on these studies, the BN based on the hierarchy of fac-
tors, is proposed to analyze risk factors and identify the sensitive factors 
for the medical waste transportation system. Moreover, the interval 
type-2 fuzzy numbers (IT2FNs) is used to calculate the prior probabili-
ties of root nodes and the conditional probabilities of leaf nodes, which 
are the fuzzification of the linguistic expressions obtained from expert 
opinions. 

Based on the abovementioned consideration, this paper proposes an 
extended fuzzy TISM method and maps the hierarchical structure model 
to BN. IT2FSs are applied to handle the subjective uncertainty of in-
formation when experts evaluate the COVID-19 medical waste trans-
portation risk factors since the linguistic variables are more in line with 
the expression habits of experts. A double alpha-cut of IT2FNs and a new 
bidirectional extraction method are first combined with TISM method to 
construct the hierarchy diagram of risk factors under high uncertain 
environment. The BN is applied to model the objective uncertainties 
caused by probabilistic variations of risk factors and conduct a 
comprehensive risk analysis. It also provides a description of different 
risk factors and their interconnections through graphical representa-
tions. The contributions of this article are:  

(i). Experts evaluate the risk factors in the process of COVID-19 
medical waste transportation by using IT2FNs, which has the 
capability of reflecting the subjectivity under uncertain 
environments.  

(ii). An extended fuzzy TISM method is proposed to analyze risk 
factors and interpret hierarchical relationships of risk factors in a 
complex and uncertain system.  

(iii). A new double alpha-cut is first combined with IT2FNs to convert 
IT2FNs into crisp numbers, which has low computational 
complexity and high accuracy in the calculation process.  

(iv). A new bidirectional extraction method is first proposed to 
construct the hierarchy diagram of risk factors in TISM, accu-
rately reflecting the risk factors’ levels.  

(v). The structural model of risk factors is transformed into a BN to 
quantitatively analyze the functions and interactions among risk 
factors. The IT2FSs are combined with BN to derive the prior 
probabilities and conditional probabilities of risk factors. 

The rest of the paper is organized as follows. Section 2 briefly in-
troduces some notions and properties about the IT2FS, TISM method and 
the BN. Section 3 describes the research methodology for the proposed 
risk evaluation framework. Section 4 introduces specific steps of the 
integrated model for COVID-19 medical waste transportation risk eval-
uation based on extended fuzzy TISM and fuzzy BN. Section 5 presents a 
case study in Nanjing concerning COVID-19 medical waste trans-
portation process to emphasize the effectiveness of the proposed model. 
Section 6 conducts a comparison of our proposed model with traditional 
model. Section 7 provides a brief conclusion and future research 
directions. 

2. Preliminaries 

2.1. Interval type-2 fuzzy set 

The interval type-2 fuzzy sets (IT2FSs) are used to express imprecise 
and uncertain evaluation information considering experts’ psychologi-

cal variables. A type-2 fuzzy set A
≈

in the universe of discourse X can be 
denoted by a type-2 membership function μ

A
≈ as follows: 
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A
≈

= {((x, u) , μ
A
≈(x, u) )|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1] } (1) 

In whichJx ⊆ [0, 1] , and 0⩽μ
A
≈(x, u)⩽1 for all admissible x andu. 

Furthermore, the type-2 fuzzy set A
≈

can also be shown in the following 
form: 

A
≈

=

∫

x∈χ

∫

u∈Jx

μ
A
≈(x, u)

/

(x, u) (2) 

If allμ
A
≈(x, u) = 1, then A

≈

is defined as an IT2FS. An IT2FS A
≈

can be 
presented as a subset of type-2 fuzzy sets, which is defined as follows: 

A
≈

=

∫

x∈χ

∫

u∈Jx

1
/

(x, u) (3) 

Among these various types of fuzzy numbers, the interval type-2 
trapezoidal fuzzy number (IT2TrFN) is one of the most widely used for 
describing uncertainty information (Hendiani, et al., 2020; Jin, et al., 
2020; Liu, 2011; Xie, et al., 2017). 

Let A
≈

=
(
AU,AL) =

[(
aU

1 , aU
2 , aU

3 , aU
4 ; hU

A

)
,
(

aL
1, aL

2, aL
3, aL

4; hL
A

) ]
be an 

IT2TrFN, which can be denoted as Fig. 1. Suppose that there are two 
IT2TrFNs as follows: 

A
≈

1 =
[(

aU
11, a

U
12, a

U
13, a

U
14; h

U
1A

)
,
(
aL

11, aL
12, aL

13, aL
14; hL

1A

) ]

A
≈

2 =
[(

aU
21, a

U
22, a

U
23, a

U
24; h

U
2A

)
,
(
aL

21, aL
22, aL

23, aL
24; hL

2A

) ]

Mathematical operations between the IT2TrFNs are described as 
follows: 

A
≈

1 ⊕A
≈

2 =
[(

aU
11 +aU

21,a
U
12 +aU

22,a
U
13 +aU

23,a
U
14 +aU

24;min
{

hU
1A,h

U
2A

} )
,

(
aL

11 +aL
21,a

L
12 +aL

22,a
L
13 +aL

23,a
L
14 +aL

24;min
{

hL
1A,h

L
2A

} )] (4)  

A
≈

1 − A
≈

2 =
[(

aU
11 − aU

24,a
U
12 − aU

23,a
U
13 − aU

22,a
U
14 − aU

21;min
{

hU
1A,h

U
2A

} )
,

(
aL

11 − aL
24,a

L
12 − aL

23,a
L
13 − aL

22,a
L
14 − aL

21;min
{

hL
1A,h

L
2A

} )] (5)  

A
≈

1 ⊗ A
≈

2 =
[(

aU
11⋅aU

21, aU
12⋅aU

22, a
U
13⋅aU

23, a
U
14⋅aU

24;min
{

hU
1A, hU

2A

} )
,

(
aL

11⋅aL
21, a

L
12⋅aL

22, aL
13⋅aL

23, aL
14⋅aL

24;min
{

hL
1A, hL

2A

} ) ]

(6)  

k⋅A
≈

1 =
[(

k⋅aU
11, k⋅aU

12, k⋅aU
13, k⋅aU

14; h
U
1A

)
,

(
k⋅aL

11, k⋅aL
12, k⋅aL

13, k⋅aL
14; h

L
1A

) ] (7)  

2.2. Total interpretive structural modeling 

To explain the contextual direction and relationship between the 
elements in the pairwise comparison, Total Interpretive Structural 
Modeling (TISM) is proposed as an improved model of the ISM. TISM is 
used to model the factors for better comprehension of their interaction. 
Fig. 2 shows the flowchart and specific steps of TISM analysis: 

Step 1: Developing Interpretive Matrix. 
TISM (similar to ISM) starts with identifying the components and 

establishing their contextual relationships. Experts determine the 
connection between any two components depending on the context of 

Fig. 1. Interval type-2 trapezoidal fuzzy sets.  

Fig. 2. Specific steps of TISM.  

J. Tang et al.                                                                                                                                                                                                                                     



Expert Systems With Applications 213 (2023) 118885

4

each element. 
Step 2: Develop Aggregated Structural Self-Interaction Matrix 

(SSIM). 
V, A, X, and O are the four symbols that describe the relationships 

between any two elements under consideration. The aggregated SSIM is 
obtained by filling responses of a group of experts on the pairwise 
interaction matrix. 

Step 3: Developing Reachability Matrix. 
Convert the information in SSIM into 1 and 0 to construct the 

reachability matrix. Moreover, a transitivity check is required. The 
transitivity matrix is verified for the transitivity rule and modified as 
necessary until complete transitivity is achieved. 

Step 4: Reachability Matrix Partition. 
The next stage is to generate a digraph and extract a structural model 

when the transitivity check is completed. On sets and subsets of ele-
ments, relation partition and level partition may be used to partition the 
reachability matrix process (Warfield, 1974). 

Step 5: Developing Skeleton Matrix. 
After eliminating the transitivity, the reduction matrix is obtained by 

successfully removing the strongly connected elements in each level. 
Then the skeleton matrix is obtained by removing the leap-over binary 
relations among elements in the reduction matrix and the self-reaching 
binary relations. 

Step 6: Creating Digraph for TISM. 
The final TISM model shows all transitive and direct influential links 

according to the skeleton matrix. In addition, it is possible to analyze the 
proper justification behind the impact of one element on other elements. 

2.3. Bayesian network 

After obtaining the hierarchy diagram of risk factors, a Bayesian 
network (BN) is introduced to provide a flexible and robust graphical 
structure in a probabilistic approach, a directed acyclic graph composed 
of several nodes and the correlation between nodes (Bapin and Zarikas, 
2019). The BN consists of two parts: one is the topological structure 
(which includes network nodes and directed links), and the other is the 
conditional probability table. The qualitative description element of the 
model is the topological structure, which consists of nodes displaying 
variables and directed arrows. A node from which a directed arrow is 
generated is called the parent node, while the other node to which the 

directed arrow is directed is called child node (Pristrom, et al., 2016). 
The Bayesian network’s quantitative section concerns the probability 
tables of the system’s variables. Probabilities, conditional probabilities, 
and their posterior probabilities are all included in the probability ta-
bles. Inference algorithms are based on the following equations 
(Mahadevan, et al., 2001): 

The joint probability distribution of a set of variables U = {X1,X2⋯ 
Xn} is represented as: 

P(U) =
∏n

i=1
P(Xi|Pa(Xi) ) (8)  

where P is the probability, n represents number of nodes, Xi represents 
the i th node in the network, Pa(Xi) is the parent set of the variableXi. 
Then, the posterior (updated) probabilities can be calculated when new 
pieces of evidence E on variables are given. 

P(U|E ) =
P(U,E)

P(E)
=

P(U,E)
∑

UP(U,E)
(9)  

3. Research methodology 

This section describes the research methodology for COVID-19 
medical waste transportation risk evaluation from two aspects. First, 
COVID-19 medical waste is spatial infectious, latent and viral, which 
makes the transportation process contain multiple risk factors. An 
extended fuzzy TISM method is proposed to help understanding the 
interactions between/among risk factors and determine COVID-19 
medical waste transportation risk factors’ hierarchical relationships. 
Second, considering the uncertainties caused by probabilistic variations 
of COVID-19 medical waste transportation risk factors, the probabilities 
of risk factors need to be quantified to control risk. The fuzzy BN is used 
to conduct a comprehensive risk analysis, including identifying the 
sensitive factors and diagnosing the event’s causation. Fig. 3 is drawn to 
better presentation of the research methodology for COVID-19 medical 
waste transportation risk evaluation. 

3.1. Determination of risk factors’ hierarchical relationships with 
extended fuzzy TISM method 

To determine the COVID-19 medical waste transportation risk 

Fig. 3. The framework of the research methodology.  
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factors’ hierarchical relationships, an extended fuzzy TISM method is 
proposed in this section. The traditional TISM is described in Section 2.2. 
During the TISM process, the double alpha-cut of IT2TrFNs is presented 
to convert the aggregated fuzzy SSIM into the aggregated SSIM. More-
over, a new bidirectional extraction method is also proposed to obtain a 
more reliable hierarchical structure. The detailed procedure for the 
extended fuzzy TISM is discussed as follows and the flow chart of TISM is 
drawn in Fig. 4. 

3.1.1. Develop interpretive matrix 
Let E = {e1, e2,⋯eh} be the set of experts. Consider the risk 

factorsC = {c1, c2,⋯cn}, where cl is the l th factor, in whichl = 1,2⋯n. 
Traditional risk evaluation is based on probabilistic risk assessment 
methods, which require the support of accurate probability distribution 
information of risk factors. However, COVID-19 medical waste trans-
portation is complicated and it is challenging to grasp sufficient infor-
mation on related risk factors. Experts with knowledge and experience 
in relevant domains are needed to deal with the problem of inadequate 
data. Therefore, we introduce IT2TrFNs, one of the most often utilized 
forms of fuzzy numbers, to represent uncertainty and ambiguity. Table 1 
adopts a five-level linguistic term to express experts’ evaluation 
(Abdullah and Najib, 2014). 

The risk factors are linked in such a way that they either influence or 
are influenced by one another. The following four symbols V, A, X, and O 
(Sayali Sandbhor 2019) are used to show the direction of the links be-
tween the two risk factors ci andcj.  

(i). V: To show a relationship from risk factor ci to risk factor cj but 
not vice versa; the relationship can be expressed as V followed by 
[Very high (VH), High (H), Low (L), Very low (VL)]. For example, 
V (VH) or V(H) or V(L) or V(VL).  

(ii). A: To show the relationship from risk factor cj to risk factor ci but 
not vice versa; the relationship can be expressed as A followed by 
[Very high (VH), High (H), Low (L), Very low (VL)].  

(iii). X: To show the relationship from risk factor ci to cj and risk factor 
cj toci; the relationship can be expressed as X followed by [Very 
high (VH), High (H), Low (L), Very low (VL)]. 

(iv). O: To show no existence of a relationship between two risk fac-
tors; the relationship can be represented as O followed by [No 
influence (No)]. 

3.1.2. Develop aggregated SSIM using a new double alpha-cut method  

(i). Develop aggregated fuzzy SSIM 

The opinions of the h experts 
(

M
≈ 〈1〉

,M
≈ 〈2〉

,⋯M
≈ 〈h〉 )

on risk fac-

tors are collected. Then, the aggregated fuzzy SSIM M
≈

is obtained 
according to Eq. (10). 

M
≈

=

[

m≈ ij

]

n×n
=

M
≈ 〈1〉

+ M
≈ 〈2〉

+ ⋯M
≈ 〈h〉

h

m≈ ij =

((

mL
ij1,m

L
ij2,mL

ij3,mL
ij4; h

L
(

M
∼ L

ij

))

,

(

mU
ij1,mU

ij2,mU
ij3,m

U
ij4; h

U
(

M
∼ U

ij

)))

(10)    

(ii). Develop aggregated fuzzy SSIM 
To establish an aggregated SSIM, the alpha-cut method is a 

method to deal with uncertainty, by which we can decompose the 
membership function of a fuzzy set into intervals (Rouhparvar 
and Panahi, 2015). The concept of alpha level sets of fuzzy sets 
was initiated by Nguyen (1978), regarded as a simple and effec-
tive way to convert fuzzy numbers into crisp values (Dymova, 
et al., 2015; Liao, et al., 2021; Yang, et al., 2020). The most 

commonly used alpha-cuts of IT2FS A
≈

are presented as Eq. (11) 
(Dymova, et al., 2015). Where a(α) ∈ [al(α), ar(α) ], b(α) ∈ [bl(α),
br(α) ] and0⩽α⩽1. 

A
≈

(α) =
{

x|μ
A
≈(x)⩾α, μ

A
≈(x)⩾α

}
= {a(α), b(α) } (11) 

To avoid the overlap of the left and right intervals of the alpha-cuts of 

a IT2TrFNA
≈

=
[(

aU
1 , aU

2 , aU
3 , aU

4 ; hU
A
)
,
(
aL

1, aL
2, aL

3, aL
4; hL

A
) ]

, Yang, et al. 
(2020) make a modification of ar(α) andbr(α), which are defined as 
follows: 

ar(α)≜

⎧
⎪⎨

⎪⎩

ar(α), α ∈
[
0, hL

A

]

aL
2 + aL

3

2
, α ∈

[
hU

A , h
L
A

] (12)  

br(α)≜

⎧
⎪⎨

⎪⎩

bl(α),α ∈
[
0, hL

A

]

aL
2 + aL

3

2
, α ∈

[
hU

A , h
L
A

] (13) 

The lower μ
A
≈(x) and upper μ

A
≈(x) membership functions of IT2TrFNS 

are defined as follows: 

Fig. 4. The flow chart of TISM.  

Table 1 
The linguistic terms of IT2TrFNs.  

Linguistic terms IT2TrFNs 

Very high influence(VH) [(0.8,0.9,0.9,1.0;1),(0.85,0.9,0.9,0.95;0.9)] 
High influence(H) [(0.6,0.7,0.7,0.8;1),(0.65,0.7,0.7,0.75;0.9)] 
Low influence (L) [(0.4,0.5,0.5,0.6;1),(0.45,0.5,0.5,0.55;0.9)] 
Very low influence (VL) [(0.2,0.3,0.3,0.4;1),(0.25,0.3,0.3,0.35;0.9)] 
No influence (No) [(0,0.1,0.1,0.1;1),(0,0.1,0.1,0.05;0.9)]  
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μ
A
≈(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x − aL

1

)
hL

A

aL
2 − aL

1
, aL

1⩽x⩽aL
2

hL
A, aL

2⩽x⩽aL
3

(
aL

4 − x
)
hL

A

aL
4 − aL

3
, aL

3⩽x⩽aL
4

0, otherwise

(14)  

μ
A
≈(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x − aU

1

)
hU

A

aU
2 − aU

1
, aU

1 ⩽x⩽aU
2

hU
A , aU

2 ⩽x⩽aU
3

(
aU

4 − x
)
hU

A

aU
4 − aU

3
, aU

3 ⩽x⩽aU
4

0, otherwise

(15) 

The definition of the alpha-cuts of IT2TrFNs is depicted in Fig. 5: 
A number of intermediate intervals could be obtained by cutting the 

membership functions by the alpha-cut. However, the widely used 
alpha-cuts of IT2TrFNs can only decompose the membership functions 
of a fuzzy set into intervals. As an important part of the TISM framework, 
the reachability matrix can help reflect the contextual relationships. To 
reach the reachability matrix with numerical values of 0 and 1, we refer 
to the idea of the double alpha-cut-based consensus measurement 
method in the study of Liao, et al. (2021) and propose a new double 
alpha-cut method to convert the IT2FNs in SSIM into crisp numbers. The 
specific steps are as follows: 

The α1-cut set of IT2TrFN is defined as: 

μα1

A
≈ =

{
x|μ

A
≈(x)⩾α1, μ

A
≈(x)⩾α1

}
=
{

a
(
α1), b

(
α1) } (16) 

To demonstrate the characteristics of using double alpha-cut to deal 
with fuzzy information, a simple example is provided. 

Example 1:Let an IT2TrFNA
≈

1 = [(0.1,0.3, 0.4, 0.5;1), (0.2,0.3,
0.35,0.4; 0.9) ]. The membership functions, which have the domainU =

[0,1],a
(
α1) = [0.3, 0.475],b

(
α1) = [0.227,0.386] ofα1 = 0.25, μ0.25

A
≈

1 

is{[0.3,0.475], [0.227,0.386] }. 
As we can see from Example 1, the α1-cut set μα1

A
≈ shows the distri-

bution of the membership degrees corresponding to an IT2TrFN when x 
is fixed asα1. Then, the second alpha-cut, α2-cut set is introduced as 
follows: 

μα1 ,α2

A
≈ =

{
0, if al

(
α1)<α2, ar

(
α1)<α2, bl

(
α1)<α2, br

(
α1)<α2

1, others
(17) 

Example 2: In Example 1, μ0.25
A
≈

1 
is{[al(α1), ar(α1) ] = [0.3, 0.475],

[bl(α1), br(α1) ] = [0.227,0.386] }. Let α2 be 0.1, 0.3 and 0.6 respec-
tively. Whenα2 = 0.1, both al(α1), ar(α1) and bl(α1), br(α1) are bigger 
thanα2, so μ0.25,0.1

A
≈

1 
is 1. Whenα2 = 0.3, althoughbl(α1) = 0.227 is smaller 

than 0.3, al(α1), ar(α1) and br(α1) is bigger thanα2. Hence, μ0.25,0.5

A
≈

1 
is 1 as 

well.α2 = 0.6, because both al(α1), ar(α1) and bl(α1), br(α1) are smaller 
thanα2,μ0.25,0.9

A
≈

1 
is 0. 

Based on the double alpha-cut proposed above, the IT2TrNs are 

defuzzified into 0 or 1. In this way, convert the information in M
≈

into 1 
and 0 to construct the aggregated SSIMM. 

M =
[
Mij
]

n×n =

⎡

⎢
⎢
⎣

M11 M12 ⋯ M1n
M21 M22 ⋯ M2n

⋮ ⋮ ⋱ ⋮
Mn1 Mn2 ⋯ Mnn

⎤

⎥
⎥
⎦

Mij =

⎧
⎪⎪⎨

⎪⎪⎩

0, μα1 ,α2

m≈ ij
= 0

1, μα1 ,α2

m≈ ij
= 1

(18)  

3.1.3. Get hierarchical digraph based on bidirectional extraction method  

(i). Developing Reachability Matrix and transitivity check 
Then, the aggregated SSIM matrix is turned into a reachability 

matrix. The final reachability is denoted asN. A transitivity check 
among pairs of risk factors should be done simultaneously to 

Fig. 5. The alpha-cut of the IT2TrFNs.  
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avoid unnecessary iteration. 1* implies the transitivity between 
selected pairs of risk factors, which are changed from 0 to 1. 
Then, the final reachability matrix N is obtained according to Eqs. 
(19) and (20) (Warfield, 1974). 

Let B be a multiplying matrix which is defined as follows, where I is 
an identity matrix: 

B = M + I (19)  

Bk− 1 ∕= Bk = Bk+1 = N (20)    

(ii). Reachability Matrix Partition—Bidirectional extraction 
In this step, the final reachability matrix is partitioned at 

different levels. On the basis of the reachability matrixN, a 
reachability setR, an antecedent set Q and an intersection set G 
are obtained, whereG = R ∩ Q. R is the column set of the i th row 
in the reachable matrix N containing the element 1, Q is the set of 
rows with element 1 in the i th column in the reachable matrixN. 
The result-first hierarchy extraction rule isG(cl) = R(cl). The 
cause-first hierarchy extraction rule isG(cl) = Q(cl). In a hier-
archical diagram, the factors at the lowest level are the root 
causes and the factors at the top level are the output results. The 
factors at the middle level are the transition level, which are both 
causes and results. In order to keep all the root cause factors at the 

Fig. 6. Structure transformation of BN.  

Fig. 7. The particular example of BN.  
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lowest level and the final result factors at the top level, this sec-
tion defines a new bidirectional extraction method. The rotation 
extraction rule method is G(cl) = R(cl) for the first iteration and 
G(cl) = Q(cl) for the second iteration; the rest should be 
deduced by analogy.  

(iii). Developing Skeleton Matrix 
If there is a loop in the system, after the contraction processing 

is performed, all the forward edges of the contraction matrix 
obtained will be deleted. The resulting matrix is called the skel-
eton matrix. If the original matrix does not have loops, the skel-
eton matrix S conforms to a simple algebraic formula. 

S = N − (N − I)2
− I (21)    

(iv). Creating Digraph for TISM 
After determining the levels of risk factors, use the factors’ 

serial number and the directional arrow to construct the re-
lationships between the risk factors. The final TISM model shows 
all transitive links and direct influential links. Arrows point from 
lower-level factors to upper-level. It means that the lower-level 
factors have an influence on the upper-level factors. 

3.2. The risk evaluation and analysis based on the fuzzy BN 

The fuzzy BN is applied to analyze COVID-19 medical waste trans-
portation risk factors quantitatively. IT2FNs is combined with BN to 
model the objective uncertainties caused by probabilistic variations of 
risk factors. The prior probabilities and the conditional probabilities are 
calculated according to the centroid of IT2FNs. BN is introduced to 
provide a description of risk factors and their interactions with graphical 
representations and evaluate the risk probability quantitatively. 

3.2.1. Construct a BN and apply IT2TFNS to calculate the probabilities 
After obtaining the hierarchy diagram of risk factors, BN provides a 

graphical structure in a probabilistic approach based on the TISM 
digraph, including several nodes and the correlation between nodes. 
Netica software package, version 5.18, is utilized in this study to carry 
out the BN application, which is widely used in many studies (Fan, 
Blanco-Davis, Yang, Zhang, & Yan, 2020; Fan, Zhang, Blanco-Davis, 
Yang, & Yan, 2020; Sahin, et al., 2019). Netica is practical software 
with an intuitive user interface that is great for BN applications. The 
most recent and quickest algorithms are utilized in conjunction with the 
networks to carry out various types of inference (Erkan, et al., 2021). 
The structure transformation of BN is shown in the Fig. 6. The BN is 
composed of topological structure and conditional probability tables. 
Fig. 7 shows the particular example of BN with two root nodes, two leaf 
nodes and one top event. 

To obtain the complete BN, experts are required to estimate the prior 
probabilities and conditional probabilities of nodes. In this paper, a five- 
level linguistic term is selected for expert expression, as shown in 
Table 1. To determine the probabilities of all nodes, the individual in-
formation of each expert should be aggregated firstly. For IT2FSs, a large 
variety of fuzzy power aggregation operators is suggested (Liu and Yu, 
2014; Zhang, 2013). Among them, a traditional aggregation operator, 
named generalized weighted average (GWA) operator, is one of the most 
widely used operator for multiple attribute group decision making with 
fuzzy information (Chou and Cheng, 2012; Liu and Tang, 2016; Wang, 
et al., 2016). It derives a group evaluation matrix based on the weights 
of each expert. The equation is shown below. 

GWA
(

o≈1, o≈2,⋯, o≈h

)

=

(
∑h

k=1
ϑko≈

λ

k

)1/λ

(22)  

where 
(

o
≈

1, o
≈

2,⋯, o
≈

h

)

represents the risk factors’ probabilities 

evaluation provided by h experts, ϑk represents the weights of the 
expertek. Drawing the experience of the literature (Liu, 2011), takeλ =

1. The aggregation can be described as the following form: 

GWA
(

o≈1, o
≈

2,⋯, o
≈

h

)

=
∑h

k=1
ϑko≈

k
=

⎛

⎜
⎜
⎜
⎝

o≈11 o≈12 ⋯ o≈1n

o≈21 o≈22 ⋯ o≈1n
⋮ ⋮ ⋮ ⋮

o≈m1 o≈m2 ⋯ o≈mn

⎞

⎟
⎟
⎟
⎠

(23)  

where. 

o≈ij =
[(

oU
ij1, oU

ij2, oU
ij3, o

U
ij4; h

U
ij

)
,
(

oL
ij1, o

L
ij2, o

L
ij3, o

L
ij4; hL

ij

) ]
=

[
∑h

k=1
ϑk

(

o≈
k

ij

)]

=

[(
∑h

k=1
ϑkokU

ij1 ,
∑h

k=1
ϑkokU

ij2 ,
∑h

k=1
ϑkokU

ij3 ,
∑h

k=1
ϑkokU

ij4 ;
∑h

k=1
ϑkokU

ij

)

,

(
∑h

k=1
ϑkakL

ij1,
∑h

k=1
ϑkakL

ij2,
∑h

k=1
ϑkakL

ij3,
∑h

k=1
ϑkakL

ij4;
∑h

k=1
ϑkhkL

ij

)
]

(24) 

Next, the centroid of an IT2TrFN is applied to calculate the proba-
bilities of the factors based on the aggregated evaluation information. 
Suppose the risk status of the risk factors are occurrence (Y) and non- 
occurrence (N), invite experts to give opinions on risk status Y accord-
ing to Table 1.. The prior probabilities and conditional probabilities of 
risk factors are calculated according to the following equations. For an 

IT2TrFNO
≈

=
[(

oU
1 , oU

2 , oU
3 , oU

4 ; hU
O
)
,
(
oL

1, oL
2, oL

3, oL
4; hL

O
) ]

, μ
O
≈(x) and μ

O
≈(x)

can be derived according to the Eqs. (14) and (15). The centroid C
O
≈ of an 

IT2TrFN O
≈

is the union of the centroids of all its embedded type-1 fuzzy 

setsOe. cl

(

O
≈
)

and cr

(

O
≈
)

represent the left and right endpoints of the 

centroid of an IT2TrFNO
≈

. 

C
O
≈ = ∪ ∀Oe cO

≈(Oe) =
{

cl

(

O
≈
)
,…cr

(

O
≈
)}

(25) 

Let xi(i = 1, 2,⋯N) represents the discretization of an IT2TrFN, the 

specific calculation formulas of cl

(

O
≈
)

and cr

(

O
≈
)

are defined as Eqs. (26) 

and (27). The prior probabilities of root nodes and the conditional 
probabilities of leaf nodes can be calculated according to Eq. (28). Then, 
apply the probabilities to the Netica software. 

cl

(

O
≈
)

= min
∀Oe

c
O
≈(Oe) = min

∀θi∈
[

μ
O
≈(x),μ

O
≈(x)
]

(∑N
i=1xiθi
∑N

i=1θi

)

(26)  

cr

(

O
≈
)

= max
∀Oe

c
O
≈(Oe) = max

∀θi∈
[

μ
O
≈(x),μ

O
≈(x)
]

(∑N
i=1xiθi
∑N

i=1θi

)

(27)  

C
(

O
≈
)
=

cl

(

O
≈
)

+ cr

(

O
≈
)

2
(28)  

3.2.2. Assess the risk probability of the top eventT. 
BN provides a description of risk factors and their interconnections 

by graphical representations. Risk factor(s) at the top level (level I) 
should be called top event(s)T. The risk probability of the top event T 
can be calculated by inputting the prior probabilities and the conditional 
probabilities of the antecedent set{X1,X2,⋯Xt}, as shown in Eq. (29). 

P(T) =
∑

P(X1,X2,⋯Xt)P(T|X1,X2,⋯Xt ) (29)  

where P(T) represents the probability of the top event, P(X1,X2,⋯Xt) is 
the joint probability distribution ofX, which is an antecedent set of t risk 
factors. P(T|X1,X2,⋯Xt ) is the conditional probability distribution. 
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3.2.3. Identify the sensitive factors 
Sensitivity is used to measure the degree of influence of changes in 

the state of each risk factor on the change in the state of the top eventT. 
The sensitivity calculation can identify the risk factors that have a 
greater impact on the top event and should be controlled in the event 
development (Zhang, TerMaath, & Shields, et al., 2021). The equation is 
expressed as follows, wherei ∈ [1, t]: 

IY(Xi)=
1
2

[
|P(T =Y|Xi = Y ) − P(T = Y) |

P(T =Y)

]

+

[
|P(T =Y|Xi =N ) − P(T =Y) |

P(T = Y)

]

(30)  

3.2.4. Perform the posterior causative diagnosis 
According to Eq. (31), the posterior causative diagnosis is performed 

by backward inference of the BN, where i ∈ [1, t]. Suppose the top event 
T is in the occurrence stateY, then calculate the posterior probability of 
each risk factor state (where k is equal to Y or N). The higher the pos-
terior probability at the state Y of risk factors, the higher the probability 
that these risk factors may cause the top event to be in the stateY. The 
posterior probability of each risk factor is ranked from largest to 
smallest. When the top event occurs, each risk factor is examined in turn. 

P(Xi = k|T = Y ) =
P(Xi = k)P(T = Y|Xi = k )

P(T = Y)
(31)  

Fig. 8. The specific steps of the integrated risk evaluation model.  

Table 2 
The description of experts.  

Experts ID Position Age Working experience 

e1 Doctor 43 13 
e2 Supervisor 37 9 
e3 Transportation worker 35 10  

Table 3 
The descriptions of risk factors.  

number Risk factors Literature support 

c1 Employee infection risk (Akpieyi, et al., 2015; Kumar, 
et al., 2015) 

c2 Low employee safety awareness (Manupati, et al., 2021) 
c3 Improper operation by employee (Huang, et al., 2020; Kumar, 

et al., 2015; Manupati, et al., 
2021) 

c4 Inadequate personal protection of 
employee 

(Huang, et al., 2020; Ouyang, 
et al., 2021) 

c5 Improper disinfection of transfer 
tools 

(Akpieyi, et al., 2015; Manupati, 
et al., 2021) 

c6 Unsafe handling equipment (Huang, et al., 2020; Kumar, 
et al., 2015) 

c7 Unreasonable collection and 
transportation of medical waste 
containers 

(Ouyang, et al., 2021) 

c8 Irregular construction of temporary 
storage sites for medical waste 

(Taslimi, et al., 2020) 

c9 Unreasonable location of storage 
location 

(Kumar, et al., 2015; Taslimi, 
et al., 2020) 

c10 Failure to conduct regular health 
checkups on relevant personnel 

(Akpieyi, et al., 2015; Manupati, 
et al., 2021) 

c11 Insufficient technical training (Ouyang, et al., 2021; Song, 
et al., 2020) 

c12 Lack of safety education (Huang, et al., 2020; Makan and 
Fadili, 2020) 

c13 Insufficient accountability system (Makan and Fadili, 2020; Song, 
et al., 2020) 

c14 Insufficient emergency response 
mechanism for safety management 

(Huang, et al., 2020; Makan and 
Fadili, 2020) 

c15 Insufficient supervision of collection 
and disposal 

(Makan and Fadili, 2020) 

c16 Harsh processing environment (Huang, et al., 2020)  
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4. The solution procedures for COVID-19 medical waste 
transportation risk 

Based on the above research methodology for the medical waste 
transportation process, Section 4.1 presents the specific steps of the in-
tegrated risk evaluation model for COVID-19 medical waste trans-
portation, which consists of three Stages as shown in Fig. 8. Stage 1 is to 
identify risk factors and develop aggregated SSIM. Potential risk factors 
are identified and IT2FSs are applied to express the uncertainty in ex-
perts’ evaluation. A new double alpha-cut of IT2FNs is first combined 
with TISM method to develop aggregated SSIM. Stage 2 is to construct a 
hierarchical digraph of risk factors. The type-2 fuzzy sets and a new 
bidirectional extraction method are combined with TISM method to 
construct the hierarchy diagram of risk factors. Stage 3 is to construct a 
BN and evaluate risks. The hierarchy diagram of risk factors is 
substituted into BN to describe the objective uncertainties caused by 
probabilistic variations of risk factors. The main characteristics of the 
integrated model are listed in Section 4.2. 

4.1. The specific steps of the integrated model 

Stage 1: Identify risk factors and develop aggregated SSIM. 
Step 1.1: Identify potential risk factors. 
The first step is to recognize all potential risk factors of medical waste 

transportation. A set of risk factors is established asC = {c1, c2,⋯cn}. 
E = {e1, e2,⋯eh} represents h experts who provide the evaluation of the 
risk factors’ relationships. 

Step 1.2: Define the contextual relationship between factors by 
IT2TFS. 

The contextual relationship between factors C = {c1, c2,⋯cn} is 
gathered from a group of h expertsE = {e1, e2,⋯eh}. The direction of the 
relationship between the two factors ci and cj can be denoted by the 
following four symbols V, A, X and O and the linguistic terms of 

IT2TrFNs. The evaluation matrix can be expressed asM
≈ 〈1〉

,M
≈ 〈2〉

,⋯M
≈ 〈h〉

. 
Step 1.3: Develop aggregated fuzzy SSIM. 

The aggregated fuzzy SSIM matrix M
≈

is obtained according to Eq. 
(10). 

Step 1.4: Develop aggregated SSIM using the double alpha-cut of 
IT2TrFNs. 

Then, the aggregated SSIM M with crisp numbers can be obtained 
based on the double alpha-cut of IT2TrFNs, using Eq. (18). 

Step 1.5: Calculate the final reachability matrix. 
The final reachability N is calculated by using Eqs. (19) and (20). 

Then, a transitivity check among pairs of factors should be done 
simultaneously to avoid unnecessary iteration. 

Step 1.6: Partition the levels of risk factors. 
Based on the reachability matrix, the levels of factors are determined 

according to the bidirectional extraction method; the rule is 
G(cl) = R(cl) for the first iteration,G(cl) = Q(cl) for the second itera-
tion and the rest be deduced by analogy. 

Step 1.7: Develop the skeleton matrix. 
If the original matrix does not have loops, the skeleton matrix can be 

obtained by using Eq. (21). 
Step 1.8: Creating a hierarchical digraph of risk factors. 
After determining the levels of risk factors, the final TISM uses a 

directional arrow to construct the relationship between the factors 
shown in the skeleton matrix. The hierarchical digraph of risk factors is 

Table 4 

The fuzzy SSIM matrix M
≈ 〈1〉

by experte1.  

e1 c16 c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 

c2 A(VL) O(No) A(H) O(No) O(No) O(No) A(H) O(No) A(L) A(H) A(VH) A(VH) A(VH) A(L) O(No) 
c3 O(No) O(No) O(No) A(H) A(VH) A(L) V(H) O(No) O(No) V(L) O(No) V(H) V(VH) V(L)  
c4 O(No) O(No) O(No) A(H) A(H) A(H) O(No) A(H) O(No) V(L) O(No) V(H) O(No)   
c5 O(No) A(H) O(No) A(H) A(VH) A(L) O(No) O(No) O(No) O(No) O(No) O(No)    
c6 O(No) A(H) O(No) A(VH) A(VH) A(H) O(No) O(No) O(No) O(No) O(No)     
c7 O(No) O(No) O(No) O(No) O(No) O(No) O(No) A(L) A(L) O(No)      
c8 O(No) A(VH) O(No) A(VH) A(H) A(H) O(No) O(No) O(No)       
c9 O(No) O(No) O(No) A(L) A(H) O(No) O(No) O(No)        
c10 O(No) O(No) O(No) A(H) A(H) O(No) O(No)         
c11 O(No) O(No) O(No) A(L) A(VH) O(No)          
c12 O(No) O(No) O(No) O(No) O(No)           
c13 V(L) V(L) V(H) O(No)            
c14 O(No) A(H) O(No)             
c15 O(No) O(No)              
c16 O(No)                

Table 5 
The final reachabilityN.   

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 

c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c2 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 
c3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
c4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c9 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
c10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c11 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 
c12 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 
c13 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
c14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c15 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 
c16 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0  
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created. 
Stage 2: Construct a BN and evaluate risks. 
Step 2.1: Construct a BN. 
After obtaining the hierarchy diagram of risk factors, the BN is 

constructed according to the transformation rules shown in Fig. 6. 

Step 2.2: Express the probabilities of risk factors using IT2TrFNs. 
After obtaining the hierarchical digraph, experts give evaluation 

opinions on the probabilities of risk factors by using the linguistic terms 
of IT2TrFNs shown in Table 1. 

Step 2.3: Calculate the probabilities according to the centroid of 

Table 6 
The bidirectional extraction.  

Variables Reachability set Antecedent set Intersection set Level 

(a):Iteration-1     
c1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1 1 
c2 1,2,3,4,5,10 2,11,12,13,15 2  
c3 1,3,5 2,3,11,12,13,15,16 3  
c4 1,4 2,4,11,12,13,15 4  
c5 1,5 2,3,5,11,12,13,15,16 5  
c6 1,6 6,9,12,13,15,16 6  
c7 1,7 7,11,12,13,15 7  
c8 1,8 8,12,13,15 8  
c9 1,6,9 9,12,13,15 9  
c10 1,10 2,10,11,12,13,15 10  
c11 1,2,3,4,5,7,10,11 11 11  
c12 1,2,3,4,5,6,7,8,9,10,12,13,14,15,16 12 12  
c13 1,2,3,4,5,6,7,8,9,10,13 12,13 13  
c14 1,14 12,14 14  
c15 1,2,3,4,5,6,7,8,9,10,13,15 12,13,15 13,15  
c16 1,3,5,6,16 12,16 16   

(b):Iteration-2     
c2 2,3,4,5,10 2,11,12,13,15,16 2  
c3 3,5 2,3,11,12,13,15,16 3  
c4 4 2,4,11,12,13,15 4  
c5 5 2,3,5,11,12,13,15,16 5  
c6 6 6,9,12,13,15,16 6  
c7 7 7,11,12,13,15 7  
c8 8 8,12,13,15 8  
c9 6,9 9,12,13,15 9  
c10 10 2,10,11,12,13,15 10  
c11 2,3,4,5,7,10,11 11 11 II 
c12 2,3,4,5,6,7,8,9,10,12,13,14,15,16 12 12 II 
c13 2,3,4,5,6,7,8,9,10,13 12,13 13  
c14 14 12,14 14  
c15 2,3,4,5,6,7,8,9,10,13,15 12,13,15 13,15  
c16 3,5,6,16 12,16 16   

(c):Iteration-3     
c2 2,3,4,5,10 2, 13,15,16 2  
c3 3,5 2,3,13,15,16 3  
c4 4 2,4,,13,15 4 III 
c5 5 2,3,5,13,15,16 5 III 
c6 6 6,9,,13,15,16 6 III 
c7 7 7,13,15 7 III 
c8 8 8,13,15 8 III 
c9 6,9 9,13,15 9  
c10 10 2,10,13,15 10 III 
c13 2,3,4,5,6,7,8,9,10,13 13 13  
c14 14 14 14 III 
c15 2,3,4,5,6,7,8,9,10,13 13,15 13  
c16 3,5,6,16 16 16   

(d):Iteration-4     
c2 2,3, 2,13,15,16 2  
c3 3, 2,3,13,15,16 3  
c9 9 9,13,15 9  
c13 2,3,9,13 13 13 IV 
c15 2,3,9,13,15 13,15 13,15 IV 
c16 3, 16 16 16 IV  

(e):Iteration-5     
c2 2,3, 2 2  
c3 3, 2,3, 3 V 
c9 9 9, 9 V  

(f):Iteration-6     
c2 2 2 2 VI  
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IT2TrFNs. 
The prior probabilities of root nodes and the conditional probabili-

ties of leaf nodes are calculated according to the centroid of IT2TrFNs, 
using Eqs. (22)–(28). 

Step 2.4: Assess the risk probability of the top event. 
Based on the prior probabilities and conditional probabilities, the 

risk probability of the top event T is obtained by using Eq. (29). 
Step 2.5: Identify the sensitive factors. 
Set the probability value of the node state Y for each risk factor to 1 

and 0 respectively, represents the occurrence and non-occurrence of 
each risk factor, record the probability value of the top eventT. Then, 
calculate the sensitivity of each risk factor according to Eq.(30). 

Step 2.6: Diagnose the event causation. 
Set the probability of risk occurrence Y of the top event T as 1, and 

obtain the posterior probability of each node to diagnose the event 
causation by using Eq. (31). 

Fig. 9. The final TISM digraph.  

Table 7 
The evaluation of root nodes.  

Root nodes e1 e2 e3 

c11 VH VH H 
c12 VH H H  

Table 8 
The aggregated evaluation matrix of root nodes.  

Root 
nodes 

The aggregated evaluation 

c11 [(0.7333,0.8333,0.8333,0.9333;1.0),(0.7833,0.8333, 
0.8333,0.8833;0.9)] 

c12 [(0.6667,0.7667,0.7667,0.8667;1.0), 
(0.7167,0.7667,0.7667,0.8167;0.9)]  

Fig. 10. The occurrence probability of the top event.  
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4.2. The main characteristics of the integrated model 

The integrated model for COVID-19 medical waste transportation 
based on extended fuzzy TISM and fuzzy BN has been described above. 
This model can help analyze the risk factors in the medical waste 
transportation process under high uncertain environment, identify the 
sensitive factors and diagnose the event causation. The main charac-
teristics are summarized below:  

(i). The COVID-19 pandemic is an emergency without sufficient 
historical data. The evaluation of COVID-19 medical waste 
transportation risk requires the support of experts in related 
fields. The proposed model considers the ambiguous evaluation 
information expressed by experts; introduces the linguistic terms 
and corresponding IT2FNs to avoid the omission and distortion of 
evaluation information under uncertain environments.  

(ii). Considering the interaction relationships between/among risk 
factors, TISM is combined with IT2FSs to analyze the contextual 
relationships of risk factors under uncertain environment. 
Moreover, a new double alpha-cut is proposed to defuzzificate the 
IT2FNs in the process of constructing the aggregated SSIM to help 
obtain a hierarchical digraph of risk factors.  

(iii). A new bidirectional extraction method is first developed to 
partition the levels of risk factors in the process of TISM. The 
bidirectional extraction method can reflect the dialectical rela-
tionship between causes and results more realistic and effective.  

(iv). After obtaining the hierarchical digraph of risk factors by using 
the extended fuzzy TISM method, the digraph is transformed into 
a BN to make a comprehensive risk evaluation. Moreover, the 
prior probabilities and conditional probabilities of risk factors are 
expressed by IT2FNs. 

5. Case study 

In this section, a case study of the COVID-19 medical waste trans-
portation process at Lukou international airport in Nanjing is proposed 
to demonstrate the effectiveness and advantages of the proposed model. 
The detailed description and the calculation process of the case are 
shown as follows: 

5.1. The detailed description of the case in Nanjing 

On July 20, 2022, 9 samples were found to be positive in a routine 
nucleic acid test conducted at Lukou international airport in Jiangning 
District, Nanjing, all of which were airport cleaners. As of 24:00 on July 
25, this round of Nanjing epidemic has affected 5 provinces and 9 cities. 
As of 24:00 on July 27, Nanjing has reported a total of 153 local 
confirmed cases and 2 local asymptomatic infections. The new cases are 
mainly concentrated in Lukou Airport and surrounding areas, and many 
cluster outbreaks have been found.in the reported cases. The initial 
COVID-19 virus in Nanjing was caused by the cleaner who cleaned the 
cabin of the CA910. The handling of the protective clothing after work 
was not standardized, which caused the individual infection and spread 
among the cleaners. Some other airport workers were infected by con-
tact with cleaners or the polluted environment. Since corona virus has a 
high degree of spatial infectious, latent and viral, handling the protec-
tive clothing can also be regarded as part of the medical waste trans-
portation process. Therefore, we take this Nanjing epidemic as the 
background to assess the risk of medical waste transportation. 

5.2. The calculation process of the case study 

Stage 1: Identify risk factors and develop aggregated SSIM. 
Step 1.1: Identify potential risk factors. 
Three relevant experts E = {e1, e2, e3} are invited to evaluate the risk 

factors’ relationships. The three experts with different backgrounds and 
fields are selected to establish the expert group. 

Table 2 shows the description of the three experts. Experts e1 and e2 
are both from Zhongda Hospital Southeast University, e1 is a doctor in 
the hospital’s respiratory medicine department, e2 is a supervisor of the 

Table 9 
The sensitivity of risk factors.  

Risk factor P(T = Y|Xi = Y ) P(T = Y|Xi = N ) IT = Y(Xi) Rank 

c2  0.452  0.267  0.185 3 
c3  0.454  0.345  0.109 5 
c4  0.548  0.242  0.306 1 
c5  0.542  0.306  0.236 2 
c6  0.488  0.364  0.124 4 
c7  0.409  0.342  0.067 8 
c8  0.386  0.368  0.018 11 
c9  0.389  0.374  0.015 14 
c10  0.4  0.356  0.044 10 
c11  0.396  0.295  0.101 6 
c12  0.383  0.367  0.016 13 
c13  0.404  0.32  0.084 7 
c14  0.385  0.369  0.016 12 
c15  0.381  0.379  0.002 15 
c16  0.416  0.364  0.052 9  

Fig. 11. The event causation diagnosis.  
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hospital. Expert e3 is a transportation worker responsible for the trans-
portation of hospital medical waste. The three experts are suggested to 
give evaluation information in terms of linguistic terms, which is shown 
in Table 1. 

COVID-19 medical waste must be transported by special employee 
and vehicles. Employee must take standard precautions as required, 
such as medical surgical masks, gloves and work clothes. Personnel 
entering the isolation ward to collect medical waste should take pre-
cautions according to the requirements of the employee entering the 
area. Therefore, possible risks are the risk of employee infection and the 
risk of inadequate personal protection of employee. At the same time, 
the storage of COVID-19 medical waste in the special area of medical 
institutions shall not be mixed with other medical waste and domestic 
waste, and should be marked with “highly infectious waste” identifica-
tion signs and strict sealing measures should be adopted. Medical in-
stitutions should hand over the new crown medical waste to the medical 
waste disposal unit for disposal on the same day, specify the person 
responsible for management. According to the above transportation 
characteristics and the literature related to transportation risks, we can 
obtain 16 risk factors as shown in Table 3. 

Step 1.2: Define the contextual relationship between factors by 
IT2TFS. 

Define the contextual relationship between factors by IT2TFS. 
The relationship between the factors C = {c1, c2,⋯c16} is gathered 

from a group of three experts. The evaluation matrix M
≈ 〈1〉

represents the 
direction of the relationship between the two factors ci and cj given by 
the experte1, which is shown in Table 4. 

Step 1.3: Develop aggregated fuzzy SSIM. 

The aggregated fuzzy SSIM matrix M
≈

is obtained according to Eq. 
(10). Table A1 (see Appendix A) shows the detailed results. 

Step 1.4: Develop aggregated SSIM using the double alpha-cut of 
IT2TrFNs. 

The aggregated SSIM M can be obtained based on the double alpha- 
cut of IT2TrFNs,using Eq. (18). Table A2 (see Appendix A) shows the 
detailed results. 

Step 1.5: Calculate the final reachability matrix. 
The final reachability N is calculated by using Eqs. (19) and (20). A 

transitivity check among pairs of factors should be done simultaneously 
to avoid unnecessary iteration. Table A3 (see Appendix A) presents the 
aggregated SSIM M after transitivity check. Then, the final reachability 
N is calculated by using Eqs. (19) and (20) as shown in Table 5. 

Step 1.6: Partition the levels of factors. 
The levels of factors are determined according to the bidirectional 

extraction method. Table 6 presents the calculation steps of the bidi-
rectional extraction method. 

Step 1.7: Develop the skeleton matrix. 
If the original matrix does not have loops, the skeleton matrix S in 

Table A4 (see Appendix A) is obtained according to Eq. (21). 
Step 1.8: Creating a hierarchical digraph of risk factors. 
The level of each risk factor is determined through bidirectional 

extraction. Element 1 in the skeleton matrix determines where the arrow 
is pointing. Based on Table 6 and Table A4, the final TISM model is 
described in Fig. 9. 

Step 2: Construct a BN and evaluate risks. 
Step 2.1: Construct a BN. 
The BN structure is obtained based on the final TISM digraph. 

Fig. 12. The digraph obtained from traditional TISM.  

Table 10 
The prior probabilities ofc11, c12.   

c11 c12 

Y  0.7  0.6 
N  0.3  0.4  

Table 11 
The conditional probabilities ofc2.  

c13 c11 Y N 

Y Y  0.767  0.233 
Y N  0.483  0.517 
N Y  0.35  0.65 
N N  0.216  0.784  
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Step 2.2: Express the probabilities of risk factors using IT2TrFNs. 
The final TISM digraph is transformed into BN according to the 

corresponding relationship in Fig. 6. After obtaining the BN graphical 
structure, experts give evaluation opinions on the risk factors by using 
linguistic terms shown in Table 1. c1 (Employee infection risk) is the top 
event. 

Step 2.3: Calculate the probabilities according to the centroid of 
IT2TrFNs. 

The prior probabilities and conditional probabilities for each sub- 
indicator in the BN are determined by experts’ evaluation. The 
average probability of fuzzy occurrence for each factor is calculated 
according to the centrality calculation of IT2FNs. The c11 and c12 need to 
calculate the prior probabilities because the two nodes belong to root 
nodes, the results are shown in Table 7 and Table 8. The risk status of the 
risk factors are occurrence (Y) and non-occurrence (N), three experts are 
invited to give evaluation opinions on the risk status Y of the root nodes 
c11 and c12 in the BN structure. 

Assuming that three experts are given the same weight, that is,ϑk is 
assigned 1/3 in Eq. (23). The aggregated evaluation matrix is shown in 
the table below. 

Based on the aggregated evaluation matrix, the prior probabilities of 
c11 and c12 are calculated according to Eqs. (25)–(28), respectively as 
below: 

P(c11) = {c11 = Y, c11 = N} = {0.8333, 0.1667}

P(c12) = {c12 = Y, c12 = N} = {0.7667, 0.2333}

In the same way, the conditional probabilities of other leaf nodes are 
calculated based on the expert’s linguistic variable evaluation value. 

Step 2.4: Assess the risk probability of the top event. 
According to the prior probabilities of root nodes and conditional 

probabilities of leaf nodes, the BN is drawn on a visual interface in the 
Netica software. Through BN forward inference, the probability of 
occurrence for each risk factor is derived, and the calculation results are 
shown in Fig. 10. The occurrence probability of the top event (medical 
waste transportation risk accident) is 0.379, which is relatively high. 
Therefore, it is necessary to study the causative factors leading to the top 
event c1 to avoid the occurrence of larger accidents. 

Step 2.5: Identify the sensitive factors. 
Based on the BN structure, risk factors {c2, c3, c4⋯c16} can be 

expressed as an antecedent set of variablesXi(i ∈ 1, 2⋯15). In Netica 
software, the state of each risk factors in antecedent set is set to 1 and 
0 respectively, record the probability value of the top eventc1. The 
sensitivity of risk factors, which is the probability of top event c1 when 
the factor occurs(Y) minus the probability of c1 when the factor does not 
occur (N). The results are shown in Table 9. 

In view of the findings, the top event c1 (employee infection risk) 
increased obviously since the state of risk factors c4, c5, c2 changed 
respectively. The sensitivity of risk factor c4 is highest, which is 0.306. c4 
(Inadequate personal protection of employees) is the most sensitive 
factor, which means that c4 is a crucial control risk factor in the trans-
portation of medical waste. According to relevant news, the COVID-19 
outbreak in Lukou international airport caused the employee infection 
by improper self-protection of the cleaning staff. Therefore, in the pro-
cess of medical waste transportation and disposal, we should focus on 
controlling this risk factor, and minimize the possibility of this risk 
factor through control, to avoid the occurrence of employee infection. 

Step 2.6: Diagnose the event causation. 
Set the occurrence probability of the top event c1 as 1, and derive the 

posterior probability of each factor through BN backward inference, and 
the results are shown in Fig. 11. 

It can be seen from Fig. 11 that the largest accident causal chains are 
c12→c15→c13→c2→c4→c1 (Lack of safety education → Insufficient su-
pervision of collection and disposal → Insufficient accountability system 
→ Low employee safety awareness → Inadequate personal protection of 
employees → Employee infection risk) and c11→c2→c4→c1 (Insufficient 
technical training → Low employee safety awareness → Inadequate 
personal protection of employees → Employee infection risk). The risk 
factors on the largest causal chains are important factors leading to the 
top event T (Employee infection risk). Therefore, in the safety man-
agement of the medical waste transportation process, the above factors 
should be mainly controlled. 

According to a report from Website of the Central Commission for 
Discipline Inspection and State Supervision Commission (https://www. 
ccdi.gov.cn/pln/202107/t20210728_142075.html), Lukou interna-
tional airport had problems such as lack of supervision and unprofes-
sional management; various measures for epidemic prevention and 
control have not been implemented in detail, resulting in the spread of 
the COVID-19 epidemic. Moreover, the airport had the problem of 

Fig. 13. The event causation diagnosis based on traditional BN.  
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unprofessional management After the discovery of positive samples, the 
prevention and control management of relevant personnel at the airport 
was not in place, which led to the spread of the epidemic. The causal 
chains and critical factors identified by the proposed model are consis-
tent with this report. Moreover, we also identified several other cause 
factors, such as lack of safety education and low employee safety 
awareness. The obtained results prove the feasibility and effectiveness of 
the proposed model and provide a reference for preventing the occur-
rence of similar accidents. 

6. Comparisons analysis 

In this section, a comparison of our proposed model with traditional 
TISM and BN model is conducted. We substitute the data in the case 
study into the traditional TISM model. The level of each risk factor is 
determined through the result-first hierarchy extraction rule. The result- 
first hierarchy extraction rule isG(cl) = R(cl). Fig. 12 shows the digraph 
obtained from traditional TISM. 

Then the TISM digraph is transformed into BN to make compre-
hensive risk analysis. Referring from the traditional BN (Wang, et al., 
2022), the prior and conditional probabilities of risk factors are given by 
the experience of experts, represented by crisp numbers. Calculate the 
average of the probabilities given by the three experts. For example, the 
conditional probabilities of c2, the prior probabilities of c11, c12 are 
depicted in Table 10 and Table 11. 

From Fig. 13, we can conclude that the largest causal chains are c12→ 
c14→c1 (Lack of safety education → Insufficient emergency response 
mechanism for safety management → Employee infection risk). It can be 
seen that compared with the results obtained by the proposed model, 
many risk factors are lost in the accident causal chain obtained by the 
traditional BN model. The event causation diagnosis based on tradi-
tional BN is inconsistent with the mentioned factors in the report from 
Website of the Central Commission for Discipline Inspection and State 
Supervision Commission. The fuzzy BN proposed in this paper can 
provide a more complete and realistic accident causal chain because the 
IT2FNs can retain more uncertain information in the expert evaluation. 
At the same time, the hierarchical digraph obtained using traditional 
TISM has seven levels. c12 and c11 are both root factors, without being 
placed on the same level. It shows that the traditional hierarchical 
extraction method is not as effective as the bidirectional extraction 
method in reflecting the relationship between risk factors. 

Therefore, the differences in results calculated by the traditional 
model and our proposed model are mainly in the following aspects. (i) In 
the practical BN application, the risk evaluation information is often 
uncertain and imprecise on account of the incomplete and inaccurate 
information, required knowledge and capability of experts. We combine 
the IT2FNs with TISM and BN, considering the uncertainty evaluation 
information, reflecting the relationship between/among risk factors 
more accurately. (ii) We propose a new hierarchical extraction method 
to conduct the hierarchy digraph. And the cause and effect elements are 
separated in the resulting hierarchy, making the hierarchical relation-
ship between risk factors clearer. (iii) A new double alpha-cut is pro-
posed to defuzzificate the IT2FNs in the process of constructing the 
aggregated SSIM to help obtain a hierarchical digraph of risk factors. 

7. Conclusion 

The risk identification and evaluation of COVID-19 medical waste 

transportation can effectively prevent potential infection accidents. 
IT2FNs are adopted to reflect the subjectivity under uncertain envi-
ronments. The TISM is combined with IT2FNs to obtain a hierarchical 
digraph, which shows the relationships between risk factors, enhancing 
the understanding of complex accident systems and providing assistance 
in accident prevention. The hierarchical digraph obtained by fuzzy TISM 
is mapped to BN, assesses the occurrence probability of the top event 
using IT2TFS, identifies the sensitive factors and performs the posterior 
causative diagnosis. The feasibility of the integrated model is verified 
through the case study. 

The case of COVID-19 medical waste transportation process in 
Nanjing selects 16 risk factors and constructs a hierarchical digraph 
based on the extended fuzzy TISM method. Then, the hierarchical 
digraph is transformed into BN, the prior probabilities of root nodes and 
conditional probabilities of leaf nodes are determined. The sensitive 
factors are identified by setting the occurrence probability of the risk 
factor to 1. The posterior probabilities of risk factors through BN back-
ward inference is obtained by setting the occurrence probability of the 
top event as 1. The risk factor c4 (0.306) is the most sensitive factor, also 
in the largest accident causal chains, which means c4(inadequate per-
sonal protection of employees) is a crucial control risk factor in medical 
waste transportation process. The results can provide a reference for 
preventing the occurrence of similar accidents. 

The limitations of the proposed model mainly include two aspects. (i) 
The integrated model does not consider the significance of experts, 
which means that we have ignored the influences of the relative weights 
of experts on risk evaluation. (ii) The integrated model is failed to 
describe the dynamic situations when experts’ opinions change. Further, 
the integrated model will be extended to cover some generalized ag-
gregation operators to calculate the different weights of experts under 
uncertain environment. Henceforth, we will introduce some dynamic 
simulation techniques to fit dynamic situations in application better. 
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Appendix A 

In this appendix, we present detailed results about aggregated fuzzy SSIM matrixM
≈

, aggregated SSIMM, aggregated SSIM M after transitivity check 
and the skeleton matrix S of TISM method.  
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Table A1 

The aggregated fuzzy SSIM matrixM
≈

.   

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 

c1 0 No No No No No No No No No No No No No No No 
c2 No 0 L VH H No L No No H No No No No No No 
c3 L No 0 No H No L No No No No No No No No No 
c4 VH No No 0 No No No No No No No No No No No No 
c5 VH No No No 0 No No No No No No No No No No No 
c6 VH No No No No 0 No No No No No No No No No No 
c7 H No No No No No 0 No No No No No No No No No 
c8 L No No No No L No 0 No No No No No No No No 
c9 No No H No No L No No 0 No No No No No No No 
c10 H No No No No No No No No 0 No No No No No No 
c11 No L H L H No H No No No 0 No No No No No 
c12 No VH H VH VH No H H H VH No 0 No H L L 
c13 No H H H VH No VH L H L No No 0 No No No 
c14 H No No No No No No No No No No No No 0 No No 
c15 No No No H H No VH No No No No No H No 0 No 
c16 VL No H No No L No No No No No No No No No 0  

Table A2 
The aggregated SSIMM.   

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 

c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c2 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 
c3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
c4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
c10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c11 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 
c12 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 
c13 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 
c14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c15 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 
c16 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0  

Table A3 
The aggregated SSIM M after transitivity check.   

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 

c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c2 1* 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 
c3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
c4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c9 1* 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
c10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c11 1* 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 
c12 1* 1 1 1 1 1* 1 1 1 1 0 0 0 1 1 1 
c13 1* 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 
c14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c15 1* 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 
c16 1* 0 1 0 1* 1 0 0 0 0 0 0 0 0 0 0  
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