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Abstract

Evolutionary development of vision has provided us with the capacity to detect moving

objects. Concordant shifts of visual features suggest movements of the observer, whereas

discordant changes are more likely to be indicating independently moving objects, such as

predators or prey. Such distinction helps us to focus attention, adapt our behavior, and

adjust our motor patterns to meet behavioral challenges. However, the neural basis of distin-

guishing self-induced and self-independent visual motions is not clarified in unrestrained

animals yet. In this study, we investigated the presence and origin of motion-related visual

information in the striatum of rats, a hub of action selection and procedural memory. We

found that while almost half of the neurons in the dorsomedial striatum are sensitive to visual

motion congruent with locomotion (and that many of them also code for spatial location),

only a small subset of them are composed of fast-firing interneurons that could also perceive

self-independent visual stimuli. These latter cells receive their visual input at least partially

from the secondary visual cortex (V2). This differential visual sensitivity may be an important

support in adjusting behavior to salient environmental events. It emphasizes the importance

of investigating visual motion perception in unrestrained animals.

Author summary

Evolution of vision has provided us with the capacity to detect moving objects. However,

visual motion perception may occur both because of the movement of an observer in an

otherwise stationary environment and because of independently moving observed objects.

Distinguishing these two sources or simply recognizing truly moving objects when the

observer is also moving is essential for survival; it allows the reliable detection of predators

or prey in real-world situations. In this study, we investigated the presence and origin of

motion-related visual information in the striatum of rats, a hub of action selection and

procedural memory. We found that while many of the striatal neurons responded to the

apparent visual motion while the rat was running in an environment with striped walls,

only a subset of them could also respond to moving stripes with similar properties if
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watched passively. This differential visual sensitivity may be an important mechanism of

adjusting behavior to salient environmental events. The need for congruent locomotion

to evoke neuronal responses in many of the recorded neurons emphasizes the importance

of investigating visual motion perception in unrestrained animals.

Introduction

Besides the well-known motor functions of the basal ganglia [1], there is massive evidence for

its role in higher-order integrative functions. While the ventral part of the caudate putamen

(CPu) is mainly associated with reward and motivation-related processes (e.g., reinforcement

[2]), the dorsal part is involved in executive functions based on both stimulus response learn-

ing [3] and procedural memory [4–6]. Neurons of this dorsal sensorimotor striatum can per-

ceive elementary visual cues representing luminance changes [7,8] and visual motion [9–12]

and integrate them with other modalities [13,14] to serve their function in multiple potential

ways. On one hand, the self-motion-induced changes in the visual world (i.e., due to the dislo-

cation of the observer) would serve as feedback for both corollary discharge [15–17] and for

refining motor outputs [18]. On the other hand, the detection of the self-motion-independent

object motion in an otherwise stationary environment would be very important for recogniz-

ing approaching predators and other threats or escaping prey. This latter process may be

important for survival by facilitating appropriate action selection through perceptual decision-

making [19].

Previous experiments that studied the motion sensitivity of the CPu at the single-neuron

level employed anesthetized or restrained animals. Thus, they were not designed for decipher-

ing if the CPu is equally sensitive for the self-motion-induced (i.e., dislocations of the visual

scene congruent with self-motion) and the self-motion-independent object motion. More pro-

foundly, there is no existing evidence that the CPu neurons can distinguish between these two

conditions at all nor whether they can integrate the visual motion percepts with spatial repre-

sentations or other aspects of striatal information processing.

To answer this question, we investigated the response profiles of the dorsal CPu neurons to

self-independent and self-motion-induced visual motion stimuli in freely moving rats. We did

this by conducting large-scale, high-density extracellular recordings. We also made efforts to

show the role of the corticostriatal pathway in shaping these responses, as there is no consensus

regarding the origin of the striatal visual information either [7,20–22].

Results

We conducted our experiments on male Long-Evans rats (N = 32, 285–655 g; 3–12 mo old).

The intermediate part of the dorsomedial striatum has been reported to display visual stimu-

lus—induced electrophysiological responsivity in many species [7,9–11]. This region has also

been reported to receive axons from both the A18 and A18b secondary visual cortical areas

and to be the exclusive striatal recipient of innervation from the primary visual cortex (V1)

[20,23]. To confirm this finding, we injected FluoroGold to the dorsomedial CPu (N = 4 rats,

Fig 1A) and identified regions with retrogradely labeled neuronal somata. Similarly to previ-

ous results obtained in mice and rats [7,23], we found that neurons of the secondary visual

cortex (V2, and also the most rostral part of the V1) send axonal projections to the injected

area of the CPu (Fig 1B). Based on their large somata, their thick apical dendrites, and their

restricted layer V locations, the labeled neurons are putative pyramidal neurons. We did not
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find any labeled neurons at the more caudal parts of the V1 or in the lateral geniculate nucleus,

but the lateral-posteromedial and posterior nuclei of the thalamus were densely labeled.

To evaluate the colocalization of the axons originating from the visual cortex and the visu-

ally active CPu neurons on the fine scale, we injected biotinylated dextran amine (BDA) at the

V2 locations identified in our retrograde tracing experiment (Fig 2A). After 1 wk of survival,

the animals were placed into a 60 × 60 cm large box whose 35 cm tall walls featured 4 liquid

crystal display (LCD) monitors to provide a self-motion-independent, passive visual (pVis)

stimulation. For the initial 6 h, the monitors were turned off, and the animals were kept in

darkness. Then, a pseudorandom sequence of moving visual gratings and blinking lights was

displayed on the monitors for 1 h while the animals were randomly exploring the box (Fig 2A,

for details of the pVis stimulation, see the Materials and methods section). The control animals

were kept in darkness for 7 h without any stimulation. The rats were overanesthetized and per-

fused. Coronal sections of their brains were developed to visualize BDA-positive axons and the

expression of the cFos (Fig 2B). We also tested if the cFos+ neurons were parvalbumin positive

(PV+). We found that the presence of the two markers were almost mutually exclusive (as

demonstrated by the anti-cFos and anti-PV double immunostaining in 4 sections of 1 rat,

Fig 1. Anatomical connectivity of the dorsomedial striatum. (A) Injection schematic and representative

micrographic images of the striatal injection site of the retrograde tracer Fluorogold. (B) Retrogradely labeled cell

bodies were found in the V1 and V2 ipsilaterally, as well as in the posterior (“Po”) and LPMR thalamus. Note the lack

of labeling at the DLG. Bottom panel shows a magnified image of the area V2ML of the middle panel. The thick apical

dendrites and the location of the somata suggest that the labeled neurons are putative pyramidal neurons. AuCx,

auditory cortex; Br, bregma; CPu, caudate putamen; DLG, dorsolateral geniculate nucleus; LPMR, lateral-

posteromedial; V1, primary visual cortex; V2, secondary visual cortex; V2L, lateral secondary visual cortex; V2ML,

mediolateral secondary visual cortex; V2MM, mediomedial secondary visual cortex.

https://doi.org/10.1371/journal.pbio.2004712.g001
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N = 490 and 406 single positives for anti-cFos and anti-PV, respectively, and only 3 double-

positive neurons).

Automated, unsupervised algorithms were used to quantify the BDA+ axon density and

the number of cFos+ neurons in 425 × 425 μm squares in each slice of the CPu (Fig 2C and

Fig 2. Colocalization of the stimulus-induced striatal cFos expression and the axon terminals from the visual cortex. (A) Experimental

schematics. (B) Representative example sections of a visually stimulated (upper panels) and a control animal (lower panels). Blue, red, and green

color channels are assigned to the respective fluorochromes of the Fluoro Nissl, BDA, and cFos immunohistochemistries. Insets show the magnified

areas marked by rectangles on the left panels. Note the lack of cFos+ neurons on the lower (control) panels, while the anterograde BDA tract tracing

from the visual cortex shows a similar axonal distribution pattern in both cases. (C) Unsupervised quantification of the striatal distribution of cFos+

neurons (top panel) and BDA+ axons (bottom panel) in a representative coronal section of a stimulated animal’s brain. See also S1 Fig. (D) cFos

(blue) and BDA (red) density distribution in stimulated (solid lines) and control animals (striped lines). Left and right panels show the distributions

along the respective DV and ML axes of the striatum. (E) AP distribution of visual stimulation—induced cFos+ somata (left panel) and the

distribution of slices with detectable FluoroGold-labeled axons (N = 37 slices in 9 animals). Note that the BDA+ axons target the similar AP segment

of the CPu where the visually inducible cFos activity was present. (F) Correlation of the normalized cFos and BDA densities in a representative

stimulated animal (left panel) and in all animals (right panel). The right and blue dots of the right panel and regression lines, respectively, represent

data from the stimulated and sham animals. (G) Mean number of the cFos+ neurons in the striatum calculated for the 4 BDA axon density quartiles.

Note that while the higher BDA density predicts higher cFos+ cell numbers in the stimulated animals (red), the cFos+ density is constant with no

respect to the BDA distribution in the control animals (blue). AP, anteroposterior; BDA, biotinylated dextran amine; CPu, caudate putamen; DV,

dorsoventral; ML, mediolateral.

https://doi.org/10.1371/journal.pbio.2004712.g002
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S1 Fig). We found that axons originating from V2 neurons colocalized with the cFos+ neurons.

Both the BDA+ and cFos+ locations were restricted to the dorsal part of the CPu. Regarding

the mediolateral (ML) extent, cFos activity was present at the medial and intermediate loca-

tions, while BDA was mainly present at the intermediate (Fig 2D). The induced striatal cFos

expression was present only between AP coordinates −0.7 and 0.7 from the bregma, and V2

axons targeted the same intermediate segment of the CPu between anteroposterior (AP) coor-

dinates −1.7 and +0.5 mm from the bregma (Fig 2E).

The BDA+ axon densities in the coronal plane were spatially correlating with the cFos+ den-

sity maps of the stimulated animals (stimulated: R = 0.20, p< 0.005, N = 696 density pairs

from 5 animals; control: R = −0.03, p = 0.69, N = 134 density pairs from 4 animals, Pearson’s

linear correlation, Fig 2F). We concluded that the cFos expression was a result of the visual

stimulation, as it was uniformly low at every location in the control animals (stimulated:

3.51 ± 0.30, 5.12 ± 0.42, 6.84 ± 0.50, 8.82 ± 0.66 cFos+ neurons found at consecutive BDA den-

sity quartiles, p = 0.002, 0.009, 0.019 for interquartile comparison, N = 4 × 174 density values;

control: 1.55 ± 0.19, 1.69 ± 0.19, 1.59 ± 0.22, 1.94 ± 0.28 cFos+ neurons found at consecutive

BDA density quartiles, p = 0.61, 0.72, 0.33 for interquartile comparison, N = 4 × 34 density val-

ues; two-sample t test; Fig 2G).

Next, to delineate the functional details of the visual responsivity of the CPu neurons, we

conducted electrophysiological investigations on the rostrocaudal segment of the CPu that we

previously identified. We recorded the activity of a total of 734 neurons using silicon electrodes

(“silicon probes”) in freely moving rats (N = 42 sessions in 6 animals) performing various

behavioral and visual stimulation tasks. The recorded single units were isolated from the com-

pound electrical activity based on their action potential waveforms, using a semiautomated

clustering method [24,25]. Noisy units or multiunits were discarded, while clusters meeting

our predefined isolation quality criteria [26] were classified as phasically firing neurons (PFNs,

N = 467, 63.62% of all isolated single units), fast-firing neurons (FFNs, N = 163, 22.21%), and

tonically firing neurons (TFNs, N = 56, 7.63%). These classifications were based on the

electrophysiological features of the corresponding waveforms and spike trains. These classes

putatively match the morphological and neurochemical groups of medium spiny, PV+ aspiny,

and cholinergic aspiny neurons, respectively [4,27] (S2 Fig). In 6% of the recorded single units,

the classification was ambiguous because of their very low firing rate (FR). Those units were

discarded from further analysis.

To test the responsivity of the CPu neurons to moving visual stimuli, animals were placed

into the visual stimulation box used in the cFos expression experiments (Fig 3A). Each stimu-

lation trial began with presenting a nonpatterned gray background for 500 ms (uniform

screen), followed by 500 ms of sinusoidally modulated stationary grating pattern (stationary

grating). Lastly, the pattern was gradually moved to be perpendicular to the grating’s axis

(moving grating) for another 500 ms. The spatial density of the grating, the velocity, and the

direction of the motion were all varied in a pseudorandom order until each parameter combi-

nation was repeated at least 150 times [9,28,29]. Neurons were considered responsive if they

significantly altered their FR in response to either the stationary or the moving grating for at

least 2 of the parameter combinations. Altogether, 289 neurons were tested using this para-

digm (21 sessions of pVis stimulation), and only 25 of them were considered responsive to the

self-motion-independent pVis stimulation (pVis+ neurons). In general, we found no system-

atic preference toward any of the tested directions of motion. Some neurons responded simi-

larly to all directions, while others preferred only a few adjacent directions or two opposing

ones (Fig 3B and 3C).

Regarding the spatial resolution of the grating and the velocity of the motion, neurons were

clearly more sensitive to broader stripes sliding with a high velocity compared to the dense,

Striatal discrimination of passive and self-induced visual motion
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Fig 3. Self-motion-independent pVis stimulation of the striatal neurons. (A) Schematics of the experimental

arrangement. The striatum is marked by yellow shading. (B) Peristimulus time histograms of a pVis+ striatal neuron’s

responses during visual stimulation using 3 × 8 parameter combinations. The first third of each peristimulus time

histogram represents the activity of the neuron while watching a uniform gray image. The middle and right thirds,

respectively, reflect the responses during still and moving stripes. Horizontal green lines represent the spontaneous FR

of the same neuron. Note that horizontally oriented still patterns evoked increased FRs, while moving stripes caused

inhibition with no respect to the direction of the motion. (C) Rose plot showing the percent of pVis+ and pVis−
neurons responsive to the 8 different directions tested. The axes of the plot match the movement directions. Note that

neither the pVis+ (red) nor the pVis− (blue) neurons expressed any obvious preference toward any motion directions.

(D) Mean MIs of all pVis+ neurons during stationary (blue bars) and moving stimulation (red bars). The pVis+

Striatal discrimination of passive and self-induced visual motion
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slowly shifting gratings (p< 0.005 for all comparisons except thick versus medium moving

stripes, for which p = 0.92; N = 200 in each group; paired t test; Fig 3D). To describe the general

responsiveness of these neurons, we averaged the modulation indices (MIs) of the stationary

and moving conditions (calculated against the uniform condition) across all stimulus condi-

tions. Surprisingly, the response combinations occupied only a restricted subset of the avail-

able state space: the pVis+ neurons either increased their firing in the presence of the

stationary grating or became inhibited by the moving gratings or from the combination of

these two response types (Fig 3E). The pVis+ neurons were not uniformly distributed among

the recorded spatial locations. They were mainly located at the mediodorsal part of the CPu

(Fig 3F). The majority were FFNs (84%; 12% PFNs; and only 1 neuron was classified as a

TFN). In contrast, the distribution of the putative cell types among pVis− neurons resembled

the histological proportions of these classes (76% PFN, 19% FFN, and 5% TFN) (Fig 3G).

The previously mentioned moving visual stimuli were presented while the animals were

either standing still or when their movements were random compared to the perceived inten-

sive visual motion (which resembled self-independent object motion). These pVis stimuli may

be processed differently from the self-motion-induced optic flow of natural scenes, which is

concordant with the other senses (e.g., the proprioception); thus, we decided to also investigate

the visual responsivity of CPu neurons during self-motion. In contrast to experiments on

head-fixed animals placed in a virtual environment, our aim was to generate a realistic visual

experience that was congruent with the movements of the animals (active visual [aVis] stimu-

lation), in order to preserve all the proprioceptive, vestibular, and exteroceptive aspects of the

movements. We trained the animals to run in a linear maze back and forth for a water reward.

To keep control of the visual environment seen by the rats during each run, we built the walls

of the linear maze from translucent plexiglass. We placed it in a frame equipped with 2 perpen-

dicular mirrors along the whole track (Fig 4A). Computer-generated visual scenes were pro-

jected by an LCD projector onto both the walls and the floor of the linear maze, with the help

of mirrors to avoid shading by the rat. Before each trial, the projected scene was changed to

either a uniformly gray (“uniform maze”) or a grated pattern with similar spatial frequency

and luminance as was used during the pVis stimulation (“striped maze”) (Fig 4A). The “uni-

form” and “striped” patterns were isoluminant, and they were pseudorandomly alternated trial

by trial to avoid the biasing effect of slow changes in internal brain dynamics.

In total, 685 CPu neurons were tested in this task (in 41 sessions with 6 rats, including the

neurons also tested in the pVis environment). In marked contrast to the small proportion of

pVis+ neurons, 325 of them (62% PFN, 26% FFN, and 11% TFN) displayed a significant

change in their FRs in response to the striped environment (aVis+ neurons). Fig 4B shows a

representative example of an aVis+ (FR = 0.80 ± 0.10 Hz and 0.56 ± 0.08 Hz in the respective

uniform and striped trials, p< 0.01, paired t test, N = 20 spatially binned FR pairs; more exam-

ples are shown on S3 Fig) and an aVis− neuron (FR = 0.53 ± 0.08 and 0.53 ± 0.1 Hz in the

neurons were more sensitive to low spatial and high temporal frequencies during both still and moving stimulation.

(E) Response vectors of pVis+ (red) and pVis− (blue) neurons. The MIs of the 24 stimulus conditions are averaged for

each cell. Still and moving MIs are assigned to the X and Y components of each response vector. Note that all pVis+

neurons expressed stationary stimulus-induced excitation combined with motion-induced inhibition. (F) Location of

the pVis+ neurons (red dots) in the coronal plane. Gray dots denote the location of the nonresponsive neurons. The

red-shaded part of the inset on the right shows the area covered by the electrophysiological investigations. Note that

the visually responsive cells were mainly present at the dorsomedial segment of the recorded area. (G) Distribution of

cell types among the pVis+ (left) and pVis− (right) neurons. The majority of the visually excitable neurons were FFNs,

while the distribution of the other neurons followed histological proportions. FFN, fast-firing neuron; FR, firing rate;

MI, modulation index; ML, mediolateral; PFN, phasically firing neuron; pVis, passive visual; TFN, tonically firing

neuron.

https://doi.org/10.1371/journal.pbio.2004712.g003
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Fig 4. Self-motion-induced aVis stimulation of the striatal neurons. (A) Schematics (left) and cross section (middle) of the linear maze with a

dynamically updated visual environment. The bottom panels show photographs of rats running in the uniform and the striped environment. (B)

Raster plots and place-resolved FRs of a representative pVis+/aVis+ (left, called as pVis+) and an aVis−/pVis− (right, called as aVis−) neuron

simultaneously recorded during the same session. The blue dots and curve represent trials during uniform maze running; the red ones show the

firing patterns in the striped maze. Note that the two conditions were randomly alternated from trial to trial. For display purposes, trials are

reordered by the stripedness. Lower panels show the details of the statistical tests of space-resolved visual modulation. The thick black line shows the

real FR difference, while the gray curves denote the label-shuffled surrogate differences. Purple and green lines depict the “local” and “global”

significance thresholds [30], respectively. Spatial locations breaking the global significance limits are marked with a thick red line. (C) Location of the

aVis+ neurons (red dots) in the coronal plane. The gray dots denote the location of the nonresponsive aVis− neurons. aVis+ neurons were

distributed more uniformly in the recorded area than the pVis+ cells. (D) Venn diagram of the CPu neurons showing the set relationship of the

aVis+ and pVis+ neurons. Note that all recorded pVis+ neurons were also aVis+ at the same time. (E) Mean modulation indices of pVis+, aVis+, and

aVis− neurons in the aVis environment. Note that pVis+ neurons decreased their FRs when the rat was running in the striped maze, similar to their

behavior in the pVis experiment. (F) Two representative striatal neurons with place field—like properties recorded simultaneously in an aVis session.

Note that the activity of the left neuron was rate modulated by the stripedness (an aVis+ neuron), while the right example neuron was showing an

almost identical spatial response profile in both the uniform and the striped conditions (aVis− neuron). Bottom panels show the details of the space-

resolved statistical tests as on panel B. (G, H, I) Spatial coding efficiency expressed as “spatial selectivity” (G), “sparsity” (H), and “spatial

information” (I) of the recorded neurons in uniform (blue bars) and striped conditions (red bars). (J) Distribution of the correlation coefficients of

the spatially binned FRs of neurons with place field—like activity during running in the uniform and the striped environments. The place fields were

stable across both the uniform and the striped conditions, as expressed by the high spatial correlation values of the neurons with place field—like

Striatal discrimination of passive and self-induced visual motion
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respective uniform and striped trials, p = 0.76) recorded simultaneously with its aVis+ peer.

The aVis+ neurons were not restricted to the most superficial and medial part of the medio-

dorsal CPu. Instead, they were distributed more uniformly (Fig 4C).

Importantly, all pVis+ neurons were also responsive in this task. Thus, the pVis+ cells can

be considered as a subgroup of the aVis+ neurons (Fig 4D). For simplicity, from here on we

will refer to the double responsive (i.e., pVis+/aVis+) neurons as pVis+ neurons, and those

cells which were only responsive in the aVis environment but not in the pVis one (i.e.,

pVis−/aVis+ neurons) as aVis+ neurons.

The firing pattern of the pVis+ neurons in the uniform maze was more deterministic with

regard to their activity in the striped maze, compared to the pVis− neurons (R = 0.77 ± 0.02

and 0.65 ± 0.02 for pVis+ and pVis− neurons, respectively; Pearson’s linear correlation

between uniform and striped runs, p = 0.032, two-sample t test, S4 Fig). In agreement with

their behavior during the pVis stimulation experiment, the pVis+ neurons decreased their FRs

while the rats were running in the striped linear maze.

The visual modulation of the aVis+ neurons in this task was similar to the response profiles

of the pVis+ neurons (p = 0.047 for pVis+ versus aVis−, and 0.041 for aVis+ versus aVis− com-

parisons, MI = −4.7% ± 2.3%, −6.9% ± 2.7%, and −1.0% ± 0.5%; N = 12, 133, and 50, respec-

tively, for the pVis+, aVis+, and aVis− neurons, two-sample Kolmogorov-Smirnov test; Fig

4E). This result confirmed the visual motion-induced inhibition observed in the passive stimu-

lation task.

The dorsomedial part of the intermediate striatum is known to integrate highly heteroge-

neous, multimodal inputs in mice [31]. We were therefore interested if pVis+ and/or aVis+

neurons also code context- or location-dependent features as suggested by earlier studies

[32,33]. A significant number of neurons showed spatial location—selective activity, similar to

the place cells [33,34] of the hippocampal formation (36% of the pVis+, 20% of the aVis+, and

17% of the aVis− neurons). All of these neurons had one single place field similar to the proxi-

mal CA1 and CA3c regions of the hippocampus [35]. However, their “place fields” were rela-

tively large, usually spanning over more than one-third of the track (Fig 4F and S3 Fig).

The FRs of these “place cell—like” neurons were rate modulated by the presence of striped

patterns to a similar extent as the activity of those that were active at every location. The spatial

coding ability of the aVis+ neurons was slightly (but not significantly) better than either the

pVis+ or the aVis− neurons and was not influenced by the presence of the striped pattern

(selectivity of pVis+ cells: 1.98 ± 0.14 and 2.11 ± 0.21; aVis+ cells: 2.46 ± 0.3 and 2.33 ± 0.28;

aVis− cells: 2.11 ± 0.11 and 1.96 ± 0.09; sparsity of pVis+ cells: 0.88 ± 0.01 and 0.87 ± 0.01;

aVis+ cells: 0.85 ± 0.02 and 0.85 ± 0.02; aVis− cells: 0.87 ± 0.01 and 0.87 ± 0.01; spatial Infor-

mation of pVis+ cells: 1.83 ± 0.32 and 2.12 ± 0.36; aVis+ cells: 1.63 ± 0.25 and 1.90 ± 0.39;

aVis− cells: 1.78 ± 0.24 and 1.98 ± 0.29, in the uniform and striped mazes respectively;

p> 0.05 for all comparisons, paired t test across conditions, and Kolmogorov-Smirnov test

across neurons; N = 21 pVis+, 45 aVis+, 31 aVis− FFNs [35]; Fig 4G–4I).

The locations and extent of the place fields were highly correlating in both the uniform and

the striped trials. This suggests that the animals considered the two conditions spatially identi-

cal despite the different visual percepts (mean Rho = 0.86 ± 0.13; p< 0.05 in 51 of 53 neurons,

Pearson’s linear correlation of location-resolved FRs in the two conditions, 20 spatially binned

activity. See also S5 Fig. (K) Distribution of the spatial segments at which the FRs of the aVis+ neurons were significantly rate modulated by the

perceived visual motion (bottom). Green and red lines represent the example aVis+ neurons shown on panels “B” and “F”, respectively. Note that the

significantly modulated segments uniformly tiled the whole extent of the maze (top plot). aVis, active visual; FR, firing rate; ML, mediolateral; pVis,

passive visual.

https://doi.org/10.1371/journal.pbio.2004712.g004
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FR pairs per neuron, Fig 4J and S5 Fig), and the perceived visual motion caused only a rate

remapping [36,37] but not a location remapping of the “place fields.” The spatial locations

where the stripedness significantly altered the neuronal activity were determined by compar-

ing the induced firing pattern differences to surrogate datasets (Fig 4B and S3 Fig). Of the

aVis+ cells, 124 met the spatially resolved significance criteria (see Materials and methods).

The significantly modulated segments of the space-resolved firing patterns uniformly tiled the

whole extent of the linear maze; 8.51% ± 0.38% of the 124 aVis+ neurons were modulated at

any spatial location (p = 0.76, N = 2,444, chi-squared goodness-of-fit test against uniform dis-

tribution, Fig 4K).

The visual modulation of the firing patterns was stronger when faster visual motion was

perceived (i.e., faster running speeds), similarly to the spatiotemporal tuning found in the pVis

task (Rho = −0.46, p< 0.001, Pearson’s linear correlation of the instantaneous velocity and the

visual MIs in N = 304 spatial bins from 28 sessions, S6A Fig).

Only a small fraction of the visually responsive neurons modulated their FRs as a function

of the instantaneous running speed (p< 0.05, Pearson’s linear correlation; number of modu-

lated neurons = 3 of 25 pVis+, 20 of 221 aVis+, 26 of 233 aVis−). The velocity of the animals

was identical in the two environments (83.3 ± 18.9 cm/s versus 85.0 ± 12.3 cm/s, n = 718 and

649 for uniform and striped conditions, respectively; p = 0.15, two-sample Kolmogorov-Smir-

nov test; S6B Fig).

Although the overall brightness of the “uniform” gray and the black and white “striped”

conditions was identical, an alternative explanation of the FR modulation of the aVis+ cells

may be that the striped pattern by itself could influence the neuronal activity, either by induc-

ing a different contextual percept or by its local brightness fluctuations. To exclude these alter-

natives, we performed a set of complementary experiments and analyses.

The rats perceived a relatively stationary representation of the striped and the blank pat-

terns while they stayed at the reward zones (i.e., the last 10 cm of the maze at each end). We

compared the firing patterns of the aVis+ cells during these segments to decide if the two con-

texts induced the FR modulations. The animals spent comparable time in the reward zones

(23.11 ± 1.88 s and 26.46 ± 2.14 s, N = 1,303 and 1,343 trials for uniform and striped condi-

tions, respectively, p = 0.24, two-sample t test, S6C Fig), and the mean FRs of the aVis+ cells

were almost identical (mean FRs = 9.01 ± 0.89 Hz and 8.99 ± 0.88 Hz for uniform and striped

conditions, respectively, p = 0.83, N = 325 neurons, paired t test, S6D Fig). By comparing the

neuronal activity on a cell-by-cell and trial-by-trial basis, only 36 of the 325 aVis+ neurons

showed significantly different FRs in the two conditions (p< 0.05, two-sample t test on the

per-trial firing patterns for each neurons, S6E Fig).

We also tested if the aVis+ neurons were sensitive to changes of brightness. First, to check

their sensitivity for global changes, we exposed the rats to 0.5 Hz blinking light in the pVis

environment. S6F Fig shows 2 representative neurons modulated by the global luminance

change (p< 0.001 in both cases, N = 50 trials). Eleven and 2 of the 20 tested pVis+ cells, 5 and

11 of the 111 aVis+ cells, and 7 and 12 of the 124 aVis− neurons, respectively, responded with

excitation and inhibition for the luminance increase (p< 0.05, paired t test, N = 50 trials for

each neuron; S6F and S6G Fig).

Second, we analyzed FRs in the linear maze stripe cycle by stripe cycle to check if the

aVis+ neurons display phasic responses to the gradually changing brightness of each stripe.

The aVis+ neurons were not sensitive to the local luminance changes of the black and white

stripes. The FRs were nearly uniform at locations with low and high local luminance in the

striped condition (p = 0.23 and 0.45, N = 193 and 358 spikes for the uniform and the striped

conditions, respectively; Rayleigh test; S6H Fig shows the stripe phase—resolved firing patterns

of a representative example neuron). For all aVis+ neurons, the circular MIs of the FR patterns
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were similar in the “striped” and the “uniform” trials (p = 0.86, two-sample t test, mean

MI = 13.22% ± 1.50% and 13.61% ± 1.82%, N = 93 and 78 aVis+ neurons with nonuniform cir-

cular distribution in the uniform and the striped conditions, respectively; S6I Fig).

These observations led us to conclude that the FR change of the aVis+ neurons between the

two applied conditions was induced by the perceived visual motion, as all other aspects were

kept and were perceived unchanged (i.e., trajectory, reward, global luminance, and other con-

textual cues).

The neurons of the CPu were generally phase locked to the characteristic frequency bands

of the local field potential (LFP, Fig 5A and 5B, S7 Fig) recorded in the dorsomedial CPu. In

general, the pVis+ and aVis+ neurons were more weakly coupled to these oscillations than

Fig 5. Phase modulation of the recorded CPu neurons by the characteristic frequency bands of the striatal LFP.

(A) Mean LFP spectral power at locations of the pVis+ (red), aVis+ (green), and pVis−/aVis− somata (blue). The theta

and beta powers were significantly weaker at locations where pVis+ neurons were present (the red horizontal lines

show the significant segments). (B) Respective phase coupling of a representative neuron to the delta, theta, beta, low-

gamma, and high-gamma bands. The mean preferred phase values and MIs are shown above each plot. Green curves

mark the smoothed distributions. (C) Mean MIs of the pVis−/aVis− (blue), aVis+ (green), and pVis+ (red) neurons.

The pVis+ neurons were less coupled to the phase of the theta and beta band oscillations. The color codes are the same

as on panel A. a.u., arbitrary unit; aVis, active visual; CPu, caudate putamen; LFP, local field potential; MI, modulation

index; pVis, passive visual.

https://doi.org/10.1371/journal.pbio.2004712.g005
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their pVis−/aVis− peers (mean MIs, delta: 10.84 ± 0.50 versus 7.89 ± 0.50 and 7.85 ± 0.41;

theta: 12.89 ± 0.76 versus 10.37 ± 1.16 and 4.29 ± 0.65; beta: 10.48 ± 0.58 versus 8.12 ± 0.65 and

6.80 ± 0.58; low-gamma: 14.64 ± 0.64 versus 11.36 ± 0.53 and 10.93 ± 0.59; high-gamma:

26.96 ± 1.10 versus 23.02 ± 1.12 and 22.57 ± 1.12 for pVis−/aVis− versus aVis+ and pVis+ neu-

rons, respectively). This difference in phase coupling was the most prominent in the theta

band (p< 0.001, n = 145 and 25, Kolmogorov-Smirnov test, Fig 5C).

To check if the anatomically identified cortical regions indeed play a role in shaping the

activity of the visual motion—sensitive CPu cells, we lastly set out to investigate their func-

tional connectivity. However, confirming the direct monosynaptic cell-to-cell interactions

between the visual cortex and the CPu neurons in intact animals is like looking for a needle in

a haystack. Cross-correlation-based analyses are very unreliable with sparsely firing neurons

because of the low number of spikes, even if extensive recordings are done for many hours.

Optogenetics-based transsynaptic excitation/inhibition is also problematic because of the

unknown synaptic transmission efficacy. Moreover, V1 is known to project only to a very thin

medial strip of the CPu along its ventricular wall [20]. This is extremely difficult to investigate

using electrophysiological approaches in freely moving animals. Because of these constraints,

we employed two alternative approaches.

First, we implanted bipolar-stimulating electrodes into area V2 (AP −4.5 mm; ML 2.8 mm;

dorsoventral [DV] 0.5 and 2 mm) of 2 animals. In a subset of sessions, we delivered short

electrical pulses (N = 21 sessions) to functionally verify the previously confirmed long-range

anatomical connection (Fig 6A). The electrically evoked, complex LFP deflections had 3

distinct components whose latency and duration matched with the single unit—evoked

responses: a narrow, precisely timed monosynaptic deflection was followed by a wider (pre-

sumably disynaptic) one and an even longer polysynaptic waveform. In contrast, at cortical

Fig 6. Entrainment of the CPu activity by electrical stimulation of the V2. (A) Schematics of the electrical

stimulation. The sites of the cortical stimulation and the striatal recordings are respectively marked by blue and yellow

colors. (B) Representative striatal (red) and a control cortical (blue) mean LFP traces as a response to V2 electrical

stimulation. Note the 3 remarkable evoked deflections in the striatal LFP (red arrows), which represent the aggregate

population activity of the mono-, di-, and polysynaptically activated CPu neurons. (C) Representative peristimulus

time histograms and raster plots of a monosynaptically (left panel) and a polysynaptically (right panel) entrained CPu

neuron during electrical stimulation of the V2. The insets show the waveforms and autocorrelograms of each example

neuron. CPu, caudate putamen; LFP, local field potential; V2, secondary visual cortex.

https://doi.org/10.1371/journal.pbio.2004712.g006
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locations above the CPu, only a single monotonic deflection attributed to the volume-con-

ducted stimulus artefact was present (Fig 6B). The brief electrical pulses evoked spiking in 32

out of 289 CPu neurons, either with very short response latency (4–6 ms, representing a mono-

synaptic input) or through a longer multisynaptic pathway (Fig 6C). The group of neurons

responsive to electrical stimulation of area V2 and the group of pVis+ neurons were mainly

overlapping; 20 of 25 (80%) pVis+ neurons were also sensitive to electrical stimulation, while

the same applied to only 12 of 252 (6%) pVis− cells. Consequently, the intrastriatal distribu-

tions of these groups were similar; they were also mainly located at the mediodorsal part of the

CPu.

As a second approach, we implanted an additional 32-channel silicon probe into area V2 in

2 animals. We recorded both single units and LFPs while the animals were exposed to the aVis

stimulation protocol in the linear maze (Fig 7A). The frequency spectra of the LFPs recorded at

the CPu and at V2 were identical in the striped and uniform trials (except 80–90 Hz in V2, Fig

7B). This suggests that the visual environment does not alter the gross activity of these struc-

tures. Still, V2 activity has a role in shaping the activity of the striatum, and its influence is

approximately 10%–15% weaker in the striped environment than in the uniform trials. This

was shown by the Granger causality between the V2 and CPu broadband and the low-gamma

filtered LFPs (V2! CPU: Fbroadband = 15.58 ± 0.22 and 13.27 ± 0.2; Flow-gamma = 3.63 ± 0.06

and 3.32 ± 0.06; CriticalValuebroadband = 3.13 ± 0.008 and 3.25 ± 0.008; CriticalValuelow-gamma =

3.63 ± 0.008 and 3.67 ± 0.008; N = 3,424 and 4,096 trials in the uniform and the striped condi-

tions, respectively; p< 0.001 for both the broadband and low-gamma band comparison of the

F-values of all trials; two-sample t test; Fig 7C). Regarding the information flow from the CPu

to V2, the analysis could not reveal significant causality in the gamma band; however, the

broadband causality was maintained. We did not find any difference between the uniform

and striped conditions in this case (CPu! V2: Fbroadband = 15.71 ± 0.24 and 14.85 ± 0.4;

Flow-gamma = 1.98 ± 0.08 and 1.81 ± 0.25; CriticalValuebroadband = 3.01 ± 0.008 and 3.01 ± 0.008;

CriticalValuelow-gamma = 3.84 ± 0.008 and 3.84 ± 0.008; N = 3,424 and 4,096 trials in the uni-

form and the striped conditions, respectively; p = 0.21 and 0.24 for the broadband and low-

gamma band comparison of the F-values of all trials, respectively; two-sample t test; Fig 7C).

The high level of causality of the broadband signals in the CPu-V2 direction calls for the

cautious interpretation of the Granger causality analysis [38]. Traditional correlation and

coherence analyses cannot reveal sparse, package-like increases in the synchrony of discrete

frequency bands, especially if they are lagging. This is because the asynchronous, uncorrelated

majority of the signals hide it. To overcome this bottleneck, we employed a time and fre-

quency—resolved cross-coherence estimation. This is particularly sensitive to lagging, inter-

mittent changes in synchrony, such as “bursty” transmissions (S8 Fig). Using this method, we

found that there are transient oscillations in the mid-gamma band that appear coherently in

both V2 and the CPu with a constant time lag (V2 leading with approximately 30 ms, Fig 7D).

A similar but less coherent delayed pattern was present between V2 and the motor cortex

(recorded above the CPu as control, Fig 7E).

In contrast to the V2–motor cortex coherence, which was similar both during running in

the uniform and the striped mazes (correlation index = 0.058 ± 0.004 and 0.054 ± 0.006,

respectively, for the uniform and striped conditions; p = 0.37; N = 64 recording-site pairs), the

V2 coherence with the CPu became significantly weaker when the striped pattern was present

(correlation index = 0.11 ± 0.004 and 0.07 ± 0.003, respectively, for the uniform and striped

conditions; p< 0.001; N = 96 location pairs, Fig 7F). To confirm if the decreased gamma band

coherence also has an effect in shaping the striatal unit activity, we tested the LFP phase cou-

pling of the striatal spike trains of the aVis+ neurons. The strength of the phase coupling to

local LFP was identical in the uniform and the striped conditions. In contrast (as predicted by
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the LFP coherence analysis), coupling to the distal V2 LFP was decreased in the beta and low-

gamma bands when the animal was running in the striped environment (Fig 7G). These find-

ings suggest the presence of a population-level communication “channel” between V2 and the

dorsomedial CPu, which is influenced by the visual environment.

Fig 7. Activity coupling between V2 and the CPu. (A) Experimental schematics showing the simultaneous recording of the LFPs

and SUA in both the V2 and the dorsomedial CPu. (B) Mean raw spectra of the V2 (left) and CPu (right) are almost identical when

the animals are running in both the uniformly gray (blue lines) and the striped (red) environments (mean power spectra of N = 30

and 175 LFP sessions, respectively). The only significant difference was detected in the high-gamma band of the V2 (red horizontal

lines). (C) V2 LFP Granger causes striatal LFP oscillations both in the broadband (left panel, blue) and low-gamma filtered signals

(left panel, yellow). Note the significant decrease of the causality strength in the striped environment compared to the uniform trials.

Right panel denotes the results of the causality analysis in the striato-cortical direction. (D) Average time and frequency—resolved

coherence maps across all sessions and animals for trials in the uniform (left) and striped (right) environments. Note the presence of

the high-coherence domain between 40 and 50 Hz with a temporal lag of 20–40 ms (V2 leading). (E) Same as in (D) when comparing

V2 LFP with the LFP of the mCtx serving as a control. (F) Comparison of the maximal coherence values between 40–55 Hz and 5–50

ms (marked by a dashed white box on (D)). The left and right panels respectively compare the coherences of the mCtx versus V2 and

CPu versus V2 during running in both striped and uniform environments. (G) Phase coupling of aVis+ CPu neurons to various

frequency bands of the V2 (left) and the striatal (right) LFP during uniform (blue) and striped (red) trials. Note the stripedness-

induced decoupling of the aVis+ cells from the V2 beta and low-gamma bands. aVis, active visual cortex; CPu, caudate putamen;

LFP, local field potential; mCtx, motor cortex; SUA, single-unit activity; V2, secondary visual cortex.

https://doi.org/10.1371/journal.pbio.2004712.g007
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Discussion

We found a small, distinct group of the dorsomedial striatal neurons that are responsive to

both self-motion-independent (passive) and self-motion-congruent (active) visual stimuli

(pVis+ neurons). In addition, there is a larger subset of striatal cells that only sense visual

motion, when congruent locomotion is simultaneously present (aVis+ neurons). These find-

ings emphasize the importance of investigating visual motion—related sensory processing in

freely moving animals instead of anesthetized or head-fixed preparations [9,22,39]. The per-

ceptual capacity represented by these two cell groups may support survival. They allow for the

recognition of incongruently moving objects (such as prey). At the same time, due to the self-

motion of the observer, they also provide reafferentation about the continuously changing

visual environment. Even though the two functional groups we identified in this study shared

many electrophysiological properties, our results suggest that pVis+ neurons were overwhelm-

ingly FFNs.

Identification of striatal cell types from extracellular recordings

Despite their extensive interconnections, the CPu has a very distinct cytoarchitecture from the

cortex. The internal circuitry of the CPu is shaped almost exclusively by GABAergic inhibitory

neurons, plus a few cholinergic neuromodulator cells. Of these GABAergic cells, 95% are

medium spiny neurons forming the functional class of PFNs, while the cholinergic cells are

acting as TFNs [40]. The remaining 5% of aspiny GABAergic cells were recently described as a

mixture of at least eight morphologically, neurochemically, and electrophysiologically different

classes of cells [41–43]. The FFN neurons in this study are most likely PV+, fast-spiking inter-

neurons [27,43,44]. However, the functional classification of the CPu neurons can only puta-

tively and cautiously be matched to the known neurochemical classes. We were able to isolate

significantly fewer PFNs and more FFNs (similar to Thorn and Graybiel [45]), as was expected

from the results of histological studies with unbiased sampling. PFNs are particularly sparsely

firing neurons. Thus, they are the most vulnerable to forced exclusion due to numerical

approximation issues or accidentally skipped detection.

Immediate early gene (IEG) expression in the CPu by visual stimuli

Immunohistochemistry allows for the exact identification of the histochemical cell types in the

CPu. However, conclusions about their visual responsivity based on their cFos expression

alone should be interpreted with caution. Although the CPu is known to express IEGs in

response to cortical stimulation [46], they are not uniformly expressed among different cell

types [47]. They can only report increases of FRs reliably [47]. Lastly, it is not possible to distin-

guish between mono- and polysynaptic activation. We chose to detect cFos over JunB, FosB,

or other IEGs for two reasons: first because of its very low constitutive expression in the CPu

and second because it is expressed by most cell lines upon stimulation [46]. pVis+ neurons

were inhibited by visual motion, which cannot explain the induced cFos expression. We specu-

late that it was either induced by the blinking light or the stationary grating parts of the stimu-

lation sequence (i.e., more than half of the pVis+ neurons were excited by the change of

brightness, and they were also typically excited by the stationary gratings). An alternative

explanation is that these neurons were activated through a disinhibition, as the pVis+ neurons

were mainly FFNs, but the cFos+ cells were PV−. In this latter case, the cFos+ cells could be

mainly medium spiny neurons, which are known to receive inhibitory innervation from the

FFNs (putative PV+ fast-spiking interneurons [43]).
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Origin and processing of the visual information in the dorsomedial

striatum

Hunnicutt and colleagues [31] reported that neurons of the dorsomedial part of the mouse

striatum respond to multiple sensory modalities and that they integrate auditory and visual

inputs with emotional and contextual information. The exact drivers of the visual features of

the CPu are not clear. We found that aVis+ neurons were sensitive to global (but not local)

luminance changes. This finding is in agreement with earlier reports on the large receptive

fields of striatal cells spanning almost the whole visual field in cats [29]. These results suggest

that the striatum receives a preprocessed “global percept” of the visual environment, instead of

a partial pixelated representation.

The cortical discrimination of self-motion-induced visual motion and object motion is gen-

erally linked to higher-order visual areas along the dorsal stream of the visual cortex, such as

the middle temporal and dorsal medial superior temporal area [39,48,49]. V6 also seems to be

able to subtract self-motion-induced dislocations from the visual percept to enhance object

motion detectability [48,50]. However, earlier stages of the visual pathway (including V1) can

already detect visual motion [51], process features of the motion [52], and even integrate visual

motion and locomotion percepts [53]. Upstream stages (such as V2 or V3) inherit these capac-

ities [54] and can serve as a common source for motion-related information to both V5 and

V6 pathways [48]. The anterolateral part of area 18a (the lateral extrastriate cortex) of the

mouse (which is the homologue of the lateral secondary visual cortex [V2L] and mediolateral

secondary visual cortex [V2ML] in the rat [55]) is also linked to the processing of self-motion

cues [56]. These V2 neurons prefer lower spatial frequencies compared to V1 and have rela-

tively large receptive fields [54].

Visual motion—sensitive CPu neurons have similar preferences. An earlier report [9]

found that caudate nucleus neurons of the cat prefer similar low spatial and high temporal fre-

quencies to what we report here regarding the pVis+ neurons of rats. A direct connection

between the visual cortex and dorsocaudal striatum was also confirmed by a few tracing stud-

ies in rats and monkeys [20,23,57]. The inhibition of the FFNs by the visual motion in this

study suggests an indirect cortical effect through other striatal interneurons (signal inversion).

However, this contradicts the direct electrical excitability of the pVis+ neurons. An alternative

explanation may be provided by the already negative coding scheme of the corticostriatal affer-

ents from the complex neurons of the V1 [58–60] or, for example, the so-called D cells of the

feline extrastriate cortex. These neurons maintain high spontaneous FRs that are decreased

when visual motion is perceived [61]. Such decrease in the cortical drive may explain the

motion-induced decrease of spiking in the pVis+ neurons, as well as the monosynaptic cortical

entrainment that we report here.

Our findings regarding the selective cortical excitability of the pVis+ (but not the aVis+

cells) and their different intrastriatal distribution offer the idea of multiple parallel visual

streams as drivers. However, our results only partially support this concept. The more ventral

and lateral parts of the dorsomedial CPu (where the aVis+ neurons are also located) did not

receive direct V2 input, but the similar response profile in the striped maze indicates that the

pVis+ neurons are more likely to be a subtype of the aVis+ group. Nevertheless, as one candi-

date for the alternative innervation, the lateral-posteromedial nucleus of the thalamus projects

to the same striatal and cortical subregions we investigated here [62,63]. This thalamic region

may play an important supplemental role in the visual representation of context [64]. How-

ever, its effect on the CPu is not yet known. An alternative candidate is the retina—superior

colliculus—intralaminar thalamus—CPu pathway [65–67], which converges with tectonigral

dopaminergic signals to enhance the detection of unpredictable salient signals [68].
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Together, the electrical excitability of pVis+ neurons from the V2 and the corticostriatal

gamma band coherence modulated by the visual percept during self-motion suggest a corti-

cal origin for some aspects of the striatal visual information. However, the lack of electrical

excitability of aVis+ neurons also predicts the presence of a complementary subcortical

input.

The significance of the visual information processing in the striatum has been shown both

in visuomotor associations [69,70] and oculomotor functions [8,71]. The exact role of the

various striatal aspects of the visual information in shaping the behavior is less clear because

studies perturbing selective visual inputs of the striatum are missing. Striatal responses to non-

moving visual stimuli (mainly flashes and other static stimuli) have been unambiguously

described in multiple species [7,14,72,73]. However, visual motion is applied mostly in relation

to a guided oculomotor or choice task, whose protocols cannot differentiate if CPu neurons

respond to the pure visual features of the motion or the abstract, task-associated meaning of

the “cue.” The latter explanation is more likely, as responses were reported to enhance over tri-

als of associative learning [74].

Several studies have made attempts to estimate the visual motion—related sensitivity of the

striatum [9,10,29]. However, none of them have been performed during natural self-motion.

Further experiments are needed to understand the role of striatal representations of the pas-

sively observed and self-motion-congruent visual motion percepts in neuronal computations

and behavior. Speculatively (as projections of the intralaminar thalamic nuclei converge with

visual cortical inputs at the striatum), it is possible that one role of this system is to map the

external reflections of self-behavior with salient environmental changes during reinforcement

learning [73,75]. In addition to the sensory and motor information, the integration of complex

representations such as space, memory, reward, and motivations [76] can serve as a high-util-

ity support to a system like that.

Multimodal integration in the dorsomedial striatum—Processing

nonsensory modalities

Despite the remarkable topographic organization of the striatal afferentations, their functional-

ity is not strictly separated by sharp borders but rather form overlapping gradients [77]. The

dorsal part is considered to be an associative zone serving multisensory integration [45]. This

segment of the CPu receives a broad repertoire of sensory modalities [7], contextual cues [33],

and kinetic and positional information [78], as well as other sources reflecting the internal

dynamics of the brain [7,79].

As the animals were running in the linear track, we found a substantial number of neurons

possessing place field—like activity [32–34,80,81]. A few of them showed theta phase preces-

sion as well [82]. Despite their singular “place fields,” the recorded CPu neurons were relatively

weak space coders. Their selectivity and sparsity were approximately half and twice as large,

respectively, as what we measured earlier in the case of CA1 place cells [35]. These features

may be a projection of the hippocampal activity and not a purely de novo—generated feature,

since in an earlier study, they have been found to be more strongly coupled to the hippocampal

theta phases than to striatal theta [82]. Nonetheless, besides its possible volume-conducted

component, striatal theta is also modulated, for example, by reward signals to some extent

[82]. In the case of many neurons, the experimental approach of the current study could not

reliably differentiate if the recorded spatial firing pattern was purely related to a coding of the

location or if it was also shaped by a reward prediction as the animal was approaching the

water ports [83]. The place fields were conserved in both running directions in the maze.

Thus, the head direction activity of the striatum [80] might not play a key role in forming
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these place fields, although we did not investigate the head direction—related patterns in this

study.

Besides the spatial information, striatal neurons are also capable of coding various behav-

iorally relevant environmental contexts [4,40]. To avoid any associations of valence or other

behavioral meaning to the “stripedness” of the maze, we designed our aVis stimulation experi-

ment to employ a model-free reinforcement-learning paradigm [84]. The activity of the aVis+

neurons was only partially modulated by the visual stimuli in a similar way to rate remapping

[85,86] (i.e., the presence of the striped pattern did not alter the spatial location of the place

fields but could modulate the intraplace field FRs [36,37]). This rate modulation was stronger

at high temporal frequencies of the perceived visual motion (i.e., at faster running speeds),

similarly to the spatiotemporal tuning of the pVis+ neurons in the pVis experiment. Moreover,

we found no difference in the FRs of the aVis+ neurons while the animals were not running

and were observing the same but steady patterns. The identical running velocities and trajecto-

ries in the two conditions ruled out further that the FR difference between the two conditions

was induced by the different motor (i.e., locomotion) patterns. Our additional argument

against the contextual but not visual motion modulation of the aVis neurons in the linear

maze is that the appearance of the motion of identical striped patterns in the pVis environment

did not alter the activity of the aVis+ neurons. These observations suggest that the animals did

not consider the two conditions as two independent contexts and highlight the integrative

nature of the neuronal activity in the striatum.

Traditionally, the hippocampus and the striatum were considered as two independent but

complementary memory systems, respectively responsible for episodic and procedural mem-

ory [87]. An alternative concept is that the CPu should be better considered as an integrator

that has the chance to adjust procedural motor functions based on the internal representations

of “past experiences” (i.e., through hippocampal episodic and spatial memory [5]) and the

“present circumstances” (i.e., through the contribution of sensory systems). Our finding

regarding the coexistence and simultaneous, conjunctive expression of sensory-related and

contextual/spatial (e.g., hippocampal) features in the CPu may support this latter concept.

Network oscillations in the dorsomedial striatum

During their striatal integration, the proper timing of the converging inputs of various modali-

ties is orchestrated by local and global oscillations. The origin and significance of the various

LFP oscillations in the CPu are unclear due to the lack of any ordered geometrical alignment

of the striatal neurons [88–90]. LFP oscillations can be (1) locally generated by the local rever-

berating excitatory—inhibitory connections, (2) passively and instantaneously volume-con-

ducted to the site of observation, or (3) evoked locally, driven by rhythmic inputs from distal

structures when the local neuronal activity resembles the original oscillation with a synaptic

delay. In this third case, the current source density analysis of structures with unordered neu-

rons (e.g., the striatum) will not reveal any characteristic source and sink patterns. Still, as

most extracellular recordings in intact animals are referenced to a distal “electroneutral” loca-

tion (e.g., the cerebellum), even the randomly arranged striatal neurons can give rise to large-

amplitude LFP oscillations. This is because they rhythmically sink and release ionic charges

from the extracellular space during their synchronized discharges [91,92]. In the striatum, all

three ways most likely contribute to the generation of LFP oscillations.

Although theta phase coupling is present in a good number of striatal neurons, in vitro

studies have not revealed any cellular properties that may support the local generation of the

theta rhythms [93]. Since phase precession is more constrained to hippocampal theta than to

the local rhythm [82], it is likely that the CPu only resembles the theta-modulated activity
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from the hippocampus or connected structures (e.g., prefrontal cortex [94,95]). Similarly, delta

oscillations are imposed by corticostriatal neurons driving striatal interneurons and medium

spiny neurons [44,96]. However, beta band oscillation can be generated by the CPu on its own

through the interplay between PV+ fast-spiking interneurons and medium spiny neurons

under the control of dopamine neuromodulation [97].

The picture is not so clear in the case of gamma oscillations. Van der Meer and colleagues

[77] found that at least part of the ventral striatal gamma activity is locally generated. However,

the CPu network lacks the necessary inhibitory—excitatory loop that could generate these

rhythms alone [98,99]. Along these lines, it is likely that rhythmicity is generated elsewhere

(e.g., the hippocampal formation, the piriform, or the visual cortex) and that the striatal neu-

rons only resonate with these inputs [88,89]. However, the synchronized, sudden switches

between 50 and 80 Hz gamma rhythms along the whole extent of the ventral striatum also sug-

gest the presence of some coherent internal mechanisms [83].

The distal and local generation of the respective lower- and higher-frequency oscillations is

reinforced by the observation that the activation of TFNs selectively increases the power of

both the beta and gamma bands but not the lower-frequency bands [97]. We strongly hypothe-

size that the LFP oscillations of the dorsal striatum are at least partially generated by the coor-

dinated discharges of the striatal neurons that are governed by their distal inputs (including

the visual cortex). This idea is supported by the lagging gamma band coherence of the striatal

and V2 LFP oscillations, as well as the differential phase locking of the recorded neurons to

local and distal gamma oscillations.

The possible role of the corticostriatal LFP oscillations

We found that the neurons of V2 express oscillations in the low- and mid-gamma band. Such

patterns also appear in the CPu with approximately 20–30 ms delay (called gamma-50 by van

der Meer and Redish [83]). We interpret this delay as a sign of information transfer between

the visual cortex and the striatum. This delayed synchrony is not present at other frequency

bands (except for the theta band), and it quickly decays, even if the signals are further shifted

with an integer number of cycles. This suggests that the detected events are discrete packages

of a few gamma cycles but not a persistent gamma oscillation (see S8 Fig for interpretation).

The lag of these gamma epochs is in agreement with the latency of the striatal excitatory post-

synaptic potentials (EPSPs) compared to the V1-evoked potentials after visual stimulation, as

reported by Reig and Silberberg [7]. We assume that these striatal gamma events are likely to

be generated by the evoked gamma frequency bursts of PV+ fast-spiking interneurons [100],

since similar PV+ interneurons are responsible for gamma oscillations in the hippocampus

and cortex [101]. This hypothesis is compatible with our finding that the majority of pVis+

neurons are FFNs, underpinning that their modulation through sensory inputs may have an

effect on the generated gamma events. We found that visual stimulation decreases the FR of

the FFNs and presumably their cortical afferents as well. Thus, we assume that this decreased

cortical “constrain” is the cause of the weaker gamma coherence in the striped maze.

Coherent LFP oscillations serve as “semaphores” for interactions between many circuits of

the brain and are efficient filters for information transfer [102]. The detected oscillatory delay

of the mid-gamma band matches the delay of the monosynaptic responses recorded in our

electrical stimulation experiment. It is therefore possible that its purpose is to offer highly excit-

able time slots when the CPu neurons become more sensitive to cortical information. It is

doubtful whether these gamma patterns are related only to the visual cortical interactions or

that multiple inputs are converging to the CPu during these short temporal windows, given

that the importance of the striatal gamma patterns has already been shown in signal response—
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association tasks [103]. On the other hand, the weak theta phase coupling of the pVis+ neurons

reflects their relatively steady responsivity. This is a prerequisite for the reliable quick recogni-

tion of moving objects at any moment. Further experiments are needed to gain evidence to ver-

ify these hypotheses.

Differential innervation conclusively distinguishes pVis+ cells from the larger pool of per-

ceptors detecting visual dislocations induced by self-motion (i.e., aVis+ neurons) and estab-

lishes them as a separate functional group. We propose that the aVis+ neurons may provide

robust feedback on the dislocation of the gait caused by the movements of the animal. In addi-

tion, successive comparison of the activity of aVis+ and pVis+ neurons can extract the pres-

ence of independently moving third-party objects such as prey or predators in a nonstationary

(but otherwise neutral) visual environment. This process may be important in detecting self-

independent moving objects and for selecting the appropriate action to challenge them. More-

over, the aVis+ and pVis+ neurons also integrate spatial (and possibly contextual and kinetic)

modalities. They are modulated by visual motion co-occurring with self-motion whose fea-

tures may have a utility in sensorimotor integration while performing the chosen action.

Further experiments may confirm these hypotheses by revealing the origin of the visual infor-

mation that drives the aVis+ neurons and testing the behavioral consequence of the selective

manipulation of these two pathways. Optogenetic silencing of the specific axon terminals in

the dorsomedial CPu may be a good approach to achieve this in the future.

Materials and methods

Ethics statement

All experiments were approved by the Ethical Committee for Animal Research at the Albert

Szent-Györgyi Medical and Pharmaceutical Center of the University of Szeged (No. XIV/218/

2016 and XIV/471/2012). Thirty-two male rats (Long-Evans, 3–12 mo old) were used in this

study.

Awake electrophysiological experiments

Surgery and recordings. Electrode fabrication and implantation surgery were described

in details earlier [26,104]. Briefly, animals were anesthetized with isoflurane, and 1 or several

craniotomies were performed under stereotaxic guidance. Sixty-four channel silicon probes

(NeuroNexus, Ann-Arbor) were implanted in the dorsomedial striatum. In 2 animals, an addi-

tional 32 channel silicon probe was implanted in the visual cortex of the same hemisphere. In

2 other animals, a bipolar stimulation electrode made of two 50 μm thick parylene-insulated

tungsten wires was implanted in the visual cortex (AP 4.5 mm posterior from the bregma; ML

2.8 mm; DV 0.5 and 2 mm, 1,500 μm distance between the tips of the wires, 500 μm uninsu-

lated part at each tip). Silicon probes were mounted on custom-made micro-drives to allow

their precise vertical movement after implantation. The probes were inserted above the target

region, and the micro-drives were attached to the skull with dental cement. The craniotomies

were sealed with sterile silicone. Two stainless steel screws were drilled bilaterally over the cer-

ebellum, serving as ground and reference for the recordings. Several additional screws were

driven into the skull and covered with dental cement to strengthen the implant. Finally, a cop-

per mesh was attached to the skull with dental cement and connected to the ground screw to

act as a Faraday cage, preventing the contamination of the recordings by environmental elec-

tric noise. After postsurgery recovery, the probes were moved gradually in 75 to 150 μm steps

per day until the desired position was reached [104]. The CPu was identified physiologically by

increased unit activity. The exact electrode locations were identified post hoc from histological

sections.

Striatal discrimination of passive and self-induced visual motion

PLOS Biology | https://doi.org/10.1371/journal.pbio.2004712 June 25, 2018 20 / 35

https://doi.org/10.1371/journal.pbio.2004712


Data acquisition. The operated animals were housed in individual cages and recorded

during different navigational tasks. One animal was also recorded during sleep in his home

cage. Neuronal recordings were performed daily by connecting the probes to a signal multi-

plexing headstage attached to a thin and light cable pending from the room ceiling on a trolley

system that allowed free movement of the animal. The spatial position of the rats during

behavioral sessions was monitored using video tracking of 2 LEDs fixed to the headstage at 30

frames per second, with approximately 3 mm resolution. The wide-band signal (0.2–10 kHz)

acquired at 20K Sample/s (KJE-1001, Amplipex Ltd, Hungary) was low-pass filtered and

downsampled to 1,250 Hz for LFP analysis and high-pass filtered (>0.5 kHz) for spike

detection.

Electrical and passive (non-self-motion-induced or self-independent) visual stimula-

tions. A home cage—like visual stimulating environment was created to test the neuronal

responses to visual stimuli while the animal was performing nonguided behavior. A 60 × 60

cm rectangular wooden platform was surrounded by four 24” LED monitors (24M45H-B, LG,

Seoul, South Korea) serving as approximately 30 cm tall walls, and the rats were placed in this

stimulation box. One stimulus trial consisted of an initial 1 s uniform gray screen, 1 s of full-

screen stationary grating with sinusoidally modulated luminance in a given orientation (8 ori-

entations in 45˚ steps) and with a given spatial density (170, 85, or 42.5 mm/cycle), and finally

1 s of moving grating, during which the aforementioned grating was sliding orthogonal to its

orientation with a given temporal velocity (1,200, 600, or 300 mm/s). The overall brightness of

the three conditions was adjusted to be isoluminant (i.e., gray screen versus black-to-white-to-

black gratings). The spatial densities and temporal velocities of the gratings were chosen to

match the spectral preference of the caudate neurons reported earlier, when viewed from the

center of the cage, and were combined in a way that gave a constant sliding speed of approxi-

mately 7 cycles/s [9]. The frame rate of the monitors was set to 60 Hz; thus, the grating was

sled with approximately one-ninth of a cycle in each consecutive frame, which gave the percept

of a smooth motion. A pseudorandom sequence of visual stimulus trials was generated by ran-

dom combinations of direction/orientation (8) and spatial/temporal properties (3), interleaved

with 3 s long trials of blinking full-screen light stimulation at 0.5 Hz (i.e., a full-screen 1 s

black–1 s white–1 s black sequence). The final sequence of two thousand five hundred 3 s long

trials was played on all 4 monitors simultaneously. Each parameter combination was repeated

100 times. The displayed frames were always identical on the 4 monitors, and the room was

otherwise completely dark. The visual stimulation was synchronized with the neuronal data by

simultaneously recording a digital code displayed at the top-left corner of the screens by a pho-

todetector. This 1 × 1 cm large visual code was not visible to the animals, as these parts of the

monitors were covered. Animals’ behavior was monitored using a web camera, and trials in

which they were sleeping instead of random exploration or quite wakefulness were excluded.

The same stimulation sequence was used for the initial screening of intrastriatal cFos distribu-

tion. To test the sensitivity of the neurons to luminance change, only the trials of the full-

screen flash patterns were analyzed. All stimulation protocol was performed during the dark

cycle of the animals.

In animals with stimulating electrodes in the visual cortex, we also tested single-unit and

evoked-potential responses in the CPu for electrical stimulation. Bipolar electrical pulses

(300 μs long 500 μA pulses repeated every 300 ms for 5 min during each session) were deliv-

ered, and CPu recordings were performed while the animals were kept in the same stimulating

cage as above, with the monitors displaying the uniform gray screens.

Active (self-motion-induced) visual stimulation in the linear maze with dynamically

updatable visual environment. In order to investigate the responses of CPu neurons to

visual motion induced by the self-motion of the animals, we constructed a linear maze in
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which the visual environment could be randomly and instantaneously swapped between uni-

form grayness and sinusoidally modulated gratings while the animal was running for water

rewards in the maze. The overall brightness of the two conditions was isoluminant. The visual

scene was projected onto the walls and floor of the maze using a video projector (MW663,

BenQ, Taipei, Taiwan) in an otherwise dark room. To prevent the animals from casting a

shadow and blocking the projection on parts of the environment, which is a bottleneck of pro-

jecting from above, the maze was constructed of translucent acrylic glass, and the scene was

projected on these walls from outside, using a dual mirror system (see Fig 4A). The rats were

trained to run back and forth in this maze to collect small water rewards. These droplets were

automatically delivered at water ports located at the two ends of the maze when the animal

passed through the infrared gates at the opposite side. These gates were located 10 cm away

from the water ports. After each run, the projected scene was randomly swapped between a

uniform gray image and a stationary grating. To match the preferred spatial density of the pas-

sive stimulation, 16 grating cycles were projected along the full length (230 cm) of the maze.

As the rats were running at about 85 cm/s speed, the temporal velocity of the apparent visual

motion (approximately 6 cycles/s) was comparable to that used in the passive stimulation

environment.

Postmortem verification of the electrode locations. Following the termination of the

experiments, animals were deeply anesthetized. All animals were transcardially perfused first

with 0.9% saline solution followed by 4% paraformaldehyde (PFA) solution. Brains were sec-

tioned in 60 μm thick slices (VT1000S Vibratome, Leica, Wetzlar, Germany) in the coronal

plane and stained using 40,6-Diamidino-2-phenylindole dihydrochloride (DAPI; D8417,

Sigma-Aldrich). Locations of the electrode tracks were identified using epifluorescent micros-

copy (AxioImager, Carl Zeiss, Oberkochen, Germany).

Anatomical tract—tracing experiments

Long-Evans rats (260–580 g) of both sexes were anesthetized with 1%–3% isoflurane and then

mounted on a stereotaxic apparatus. Atropine (0.1 mg/kg, s.c.) was administered immediately

after the anesthesia induction. Stages of anesthesia were maintained by confirming the lack of

vibrissal movements and nociceptive reflex. The rectal temperature was maintained at 35–

37 ˚C with a DC temperature controller (TMP-5b; Supertech, Pécs, Hungary). A small incision

on the skin was then made for craniotomy after s.c. lidocaine injections.

Anterograde tract tracing of corticostriatal neurons. A craniotomy above the right V2

was made 4.0–5.0 mm posterior from the bregma, 2.0–3.0 mm lateral of the midline [105]. A

glass capillary (tip 10–20 μm) filled with 10% BDA (D1956; Thermo Fisher Scientific, Wal-

tham, MA) in 0.1 M phosphate-buffered saline (PBS) was installed with an auto-nanoliter

injector (Nanoject II; Drummond Scientific, Broomall, PA) and then inserted into the V2

according to the following 4 stereotaxic coordinates: (in mm) AP −4.50, ML 2.25; AP −4.50,

ML 2.75; AP −5.00, ML 2.25; AP −5.5, ML 2.25. For each coordinate, 0.3 μl of the BDA solution

was ejected at 0.7, 0.85, and 1 mm below the pia at a rate of 0.09 nl/s. After ejections, the capil-

lary tip was held in the position for at least 5 min and then gently retracted. The craniotomy

was covered with sterile bone wax, and the skin wound was sutured. After 1 wk of survival, the

rats were deeply anesthetized and perfused, and the brains were processed (see section Tissue

processing and immunohistochemistry).

Retrograde labeling of striatal afferents. Four Long-Evans rats were anesthetized and

then mounted on a stereotaxic apparatus as described in section Anatomical tract—tracing

experiments. A craniotomy above the striatum (CPu) was made. A glass capillary filled with
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4% fluorogold (Fluoro-Gold; Fluorochrome, Denver, CO) in 0.9% saline was installed with

an auto-nanoliter injector (Nanoject II) and then inserted into the CPu according to the fol-

lowing coordinates: (in mm) AP −1.25–1.75, ML 3.6–4.0, and DV 3–4 from the bregma, mid-

line, and pia, respectively. For each coordinate, 0.15–0.30 μl of the solution was gently ejected.

After 1 wk of survival, the rats were transcardially perfused and fixed; 60 μm thick coronal

brain sections were prepared and processed as described in section Tissue processing and

immunohistochemistry.

Tracing experiments in combination with visual stimulation

Nine rats underwent the BDA injection of the anterograde tracing as described in section Ana-

tomical tract—tracing experiments. After 1 wk of survival, the rats were reared in the cage for

pVis stimulation (see above) in complete darkness overnight, and then 5 of them were stimu-

lated by the same pVis stimulation used in the freely moving electrophysiological experiments.

The 4 other animals were left in the darkness for the same duration (see Fig 2A). After that,

the rats were immediately anesthetized and perfused, and their brains were processed for cFos

and BDA immunohistochemistry as described in section Tissue processing and immunohis-

tochemistry. In 1 animal, we also tested the identity of cFos+ cells with immunohistochemistry

against PV.

Tissue processing and immunohistochemistry

Following the termination of the experiments, animals were deeply anesthetized. All animals

were transcardially perfused first with 0.9% saline solution followed by 4% PFA solution.

Brains were sectioned in 50–70 μm thick coronal slices (VT1000S Vibratome). The following

staining procedures were performed at room temperature.

Immunohistochemistry for retrograde tracing. Sections were incubated successively

with 10% NGS in PBS containing 0.3% Triton X-100 (PBS-X) for 30 min, 1:2,000 diluted anti-

fluorogold polyclonal antibody (AB153-I; EMD Millipore, Billerica MA) in PBS-XG for 48 h,

and 4 μg/ml Alexa Fluor 633-conjugated goat anti-rabbit IgG (A-21071; Thermo Fisher Scien-

tific) in PBS-XG for 2 h. Sections were counterstained with a fluoro-Nissl solution for 60 min,

washed with PBS, mounted, and coverslipped.

Immunohistochemistry for the anterograde tracing experiments combined with visual

stimulation. Animals were transcardially perfused with physiological saline followed by 4%

PFA and 0.2% picric acid in 0.1 M phosphate buffer (PB; pH 7.2–7.3). After removal, brains

were postfixed overnight, embedded in 4% agarose, coronally sectioned at 50 μm thick using a

vibrating blade microtome, and harvested in PBS. All incubations were followed by washing

with PBS-X. Sections were incubated successively with 10% normal goat serum (NGS) in

PBS-X for 30 min, 1 μg/ml rabbit anti-cFos polyclonal antibody (ABE457; EMD Millipore;

Kim et al., 2014) in PBS-X containing 1% NGS and 0.02% sodium azide (PBS-XG) overnight,

and a mixture solution containing 4 μg/ml Alexa Fluor 488-conjugated goat anti-rabbit IgG

(A-11034; Thermo Fisher Scientific) and 2 μg/ml Alexa Fluor 555-conjugated streptavidin (S-

21381; Thermo Fisher Scientific) in PBS-XG for 2 h. Sections were then mounted on glass

slides, counterstained with a fluoro-Nissl solution (N-21479; Thermo Fisher Scientific) for 40

min, washed with PBS, and finally coverslipped with 50% glycerol and 2.5% triethylene

diamine in PBS [106].

cFos and PV double immunohistochemistry. Sections were incubated successively with

3% bovine serum albumin (BSA) in PBS-X for 30 min, a mixture of first antibodies (rabbit

anti-cFos at 1:000: ABE457; EMD Millipore and mouse anti-PV at 1:3,000: PV235; Swant,

Marly, Switzerland) in PBS-X containing 1% BSA (PBS-XBSA) overnight, and a mixture
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solution containing 4 μg/ml Alexa Fluor 488-conjugated goat anti-rabbit IgG and 4 μg/ml

Alexa Fluor 594-donkey anti-mouse IgG (A-21203; Thermo Fisher Scientific) in PBS-XBSA

for 2 h. Sections were then mounted, counterstained, and coverslipped.

Confocal microscopy. Images of fluorescently stained sections were captured using a

laser scanning confocal microscopy (LSM880; Carl Zeiss). Tile images of 5 × 5 and 10 × 10 for

the visual cortex and the striatum were acquired, respectively. Each tile of 10 μm optical thick-

nesses was taken using a Plan-Apochromat 20×/0.8 M27 objective lens (Carl Zeiss), 1.03 μs

pixel time, and 4 times frame average at 512 × 512 resolution. The power of the lasers was 0.4–

0.7 mW, which did not induce obvious fading.

Data analysis

Statistics and data availability. All data analyses were performed in MATLAB (Math-

works, Natick, MA), unless otherwise noted. No specific analysis to estimate minimal popula-

tion sample was used, but the number of animals, trials, and recorded cells was larger or

similar to those employed in previous works, e.g., [4,83,107]. No randomization or blinding

was employed. For statistical testing, Student t test, Wilcoxon rank-sum test, or Kolmogorov-

Smirnov tests were used, depending on the distribution of the data and the sample size (two-

tailed). To compensate the cumulative error due to multiple comparisons, Bonferroni correc-

tion was employed. One, two, or three asterisks on the figures denote significance levels <0.05,

<0.01, and<0.005, respectively. MIs were always calculated as the ratio of the difference and

the sum of two measures. The data that support the findings of this study are available from

the corresponding author upon reasonable request, and the numerical values used to generate

figure plots can be found in S1 Data.

Automated processing of the microscopic images

Separate color channels of the raw data were exported as 8-bit tiff files. For cFos and PV double

immunostaining, cFos-positive, PV-positive, and cFos- and PV-double-positive neurons were

manually counted using the Cell counter plugin of ImageJ software (NIH, Bethesda, MD). For

the estimation of BDA-labeled axon density and cFos density, the following automated proce-

dure has been employed (see also S1 Fig): For each slice, a binary mask layer was created in

Photoshop (Adobe systems, San Jose, CA) to void the extra-CPu regions (non-CPu mask) and

the obvious artefacts of the BDA channel (intra-CPu mask, e.g. blood vessels). The BDA, the

cFos, and the mask channels were saved as separate grayscale image files. The cFos image was

preprocessed in ImageJ (v1.50) using the Image-based Tool for Counting Nuclei plugin

(ITCN, Kuo and Byun, Center for Bio-image Informatics at UC Santa Barbara, https://imagej.

nih.gov/ij/plugins/itcn.html) after image inversion. ITCN (settings: width: 14 px, minimum

distance 7 px, threshold 1, detect dark peaks) marked the cFos+ somata as red pixels on the

grayscale image. All three image files were loaded in MATLAB and divided into 512 × 512

pixel subregions (10 × 10 pieces). cFos density was measured at the corresponding image as

the number of red (somata) pixels in each subregion that were not masked in the mask map,

normalized by the nonmasked area. BDA image was thresholded using the mean +4 SD lumi-

nosity level of the overall nonmasked image. Pixels brighter than this threshold were consid-

ered as BDA-labeled axons. BDA density was calculated the same way as for the cFos density.

Intra-CPu masks were covering less than 2% of the total CPu area at all slices and were uni-

formly distributed both along the DV and ML axes and thus did not bias the measured densi-

ties. Data of subregions smaller than 2,600 pixels (due to the non-CPu mask) were discarded

to avoid numeric approximation errors. ML and DV extent of each CPU slice was normalized

when analyzing multiple slices together.
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Spike sorting and unit classification. Neuronal spikes were detected from the digitally

high-pass-filtered raw signal (0.5–5 kHz) by a threshold crossing—based algorithm (Spikede-

tekt2; https://github.com/klusta-team/spikedetekt2). Detected spikes were automatically

sorted using the masked EM algorithm for Gaussian mixtures implemented in KlustaKwik2

[24] (https://github.com/klusta-team/klustakwik/), followed by manual adjustment of the clus-

ters using KlustaViewa software [25] (https://github.com/klusta-team/klustaviewa/) to obtain

well-isolated single units. Multiunit or noise clusters were discarded for the analysis. Cluster

isolation quality was estimated by calculating the isolation distance and interspike interval

(ISI) index for each cluster [26]; poor quality clusters were discarded. Striatal neurons were

classified as reported by Schmitzer-Torbert and Redish [107], assisted by monosynaptic excit-

atory and inhibitory interactions between simultaneously recorded, well-isolated units [35].

Briefly, 5 parameters were calculated: spike width and spike trough-to-peak time [26], FR, pro-

portion of interspike intervals exceeding 2 s (ISI2s), and postspike suppression time (PSST,

[107]). Neurons with more than 2% ISI2s, broad spikes, and low FR and PSST were classified

as TFNs; those with less than 2% ISI2s, narrow spikes, high FR, and low PSST were considered

as FFNs; and finally, those with less than 2% ISI2s, low FR, and high PSST were classified as

TFNs. Spike waveforms were extracted ([−1, +1] ms around the threshold crossings) from the

raw unfiltered recordings, and their linear trends were removed.

Effect of the pVis stimulation on the FRs. Peristimulus time histograms were con-

structed from the action potential time series, triggered by the visual stimulation sequence.

FRs were calculated for the periods during uniformly gray, stationary grating, and moving

grating stimulation separately, for each stimulus condition. FR MIs were calculated for

each condition for uniform versus stationary and uniform versus moving grating segments as

MIstationer = (FRstationer − FRuniform) / (FRstationer + FRuniform), and MImotion = (FRmoving −
FRuniform) / (FRmoving + FRuniform). The same approach was used to compare the neuronal

activity in dark and brightness during the luminance test. The effect of the blinking light was

judged by the trial-by-trial comparison of the FRs during the black and the white periods of

the stimulation.

Spiking activity in the linear maze. Coordinates of the detected LEDs were linearized by

projecting them onto the axis of the linear maze, smoothed using a 10 frames wide Gaussian

kernel, and rounded to 1% precision. Successful running trials were considered as periods in

the recordings when the animals were traversing from 10% to 90% of the maze or vice versa.

Automated trial extraction was performed by detecting 50% crossings in the time series of the

linearized positions, and each of the crossing detections were tracked backward and forward

in time until the velocity dropped below 5 cm/s. Trials in which either of these automatically

detected start and stop positions were between 10% and 90% (i.e., the rat stopped in the middle

of the maze) were discarded. Running directions were arbitrarily named “forward” and “back-

ward” runs. Spatially resolved FR histograms and raster plots were compensated by the occu-

pancy frequency of each spatial bin (20 bins) [30]. To determine the responsivity of the

neurons in the aVis task, the mean compensated FRs within these spatial bins were compared

between the uniform and striped trials using a paired t test. MIs were calculated to express the

strength of the overall effect of perceived visual motion by comparing the FRs during “striped”

and “uniform” trials as MI = (FRstriped − FRuniform) / (FRstriped + FRuniform).

The spatial extent of the significant modulation of the neuronal FRs by the visual motion

was tested by a label-shuffling approach described in [30]. Briefly, the uniform/striped labels of

the trials in each session were shuffled, and the difference of spatially resolved firing patterns

during the shuffled “uniform” and the shuffled “striped” trials were calculated. This was

repeated 1,000 times to create a surrogate dataset of shuffled differences. Local confidence

boundaries of the shuffled datasets were determined at the 2.5%–2.5% tails of the distributions
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of the shuffled difference values at each spatial bin (“local significance levels”). To compensate

the cumulative error of multiple comparison, a “global significance level” was subsequently

determined in an iterative way by increasing the local significance levels until only 5% of the

shuffled surrogate dataset broke the global threshold. This global significance level was used

then to determine the significance of difference of the real, unshuffled firing patterns,

smoothed by a 5 bin wide (around 15 cm) moving average.

To correlate the modulation of the FRs with the temporal frequency of the perceived visual

motion (i.e., the running speed), the instantaneous running speeds were binned and averaged

in 10-cm-wide spatial bins, and the median of the corresponding MIs of the simultaneously

recorded aVis+ neurons were calculated in each bin. Sessions with fewer than 3 aVis+ neurons

and bins with nonsense MIs (NaNs and Infs due to undersampling errors) were excluded.

Because of the low number of spikes in the spatial bins, we calculated the median of the bin-

wise MIs of the aVis+ cells within each trial. Extreme (nonsense) median MIs were further

excluded by taking the median of the binned MIs with similar corresponding velocities across

trials of a given session. These cleaned MIs were correlated then with the corresponding

instantaneous running speeds.

Space-resolved neuronal activity patterns were also analyzed with respect to the local lumi-

nance at the instantaneous positions of the rats: each location was assigned with the local lumi-

nance value of the “striped” pattern (expressed as the phase of the sinusoidally modulated

luminance grating). Circular histogram of the “stripe phase”–resolved activity pattern was gen-

erated by averaging the activity patterns across all 14 cycles and all trials of the given condition.

For the “uniform” condition with nonmodulated gray pattern, the same cycle phase values

were used in the analysis as determined in the “striped” condition. Activity patterns were

tested for circular uniformity using the Rayleigh test, and only those neurons were included in

the population analysis that showed a significant deviation from the von Mises distribution

either in the “striped” or in the “uniform” condition. This deviation was quantified as the MI

of circular nonuniformity (MI = [FRpeak − FRpeak-180˚] / [FRpeak + FRpeak-180˚]).

LFP spectral analysis and spike—LFP coupling. Power spectrum and time-resolved

spectral analysis were performed on the low-pass-filtered and downsampled (1,250 S/s) LFP

signals using multitaper spectral analysis. Spectra were whitened by multiplying with the cor-

responding frequencies and expressed as decibels (dB). For all local spike—LFP coupling anal-

yses, the median of the local LFP signals recorded on the same shank has been used. For phase

coupling of the CPu neurons to V2 LFP, the median LFP of all V2 recording sites was used

instead. Subjectively noisy LFP channels due to recording sites with too-high impedance were

discarded. LFP signals were filtered in 5 frequency bands (delta: [1–4 Hz], theta: [4–12 Hz],

beta: [12–30 Hz], low-gamma: [30–45 Hz], mid-gamma: [45–80 Hz]) with an eighth-order

zero-phase-lag Butterworth filter, and phase values were obtained using Hilbert transform. No

50 Hz notch filtering was used in the data acquisition or during the data analysis. LFP phase

histograms were constructed by taking the corresponding instantaneous LFP phase values cor-

responding to the isolated single-unit spikes, and their deviation from the circular uniform

distribution was tested using the Rayleigh test. The bin size of the histograms was 18˚ and was

smoothed by calculating a 5 bin wide moving average of the histograms. The phase values cor-

responding to the peaks and troughs of the smoothed distributions were taken as preferred

and unpreferred phases, respectively. Phase MIs were calculated from smoothed occurrence

frequencies of spikes at the preferred and unpreferred phases to account for possible asymmet-

ric distributions (MI = [FRmax − FRmin] / [FRmax + FRmin]).

Spatial location—related activity in the linear maze. Rate map, spatial information,

selectivity, and sparsity [35] were calculated for each direction separately. A Gaussian kernel

(SD = 5 cm) was applied to both raw maps of spike and occupancy, and a smoothed rate map
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was constructed by dividing the smoothed spike map by the smoothed occupancy map. A

place field was defined as a continuous region of at least 15 cm where the FR was above 10% of

the peak rate in the maze, the peak FR was >2 Hz, and the spatial coherence was>0.7. Place

fields with fewer than 50 spikes, those that included the turning position of the track, and trun-

cated or overlapping fields were discarded [35,104]. Place fields in both running directions in

the linear track were treated independently. Stability of place fields across conditions was

tested by calculating the spatial correlation of the binned mean firing patterns in the striped

and uniform trials.

Cross-region LFP activity analysis. Median LFP signals were calculated for each record-

ing shank (8 recording sites per shank, 8 CPu shanks, and 4 cortical shanks). Granger causality

was estimated for each V2 and CPu signal pairs. Only time lags in the range of [2, 40] ms were

considered, and the lag with the highest causality measure was displayed. F-statistics were com-

pared with paired t test between the uniform and striped conditions. Time and frequency—

resolved cross-correlations were calculated for each shank pairs (32 in total) the following way:

Both signals were iteratively filtered between 1 and 100 Hz in 1 Hz steps, with an eighth-order,

zero-phase-lag passband filters, and their cross-correlations were calculated for [−100, +100]

ms lags, in 2 ms steps. The magnitudes of the cross-correlograms were taken as the absolute

values of its Hilbert transforms for each frequency. To remove the additive distortion caused

by the symmetric correlation of the synchronous events (e.g., common noise), the minima of

each symmetric time bin pairs have been subtracted from the same bins. The principle of this

approach is demonstrated by analyzing 2 artificial LFP signals and explained on S8 Fig.

Supporting information

S1 Data.

(XLSX)

S1 Fig. Steps of the automated detection of cFos+ cell and BDA-labeled axon density and

cortical cFos expression. (A) Original tile-scan image of the BDA-labeled axons on a repre-

sentative example slice (left). Middle panel shows the intensity-thresholded image, while right

panel denotes the calculated binned axon density. (B) Original tile-scan of the cFos+ neuronal

somata on the same slice (left) and its inverted version (middle). Inset of the middle panel

shows a magnified image of a cFos+ neuron. Note the red dot placed at the center of the soma

by the automated detection algorithm. Right panel shows the binned density of the automati-

cally detected cFos+ neurons. (C) Manually generated image mask to avoid artefact detection.

Black mask covers the non-CPu structures, while red masks cover the intra-CPu artefacts (e.g.,

noise, vessels, etc.). (D) Distribution of intra-CPU masks at all slices along the vertical (blue)

and mediolateral (red) axes. Note that the masks were distributed uniformly and covered only

approximately 1% of the total CPu area. (E) Correlation of the binned BDA and cFos density

values of the representative slice shown on panels A—C. The correlation coefficient of the

value pairs and the significance level of the correlation are displayed above the plot. (F,G)

Small (left) and large (right) magnification photomicrographs of the V2 injection site of the

BDA tracer (F) and the V1 (G) of a stimulated animal. Color channels are identical to those on

Fig 2. Note the large number of cFos+ neurons in both regions as a result of the visual stimula-

tion. BDA, biotinylated dextran amine; CPu, caudate putamen; V1, primary visual cortex; V2,

secondary visual cortex.

(TIF)

S2 Fig. Basic electrophysiological properties and intrastriatal connectivity of the recorded

CPu neurons. (A—C) Waveform and spike train characteristics of a representative PFN (A),
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FFN (B) and TFN (C). Top left panels: mean extracellular spike waveforms on the 8 recording

sites of the corresponding electrode shank. Top-right panels: distribution of ISIs, ISI2s are

aggregated. Note the high proportion of long ISIs for PFNs (red arrow). Bottom-left and right

panels display the postspike suppression histograms and autocorrelograms, respectively. (D)

Classification of the recorded neurons based on the features of their spike waveforms (left

panel) and spike trains (right panel). (E) Proportion of the recorded PFNs (64%), FFNs (22%),

TFNs (8%), and unclassified neurons (6%) among all recorded single units. CPu, caudate puta-

men; FFN, fast-firing neuron; ISI, interspike interval; ISI2s, interspike interval exceeding 2 s;

PFN, phasically firing neuron; TFN, tonically firing neuron.

(TIF)

S3 Fig. (A-D) Rate remapping of 4 example aVis+ neurons. The left panels of each example

show the spatially resolved firing patterns in the uniform and striped environments (blue and

red, respectively). Right panels show the details of statistical testing of the space-resolved visual

modulation. The thick black lines show the real FR differences in the two environments, while

the gray curves denote the label-shuffled surrogate firing pattern differences. Purple and green

lines depict the “local” and “global” significance thresholds, respectively. Spatial locations

breaking the global significance limits are marked with thick red lines in both the left and right

panels. aVis, active visual; FR, firing rate.

(TIF)

S4 Fig. FRs of the pVis+ cells in the “striped” versus “uniform” maze. The plots are showing

the comparison of the normalized FRs of each pVis+ neurons in the uniform (abscissa) and in

the striped maze (ordinate). Identity and regression lines are shown in black and red, respec-

tively. Correlation coefficients and significance levels are shown above each plot. To form the

FR, data points of only those consecutive trials were included in which the condition was

changing from “uniform” to “striped” or vice versa. FR values were normalized by using the

maximum rate during the “uniform” trials. FR, firing rate; pVis, passive visual.

(TIF)

S5 Fig. Comparison of place preference of the neurons expressing place field—like activity

in the “uniform” and the “striped” environment. The plots show the comparison of the nor-

malized FRs of each place cell—like neurons in the uniform (abscissa) and in the striped maze

(ordinate). Identity and regression lines are shown in black and red, respectively. Correlation

coefficients, significance levels, and the coefficients of the regression lines (“a” and “b,” in

which y = a × x + b) are shown above each plot. To form the FR, data points of only those con-

secutive trials were included in which the condition was changing from “uniform” to “striped”

or vice versa. FR values were normalized by using the maximum rate during the “uniform” tri-

als. FR, firing rate.

(TIF)

S6 Fig. Response profiles of the aVis+ neurons in relation to space, context, velocity, and

luminance. (A) Modulation indices of the rate remapping depend on the temporal velocity of

the perceived visual motion, determined by the running velocity. Slower speeds elicited weaker

decrease (i.e., weaker modulation) of the FRs. (B) Comparison of the mean running speeds in

the striped and uniform environments. (C-E) Analysis of aVis+ neurons’ activity patterns in

the reward zones, where the rats were not running—thus, no visual motion was perceived—

but they still observed the stationary patterns of the walls. (C) The average time spent at the

reward zones in trials when uniform or striped pattern were presented was similar. (D) The

FRs of the aVis+ neurons were almost identical at the reward zones, with no respect to the pat-

tern or context. (E) The distribution of the significance levels of the cell-by-cell comparison of
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the firing patterns depict that only a small minority of the aVis+ neurons perceived the station-

ary patterns as different. (F) Two representative neurons excited (left) or inhibited (right) by

the global brightness increase. (G) Percent of neurons responsive to global luminance change.

Note that in contrast to the aVis+ neurons, more than half of the pVis+ neurons were sensitive

to brightness. (H) Response profile of a representative neuron triggered by the individual sinu-

soidal cycles of the grated pattern. Local luminance levels are shown above the plot; 2 full stripe

cycles are shown for better visibility. Note that the stripe phase—resolved firing pattern (red)

is similarly uniform as the pattern in the uniform trials (blue). (I) Mean stripe phase—resolved

circular modulation indices of the aVis+ neurons were similar in the two conditions. aVis,

active visual; FR, firing rate.

(TIF)

S7 Fig. LFP phase coupling of the recorded neurons. Preferred LFP phases are shown as

histograms for pVis−/aVis− (top row), pVis+ (second row), and aVis+ (third row) neurons

separately. Bottom row shows the comparison of phase coupling strength expressed as the dis-

tribution of the phase modulation indices for the three groups of neurons (for quantification,

see Fig 5C). Columns from left to right show the phase preferences for band pass—filtered LFP

signals in the delta, theta, beta, low-gamma, and mid-gamma bands. For better visibility, the

circular distributions are plotted twice (−180–540˚) on the phase preference distribution histo-

grams. aVis, active visual; LFP, local field potential; pVis, passive visual.

(TIF)

S8 Fig. Demonstration of the concept of the novel time lag and frequency-resolved cross-

correlation estimation method. (A) A demonstrative example of 2 artificial LFP signals with

a phase-delayed continuous theta oscillation, 2 time-delayed discrete gamma bursts in the

low- and high-gamma band, and a coincident square wave resembling a recording artefact. (B)

Raw time and frequency—resolved cross-correlograms constructed from individual cross-cor-

relograms calculated after iterative filtering for each frequency band. (C) The same time and

frequency—resolved cross-correlogram after the suppression of the zero-lag correlation com-

ponents. Note the emergence of 3 domains (red arrows), representing the phase-shifted theta

oscillations and the gamma bursts with the appropriate time lags. Note also the lack of the

artefact’s spectral profile, which dominated the raw spectrogram on panel B. LFP, local field

potential.

(TIF)
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