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Typhoid fever is an enteric disease caused by the pathogens Salmonella Typhi and Salmonella Paratyphi. Clinical surveillance networks 
are lacking in many affected areas, thus presenting a need to understand transmission and population prevalence. Environmental 
surveillance (ES) has been suggested as a potentially effective method in the absence of (or in supplement to) clinical surveillance. 
This review summarizes methods identified in the literature for sampling and detection of typhoidal Salmonella from environmental 
samples including drinking water, wastewater, irrigation water, and surface waters. Methods described use a trap or grab sampling 
approach combined with various selective culture and molecular methods. The level to which the performance of identified methods 
is characterized for ES in the literature is variable, thus arguing for the optimization and standardization of ES techniques.
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There is renewed interest in environmental surveillance (ES), 
as a programmatic tool, in the public health fight against 
Salmonella enterica serovars Typhi (S. Typhi) and Paratyphi 
(S. Paratyphi). Typhoid and paratyphoid fevers are enteric dis-
eases and, as such, are shed fecally. Environmental surveillance 
of wastewater samples has been proven to be a highly effective 
tool in combating other enteric pathogens, particularly polio. 
This review summarizes typhoid and paratyphoid fevers as a 
public health concern and recounts methods that have been re-
ported in the literature for sampling and detection of typhoidal 
Salmonella from environmental samples. Additionally, this re-
view discusses particular use cases (ie, actual scenarios when 
such methods could be applied), for programmatic surveillance 
of S. Typhi and S. Paratyphi. Literature searches in PubMed 
and Web of Science were performed. Studies reporting on en-
vironmental surveillance on S. Typhi and S. Paratyphi included 
in this review were identified using combinations of the key-
words typhoid fever, environmental surveillance, S. Typhi, S. 
Paratyphi, Salmonella spp, wastewater, sewage, septage, and 
water sampling.

Salmonella Typhi and S. Paratyphi are human-specific 
gram-negative bacterial pathogens, which are primarily respon-
sible for typhoid fever and paratyphoid fever, respectively. Both 
are human-restricted pathogens (ie, they have no known animal 

reservoir), and are transmitted from person to person through 
the fecal–oral route by ingesting contaminated food or water, or 
by contact with fecal matter from acute or chronically infected 
individuals [1]. Salmonella Typhi represents a major human 
health risk in many parts of the world, especially in developing 
countries where there is open defecation [2], where fecal matter 
collection and disposal is inefficient or reused in agriculture [3], 
and where there is a lack of access to safe water [4]. In partic-
ular, typhoid fever is an endemic disease in several South Asian 
and sub-Saharan African countries. Outbreaks can occur even 
in endemic settings if an environmental variable, population 
immunity, or circulating strain characteristics shift [1, 5].

The current disease burden estimate is quite imprecise be-
cause often the reported numbers are based on cases that were 
severe and needed hospitalization, but most patients do not de-
velop severe symptoms and are treated by local medical practi-
tioners or remain untreated [5]. Knowing and acknowledging 
the disease burden is crucial for making informed public health 
decisions such as vaccine strategies, allocating resources, and 
monitoring the effects of interventions [6]. However, as the 
burden of typhoid fever greatly varies over space and time (ie, 
the incidence can vary within a single city or geographical area), 
localized clinical surveillance data may not be easily extrapo-
lated [6]. Furthermore, traditional population-based study ap-
proaches to assess disease burden are resource intensive and 
expensive, requiring both robust laboratory infrastructure and 
population-based clinical data collection encompassing a sub-
stantial numbers of participants [7].

Given that typhoid fever is a disease that can transition be-
tween an active outbreak and a more latent/dormant endemic 
form [6], clinical surveillance alone may be inadequate for di-
sease monitoring within a population. In such cases or in the 
absence of clinical surveillance, ES may be an effective tool.
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ENVIRONMENTAL SURVEILLANCE

Environmental surveillance refers to the collection and anal-
ysis of environmental samples (eg, drinking water, wastewater) 
for a specific pathogen or screening for indicators of fecal con-
tamination. It is a practical tool for the protection of public 
health. For example, analysis of coliforms or other indicators 
in drinking water is routinely performed to assess water quality 
and ensure that public health is protected. ES of pathogens in 
water samples can be also useful for determining transmission 
pathways, identifying risk factors in outbreaks settings, and 
providing insight on the circulation of those pathogens within 
a population. The most developed ES program currently imple-
mented for an enteric pathogen is for poliovirus (PV). ES is an 
integral part of the eradication effort and is used to guide PV 
vaccination campaigns in endemic areas, areas with a risk PV 
importation, or outbreak locations, and to monitor circulation 
of the virus in the population in the absence of clinical acute 
flaccid paralysis cases [8, 9]. Like PV, S. Typhi and S. Paratyphi 
may be shed asymptomatically in a population at high levels. 
In contrast to PV, typhoid fever is not nearing eradication and 
does not currently have a widely implemented routine vacci-
nation program. As a result, the use cases for typhoid ES may 
deviate somewhat from that of PV ES. Still, the main principle 
behind ES for typhoid remains that as S. Typhi are fecally shed, 
its presence should be expected in the wastewater of a burdened 
population; thus, surveillance measures would inform on the 
disease burden in that population. Potential use cases identified 
for ES of typhoid include (1) a guide to support introduction 
of routine vaccination; (2) monitoring of intervention strategies 
(eg, vaccine or water, sanitation, and hygiene); and (3) surveys 
of emergence and transmission of S. Typhi into nonendemic re-
gions or during outbreaks in endemic regions.

Given the ill-defined burden of typhoid fever, the primary 
use case for ES of typhoid is to guide vaccine deployment ef-
forts, specifically for the new typhoid conjugate vaccines re-
cently developed. ES can provide insight on country needs 
and thus the potential size of the vaccine market. This, in 
turn, would aid countries in their applications to Gavi, the 
Vaccine Alliance (Gavi) for support to implement a typhoid 
conjugate vaccine program by providing data on the burden 
of disease.

Additionally, ES may help identify risks of typhoid fever be-
fore an outbreak occurs by identifying the presence of asymp-
tomatic carriers, in the same way as it has been used to identify 
asymptomatic carriers of polio, which in turn has played a 
role in preventing outbreaks [10–12]. ES has been used mul-
tiple times to determine the source of a typhoid fever infection, 
which has helped local authorities with decision making in-
cluding banning/closing water sources such as water for irriga-
tion [13] or consumption [14].

Despite the potential of using ES for S. Typhi and S. Paratyphi, 
programmatic surveillance networks have not yet been widely 

adopted. Rather, surveillance efforts have focused on blood 
culture or clinical diagnosis, yet these too are limited. ES for S. 
Typhi and S. Paratyphi has been successfully implemented in a 
variety of research studies.

STUDIES INVOLVING ENVIRONMENTAL 
SURVEILLANCE FOR TYPHOID

Assessing Risk Factors of Infection

A study conducted in Nepal [9], where typhoid fever is en-
demic, investigated drinking water sources geographically close 
to an identified typhoid fever hotspot to assess the public water 
quality. Ten different water sources were sampled weekly during 
1  year. The samples were subjected to chemical, bacteriolog-
ical, and molecular analyses to determine the pathogen risks. 
DNA of S. Typhi and S. Paratyphi A was detected in every water 
source sampled. High rainfall was identified as a key driver of 
such contamination.

Another study conducted in an endemic area of Congo com-
bined a questionnaire and microbiological analyses of water 
samples from various sources to determine the possible pres-
ence of typhoid hotspots and the disease transmission route 
[15]. Water samples were collected from 3 military camps, as 
well as from the nearby general populations, and were tested for 
the presence of S. Typhi. The military camps were determined 
to be the likely S. Typhi hotspots, and proximity of these camps 
may have been a risk factor for disseminating S. Typhi to the 
general population.

An study in India [16] investigated > 1000 water samples 
obtained from a variety of sources to determine whether S. 
Typhi was resistant to antibiotics. More than 96 different strains 
of S. Typhi were identified from all of the sources sampled, most 
of which were resistant to antibiotics, thus supporting contam-
inated water sources as a risk factor.

A study conducted in Nigeria investigated various drinking 
water sources to assess the quality of the water and the risks for 
waterborne diseases [17]. Water was sampled from areas with 
a high number of waterborne cases reported and areas with a 
low numbers of cases. Vibrio cholerae, S. Typhi, and Shigella 
dysenteriae were found in most samples and it was suggested 
that drinking water sources had been contaminated during the 
heavy rain season by runoff of contaminated water.

Identifying the Source of an Outbreak

Several studies were conducted in India during the massive ty-
phoid fever outbreaks of December 1975–February 1976 [5], 
November–December 1995 [18], and 2014 [19] to determine 
the sources of the sudden outbreaks. In all of the studies, chem-
ical and bacteriological analyses of municipal water from var-
ious sources (wastewater effluents, drinking wells and storage 
tanks, and water stored in the households) were performed. In 
all cases the municipal water was S. Typhi positive, and this was 
caused by repeated contamination of the water. The findings 
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indicated that the chlorination methods in use in these settings 
was inadequate, resulting in extensive S. Typhi contamination, 
which in turn increased the incidence of cases. Contributors to 
contamination included heavy rains and leakages in the sewage 
drainage system, which caused inflow of contaminated water 
into the water supply systems.

A study conducted in Nepal during the typhoid fever out-
break of 2002 [20] concurrently screened blood samples of pa-
tients and municipal water for the presence of S. Typhi. All water 
isolates were positive for S. Typhi and showed an analytical sim-
ilarity of 96%–100% to blood culture results, indicating that the 
municipal water was highly contaminated with S. Typhi.

Similarly, a study conducted in Pakistan [21] investigated 
food samples, water samples from wells and households, and 
stool samples from patients during a 2004 outbreak. Salmonella 
Typhi was found in 100% of well water samples, 65% of house-
hold water samples, 2% of food items, and 22% of clinical stool 
samples.

A subsequent study conducted in Pakistan during the 2016–
2017 ceftriaxone-resistant S. Typhi outbreak [22] investigated 
drinking water samples from households and community water 
sources to identify disease risk factors. DNA of S. Typhi was 
detected in 22% of the water samples analyzed. Most cases were 
clustered around sewage lines. The epidemic curve indicated a 
propagated epidemic, suggesting continuous contamination of 
water sources, perhaps through mixing of sewage water with 
municipal water.

ENVIRONMENTAL SURVEILLANCE METHODS FOR 
S. TYPHI

The methods currently used for collection of ES samples for 
S. Typhi or S. Paratyphi include either grab sampling of water 
using a variety of devices, or trap sampling using Moore swabs. 
These samples are then typically concentrated, enriched, and 
analyzed by culture or polymerase chain reaction (PCR)–based 
methods. Culture-based methods frequently use an enrichment 
step prior to plating on selective media, thus making direct enu-
meration of the S. Typhi or S. Paratyphi in the samples problem-
atic, instead yielding a presence/absence result. Nonetheless in 
some cases, a most probable number approach may be used for 
enumeration. Colony morphology on selective and differential 
media is commonly used to determine a presumptive positive. 
Isolated colonies are then typically confirmed by agglutination 
and biochemical methods, serotyping, or molecular methods. 
For PCR-based approaches, DNA is extracted directly from the 
water samples, sample concentrates, enrichments, or isolated 
colonies, then subjected to PCR amplification.

Grab Sampling Methods

Several grab sampling techniques have been described for col-
lecting water for S. Typhi and S. Paratyphi screening, including 
via bottles, buckets, or directly from outlet pipes. Sampling of 

water typically tries to avoid sediments from the bottom and is 
often performed in duplicate or triplicate [15, 17, 23, 24]. The 
sample volume collected varies from several milliliters to several 
liters. Water is then transferred to sterile plastic (Nalgene) con-
tainers [23, 25], sterile glass bottles [7, 17, 26–28], sterile Abba-
type (stainless steel) bottles [24], glass sample cells [29], or sterile 
WhirlPak bags [29, 30] and transported to a laboratory. Samples 
are typically stored in a cooler on ice or kept at 4°C during trans-
port and until processing (usually within 48 hours) [3, 23–27, 
29–34]. Physicochemical characteristics of the water sampled 
are also generally collected, including temperature, pH, conduc-
tivity, salinity, and dissolved oxygen [9, 17, 23–26, 29, 30, 32, 35–
37]. Some environmental studies collect large volumes of water 
(several liters) and sample concentration is performed prior to 
analysis. Concentration is important to improve the sensitivity 
of detection by increasing the portion of the sample analyzed. 
In some studies, dead-end ultrafiltration using REXEED 25S 
ultrafilters have been used to concentrate large-volume (20 L) 
samples of water [29]. In many environmental studies, small-
volume samples (50–100 mL) are filtered through a low-porosity 
filter membrane (eg, 0.45-μm nitrocellulose membrane filters), 
to collect and concentrate the pathogens before plating on cul-
ture media [38]. Other studies have used prebaked 0.7-μm-pore-
size glass fiber filters to concentrate environmental samples [27]. 
It should be noted that filter-based concentration methods may 
be subject to clogging that varies with the sample matrix.

Trap Sampling With Moore Swabs

In several studies, water or sewage has been collected using the 
Moore cotton tampon method [39]. In the original method, 
40 × 40-mm cotton tampons were submerged on steel wire in 
water for 4–6 days, while modified versions of the method use 
pieces of pipe filled with rolled cotton gauze or folded gauze 
swabs. The method traps bacteria as water passes through the 
pipe or by the swab [40]. The recovered tampons/swabs are 
then sent to the laboratory inside sterile jars and subjected to 
enrichment culture for S. Typhi [41–44]. In addition to sewage 
sampling, Moore swabs have been used to sample river waters 
contaminated with sewage [45].

The sensitivity and reliability of the Moore swab technique 
has been evaluated by placing swabs in small sewers draining 
the homes of known S. Typhi carriers [46]. It was found that 
the sensitivity depends on the size of the sewer (the smaller the 
diameter of the sewer sampled, the better the sensitivity) and 
the number of swabs (sensitivity increases with an increasing 
number of swabs) [44, 46]. Additionally, random sampling of 
larger sewers with Moore swabs is not a sensitive approach 
[47]. It should be noted that trap-based sampling is inherently 
nonvolumetric and can only be quantified based on the time 
deployed. The affinity of the swab material for S. Typhi and S. 
Paratyphi has also not been thoroughly characterized under 
controlled conditions.
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Detection Methods

Salmonella Typhi and S. Paratyphi are generally recognized as 
fastidious organisms and are difficult to culture [7]. Still, sev-
eral culture-based analytical protocols have been described for S. 
Typhi in drinking water, including methods by the United States 
Environmental Protection Agency (EPA) [48] and Public Health 
England (PHE) [49]. The EPA method was adapted from clinical 
microbiological methods and from methods for the analysis of 
food [49]. The method involves a general preenrichment step 
followed by a selective enrichment in a most probable number 
format, with positive tubes plated on 2 selective culture media 
(bismuth sulfite agar and Miller-Mallinson agar). Isolated typ-
ical colonies are then confirmed by agglutination and biochem-
ical methods. The PHE method [49] was developed for the food 
production environment and generally targets salmonellae, but 
includes additional specific selective enrichment media (sel-
enite cysteine broth) and selective solid media (xylene lysine 
desoxycholate agar, brilliant green agar, and Hynes deoxycholate 
citrate agar) for targeting S. Typhi and S. Paratyphi. It is worth 
noting that some media for salmonellae generally may be inhib-
itory for S. Typhi and S. Paratyphi. Furthermore, some studies 
have reported that culture media can favor the growth of S. Typhi 
while failing to grow S. Paratyphi B and vice versa [50]. Both the 
EPA and PHE methods use selenite cysteine broth for selective 
enrichment, though selenite broth has also been used to identify 
S. Typhi from sewage samples recovered using Moore swabs [43, 
44]. Section 9260B of the Standard Methods for Examination of 
Water and Wastewater [51] also summarizes basic approaches 
for detection and characterization of salmonellae, including S. 
Typhi and S. Paratyphi, though many of the methods listed con-
tain cautions on the limitation of the methods performance for 
detection of S. Typhi and S. Paratyphi. Despite several culture 
methods having demonstrated the ability to detect S. Typhi and 
S. Paratyphi in water or wastewater samples under some circum-
stances, no one culture method has demonstrated adequate reli-
ability for programmatic ES.

PCR is a reliable tool to indicate the presence of typhoidal 
Salmonella DNA in water [7, 15]. A real-time quantitative PCR 
method originally developed for biological samples [52] has be-
come the dominant, gold-standard method for the detection of 
S. Typhi in water samples [53]. However, PCR does not prove 
that viable bacteria are present in the water [7]. A  variety of 
other PCR protocols have also been described for detection of 
S. Typhi, but none have yet demonstrated adequate breadth of 
detection and sensitivity for broad adoption in ES. Some studies 
have developed multiplex PCR methods or parallel methods for 
multiple targets to increase breadth and specificity of detection 
of S. Typhi and S. Paratyphi [54]. For example, primers targeting 
the fliC-d (phase-1 flagellin gene for d antigen H:d of Salmonella 
enterica serovar S. Typhi), tyv (tyvelose epimerase), and viaB (Vi 
antigen) have been described [29]. Quantification is possible 
using standard curves containing an S. Typhi genomic DNA 

standard [29, 53]. It should be noted that matrix-associated in-
hibition is a significant concern when using molecular methods 
for ES, especially for wastewater. Inhibition can lead to false-
negative results and underestimates of the quantity of S. Typhi 
or S. Paratyphi present.

CONCLUSIONS

Environmental surveillance is an important tool in the fight 
against typhoid fever. ES can determine the presence of S. Typhi 
and S. Paratyphi in environmental samples and provide insight 
on the circulation of the bacteria in asymptomatic populations. 
Several approaches for sampling and detection of S. Typhi and 
S. Paratyphi in environmental samples have been described, in-
cluding grab- and trap-based sampling coupled with both culture 
and molecular methods, though each of these methods can lead 
to false-positive or false-negative results. As a reliable standard 
method is still lacking, an accurate and precise detection method 
for ES is needed. ES has the potential to supplement clinical blood 
surveillance or, in the absence of clinical surveillance, to serve as 
a marker of typhoid prevalence in a population, thus facilitating 
efficient deployment of vaccination campaigns.
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