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This study investigated the complexity of the electromyography (EMG) of lower limb 
muscles when performing obstacle crossing tasks at different heights in poststroke 
subjects versus healthy controls. Five poststroke subjects and eight healthy controls 
were recruited to perform different obstacle crossing tasks at various heights (randomly 
set at 10, 20, and 30% of the leg’s length). EMG signals were recorded from bilateral 
biceps femoris (BF), rectus femoris (RF), medial gastrocnemius, and tibialis anterior 
during obstacle crossing task. The fuzzy approximate entropy (fApEn) approach was 
used to analyze the complexity of the EMG signals. The fApEn values were significantly 
smaller in the RF of the trailing limb during the swing phase in poststroke subjects than 
healthy controls (p  <  0.05), which may be an indication of smaller number and less 
frequent firing rates of the motor units. However, during the swing phase, there were 
non-significant increases in the fApEn values of BF and RF in the trailing limb of the 
stroke group compared with those of healthy controls, resulting in a coping strategy 
when facing challenging tasks. The fApEn values that increased with height were found 
in the BF of the leading limb during the stance phase and in the RF of the trailing limb 
during the swing phase (p < 0.05). The reason for this may have been a larger muscle 
activation associated with the increase in obstacle height. This study demonstrated a 
suitable and non-invasive method to evaluate muscle function after a stroke.

Keywords: fuzzy approximate entropy, obstacle crossing, stroke, gait, electromyography

inTrODUcTiOn

Stroke, a leading cause of disability, often leads to functional limitations in the activity of daily living 
(ADL). Stroke survivors have a high risk of falling during all poststroke stages (1). Mackintosh et al. 
found that 36% of community-dwelling elderly people with chronic poststroke symptoms reported 
falling in the past year, which is significantly more than 24% of the healthy controls (2). Rehabilitation 
intervention offers beneficial effects on motor recovery after a stroke (3) and can reduce the risk of 
falling (4). A better understanding of motor function impairment in stroke survivors will help design 
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effective recovery strategies during rehabilitation to reduce the 
incidence of falling.

Obstacle crossing is a complex walking ADL and requires 
sufficient foot obstacle clearance for the swinging limb, stability 
of the stance limb (5), and coordination of the whole body to 
prevent the loss of balance. Half of all stroke subjects either lose 
their balance or make casual foot contact with the obstacle dur-
ing crossing (6), which indicates that obstacle crossing threatens 
the safety of patients after a stroke. Many studies based on the 
kinematic indices have been conducted to analyze stroke patients’ 
gaits. Kerrigan et al. examined the joint angles of stroke patients 
during level walking to quantitatively define the most commonly 
used strategy termed circumduction (7). Lu et al. investigated the 
motor performance in high-functioning poststroke patients dur-
ing obstacle crossing and found that stroke survivors appeared to 
adopt a specific symmetric kinematic strategy with an increased 
pelvic posterior tilt and swing hip abduction (8). Said et al. quan-
tified the modifications of kinematic characteristics in stroke sur-
vivors during obstacle crossing and found that stroke survivors 
had reduced toe-obstacle clearance and closer horizontal distance 
after clearance with increased crossing time compared to healthy 
controls (9).

Previous studies based on the kinematic analysis identified 
a significant number of stroke-related features for obstacle 
crossing. Further information about muscle function requires 
electromyography (EMG) signals, which can be recorded from 
the muscle surface (10). EMG analysis based on time and 
frequency domains was widely used in previous studies. Zhai 
et al. proposed a self-recalibrating classifier of hand movements 
based on the convolutional neural network using short latency 
dimension-reduced sEMG as an input (11). Chen and Yang suc-
cessfully reconstructed drawings of trace reconstructions using 
a novel three-step hybrid model based on the root mean square 
(RMS) of seven-channel EMG signals and a gene expression pro-
gram (12). Kisielsajewicz et al. found that the coherence between  
synergist muscles in the affected upper limb of stroke patients 
was lower than that of healthy subjects during reaching tasks 
(13). Our previous results showed greater muscle activation 
levels, increased muscle co-contraction, and lower mean power 
frequencies in persons after a stroke compared to controls during 
obstacle crossing. These findings indicated that abnormal muscle 
activation patterns might contribute to difficulties in maintaining 
balance during obstacle crossing (14). Since the generation of 
EMG signals is non-linear (15), simple linear modeled features, 
such as the RMS, integrated EMG, and mean power frequency, 
reported recently are limited in characterizing muscle dynamics 
(16). Some non-linear methods have been introduced to analyze 
the EMG signals, including fractal dimension, average maximum 
finite-time Lyapunov exponents, and recurrence quantification 
analysis (15, 17, 18). However, these non-linear dynamic methods 
usually require very large data sets to achieve reliable results. This 
may lead to spurious results when applied to small data sets from 
experiments (19). To solve this problem, entropy-based methods, 
such as approximate entropy (ApEn), sample entropy (SampEn), 
and fuzzy approximate entropy (fApEn), have been introduced 
to analyze EMG signals (19–21). For example, Zhang et al. used 
SampEn to detect the onset of muscle activity and found that it 

was more robust than the RMS method (21, 22). It was further 
used to examine the EMG-torque relation in the complexity 
domain. This demonstrated that complexity analysis is a novel 
tool to examine neuromuscular changes after stroke (23).

Entropy was first introduced by Shannon and later termed 
information entropy (24). Kolmogorov then developed K-S 
entropy based on the information entropy, which was appli-
cable for examining the complexity of systems (25). However, 
K-S entropy is not useful for the analysis of measured signals 
because these signals are noise, and K-S entropy is unable to 
analyze noisy signal (26). Pincus subsequently introduced 
ApEn, which is applicable to noisy and small data sets (26). 
Although ApEn has many advantages compared with linear 
analysis methods, it is biased. To solve this problem, SampEn 
was then developed based on ApEn (27). SampEn is less 
dependent on the size of data sets and shows better relative 
consistency, but SampEn(m, r, N) is not defined in the case of 
small N and r (27). Chen et al. later developed fApEn as another 
complexity analysis method. It combines Zadeh’s fuzzy sets 
with entropy-based methods (19). Due to its excellent robust-
ness and consistency (28), fApEn can analyze muscle function 
in patients with neuromuscular disorders. Ao et al. found that 
the fApEn values in the elbow muscles were lower compared 
to healthy controls (29). Sun et  al. found that fApEn values 
increased with force-generating capacity in stroke survivors 
during robot-aided rehabilitation training sessions (30). To 
date, there are limited studies on the dynamics of muscle func-
tion during complex tasks, such as obstacle crossing following 
stroke. This is critical to daily living.

In this study, fApEn was used to analyze the EMG signals 
recorded from eight muscles of the lower limb of poststroke sub-
jects and compared those with healthy subjects when performing 
obstacle crossings tasks at different heights. This study aimed to 
investigate the alterations in the complexity of the EMG signals 
between the two groups and between different heights during the 
task. It also aimed to identify dynamic muscle function changes 
after stroke. Our hypothesis was that the complexity of the gener-
ated EMG signals would decrease due to muscle damage after 
stroke. The complexity would increase along with the obstacle 
height due to the underlying mechanisms of muscle activation. 
The correlation between the fApEn values of the EMG signals and 
the clinical scales could provide further details regarding muscle 
function after stroke.

MaTerials anD MeThODs

Participants
Five poststroke subjects with at least 3 months onset prior to data 
collection and were capable of stepping across a 30% leg length 
height obstacle were recruited. In addition, eight healthy subjects 
of similar heights and gender participated in the experiment as 
controls. The Fugl-Meyer Assessment (FMA) and Berg Balance 
Scale for lower extremities were used to evaluate the motor func-
tion of the poststroke subjects. The clinical scales assessments 
were conducted by an experienced physiotherapist. The basic 
information for the poststroke patients is shown in Table 1. This 
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Table 1 | Background data of the stroke survivors.

subject age (years) Duration 
(months)

Paretic 
hemisphere

clinical scales

FMa-le bbs

1 45–50 26 L 28 47
2 45–50 4 L 26 43
3 40–45 3 R 18 33
4 70–75 3 R 27 41
5 50–55 3 R 22 41

To avoid indirectly identifiable patient data, the genders of stroke group were presented 
as four males and one female; and the ages were presented as a range.
BBS, Berg Balance Scale; FMA, Fugl-Meyer assessment scale of the motor function in 
paretic low-extremity; L, left; R, right.

FigUre 1 | (a) The diagram of obstacle and force plate; (b) flow diagram of the procedure of data collection and storage; and (c) diagram of the gait cycle of 
obstacle cycle.
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for data collection. The apparatuses used in this study were the 
same as our previous experiment. A detailed description was 
provided in our previous study (14). The sample frequency for 
Vicon cameras was 100 Hz and 1 kHz for the force plates and 
EMG modules.

Procedure
The subjects’ heights, body weights, and leg lengths were first 
measured and recorded before kinematic data collection. The 
distance from the anterior superior iliac spine to the lateral 
malleolus was measured as leg length. This was then used to 
calibrate the height of the obstacle of each individual. Thirty-
five 15-mm light-reflective markers and silver-silver chloride 
(Ag-AgCl) electrodes were attached to corresponding positions 
on each of the subjects. The target skin area was shaved and 
cleaned with alcohol to obtain better signals before the attach-
ment of the electrodes (14).

The gait trials began after the preparation. The subjects were 
asked to walk along a volunteered walkway (8 m) at a volunteered 
speed with bare feet with an obstacle placed at a midway distance. 
Details of the trials were described previously (14). Figure  1C 
presents the gait cycle during obstacle crossing. Trials in which 
the subjects touched the obstacles or asked for assistance were 
ignored, and three successful trials for each height were recorded.

All subjects completed the maximum voluntary contraction 
tasks and three different height obstacle crossing tasks. No 
incident of fall was observed during all trials. The trials where 
help was received from therapist or the obstacle was touched were 
discarded. Discomfort or feelings of fatigue were not reported by 
any subjects during the tasks.

study was approved by the Ethics Committee of the First Affiliated 
Hospital of Sun Yat-sen University. This study was conducted in 
accordance to the Declaration of Helsinki. All subjects provided 
written informed consent prior to enrollment.

apparatus
The kinematic data were recorded by a 6-camera 3D motion 
analysis system (Vicon Motion Systems, Oxford, UK). Two force 
plates (AMTI, Watertown, MA, USA) situated in the middle 
of the path were used to record the force signals. The height-
adjustable obstacle was placed between them. A diagram of the 
two force paths and obstacles is presented in Figure 1A. EMG 
data were recorded from the rectus femoris (RF), biceps femoris 
(BF), tibialis anterior (TA), and medial gastrocnemius of both 
sides for all subjects using preamplified wireless transmission 
modules. Figure  1B shows the flow diagram of the procedure 
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Data Processing
A 20-Hz low-pass fourth-order Butterworth filter was employed 
to filter the kinematic and kinetic data. When the toe marker was 
2 mm off the ground, this was regarded as the toe-off time. The 
heel strike time could be recognized according to the change of 
force signal received by the force platforms. The gait cycle was 
then divided into two phases or a single lower limb: swing phase 
and stance phase. The raw EMG signals were collected at a fre-
quency of 1 kHz and then were filtered through a fourth-order 
Butterworth filter with a frequency band from 10 to 350  Hz. 
As the frequency of mains of power supply was 50 Hz, a digital 
notch filter was used to subtract the disturbance of strong elec-
tromagnetic fields of 50 Hz that were present in the experiment 
conducted area.

The fApEn of an N sample series is computed as follows:
First, for a given m, we formed m-dimensional vector 
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where r and n in Eq. 2 determine the width and gradient of the 
boundary.
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The fApEn is then calculated as follows:

 fApEn lnm n r N n r n rm m, , , , , .( ) = ( ) − ( )+ϕ ϕ 1
 (4)

Here, m = 2 and r = 0.15 * SD(signal) were set according to the 
previous study (30).

signal Processing and statistical analysis
The fApEn values for all the muscles were averaged over three 
replicates for each subject during each height obstacle crossing. 

The SD values were also calculated. A two-way (group: control 
and poststroke × obstacle height: 10, 20, and 30% of leg length) 
repeated measure of variance (ANOVA) was performed on the 
fApEn values. A Bonferroni post hoc test was used to analyze the 
fApEn values. Kolmogorov–Smirnov test was applied to the vari-
ables. Pearson’s correlation coefficient was used to examine the 
relationship between the clinical scales and fApEn values when 
the variables were normally distributed. Spearman’s correlation 
coefficient was used when the variables were non-normally dis-
tributed. The significance level was set at 0.05. All the data were 
analyzed in SPSS 19.0 statistical software (SPSS Inc., USA).

resUlTs

Figure  2 shows that the fApEn values of the four lower limb 
muscles of the trailing limb during the stance phase. Figure  3 
presents the fApEn values of these four muscles during the swing 
phase. As presented, during this gait cycle, the fApEn values of 
poststroke subjects were lower than those of healthy controls. In 
addition, significantly lower fApEn values were found in the RF 
of poststroke subjects during the swing phase when compared 
with healthy controls (p < 0.05). As shown in Figures 2 and 3, 
most fApEn values of the four lower limb muscles of the trailing 
limb increased with the height of the obstacle. Furthermore, a 
significant increase was observed in the BF during the swing 
phase when the height of the obstacle increased from 10 to 30% 
of leg length (p < 0.05).

Figures  4 and 5 present the results of the four lower limb 
muscles of the leading limb during the swing phase and stance 
phase. As shown in Figure 4, during the swing phase, the fApEn 
values of the BF and RF in poststroke subjects were higher than in 
the healthy controls, and this result was similar for the TA during 
the swing phase when the obstacle height was 20 and 30% of leg 
length. Meanwhile, during the swing phase, fApEn values for all 
four muscles were lower in poststroke subjects compared with 
healthy controls. However, these differences between groups were 
non-significant (p > 0.05). Similar to the results of the trailing 
limb, the increase in the fApEn of the muscles with the obstacle 
height was also found in the leading limb. In addition, as presented 
in Figure 5, the fApEn value of the BF during the stance phase 
was statistically significantly greater when the obstacle height was 
30% of leg length compared with 10 and 20% (p  <  0.05). The 
correlations between fApEn and the two clinical scales were not 
statistically significant.

DiscUssiOn

We recorded EMG signals and calculated the fApEn values of four 
lower limb muscles of poststroke subjects during different phases 
of obstacle crossing at different heights. Complexity change in 
muscle activations were then compared between poststroke sub-
jects and healthy controls when they conducted this challenging 
task.

fapen Values change after a stroke
The decreased fApEn values of EMG signals in poststroke 
subjects could be explained by that muscles were damaged, 
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FigUre 2 | The details of fuzzy approximate entropy (fApEn) values of each height for trailing limb during stance phases. (a) The fApEn values of rectus femoris 
(RF); (b) the fApEn values of biceps femoris (BF). (c) The fApEn values of tibialis anterior (TA); (D) the fApEn values of medial gastrocnemius (MG).

FigUre 3 | The details of fuzzy approximate entropy (fApEn) values of each height for trailing limb during swing phases. (a) The fApEn values of rectus femoris (RF); 
(b) the fApEn values of biceps femoris (BF). (c) The fApEn values of tibialis anterior (TA); (D) the fApEn values of medial gastrocnemius (MG). *Significant effect 
between groups. The bar (-) indicates significant effect between heights.
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and they became disused after stroke. This might lead to their 
degenerated internal structure (31). The motor unit properties 
changed because of the reduced corticofugal output from the 

paretic hemisphere (32). In addition, the number of functioning 
motor units and the firing rate decreased with reduced dis-
charge variability after a stroke (33, 34). These changes directly 
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FigUre 4 | The details of fuzzy approximate entropy (fApEn) values of each height for leading limb during swing phases. (a) The fApEn values of rectus femoris 
(RF); (b) the fApEn values of biceps femoris (BF). (c) The fApEn values of tibialis anterior (TA); (D) the fApEn values of medial gastrocnemius (MG).
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FigUre 5 | The details of fuzzy approximate entropy (fApEn) values of each height for leading limb during stance phases. (a) The fApEn values of rectus femoris 
(RF); (b) the fApEn values of biceps femoris (BF). (c) The fApEn values of tibialis anterior (TA); (D) the fApEn values of medial gastrocnemius (MG). The bar (-) 
indicates significant effect between heights.

affect the electrical activity and might lead to reduced muscle 
force and disability in subtle responses to the perturbations 
during functional tasks. Here, the reduction in fApEn values 

was reflected in the decreased complexity of the EMG signals of 
poststroke subjects, which might be related to the alternations 
in the properties of motor units. Our findings were consistent 
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with those reported by Ao et al., who found lower fApEn values 
in elbow muscles of poststroke subjects compared to healthy 
controls during trajectory-tracking tasks. This could be attrib-
uted to a reduced number and firing rate of active motor units 
(29). Similarly, the decreased complexity of EMG signals was 
also reported in other patients with neuromuscular disorders, 
such as Parkinson’s disease (35) and cerebral palsy (36), which 
could be explained by the disease-induced muscle fiber degen-
eration (37).

During swing phase, the fApEn values for the BF, RF, and 
TA (20 and 30% leg length) in the leading limb were higher in 
poststroke subjects than in healthy controls. This might be as a 
result of abnormal gait during obstacle crossing after a stroke. The 
swing phase of the leading limb during obstacle crossing caused 
the subjects to elevate their lower limb to secure sufficient toe-
obstacle clearance, and this could be a challenge for poststroke 
subjects, leading to abnormal muscle activation patterns. Indeed, 
our previous study found that to avoid falling, toe-obstacle clear-
ance of stroke survivors was greater than in healthy controls (38). 
The increased activation of thigh muscles in the BF and RF was 
found in stroke survivors (14). This might also contribute to the 
increased complexity of the EMG signals (36).

fapen Values change with Task  
Difficulties
When sustaining different levels of maximal voluntary contrac-
tion force in the upper limb, the complexity of EMG signals had 
been demonstrated to increase with increasing muscle contraction 
forces (23, 37, 39). In line with these findings, our results dem-
onstrated that increasing obstacle heights demanded an increase 
in muscle contraction forces that in turn led to the recruitment 
of more motor units and increased firing rates in active motor 
units (14). Our results suggested that the complexity of the EMG 
signals increased with greater task demands, and this could also 
be applied to poststroke subjects. Therefore, safely crossing higher 
height obstacles requires increased muscle contraction forces and 
more activated motor units, leading to higher entropy values for 
the EMG signals (37).

However, there are still discrepancies about the complexity 
changes with task difficulties. To investigate the effect of task 
demands on motor entropy, Hong and Newell found that the 
entropy values of muscle forces decreased as the task demands 
increased (40). They explained the decreased entropy with 
increased task demands, but reduced environmental informa-
tion, revealing a compensatory interaction between tasks and 
the environment on the force dynamics. Moreover, Murillo et al. 
found that fuzzy entropy of postural sway in healthy young adults 
decreased from the stable condition to the mid-level instability 
condition. This increased again at the highest instability condition 
at the anterior–posterior axis, which reflects the adaptations of 
postural control system to the platform instability (41). Therefore, 
the compensatory and adaptive nature of the motor control 
system to the task complexity warrants further investigation, 
especially in stroke survivors. Entropy analysis could be used to 
evaluate the effects of rehabilitation interventions targeting the 
motor recovery to restore complex motor tasks in persons after 
a stroke.

limitations
There were several limitations in this study. First, considering the 
insufficient strength of the paretic leg during the stance phase, 
we did not instruct the poststroke subjects to first step over the 
obstacle with their unaffected side due to safety issue. Thus, we 
could not compare the paretic side with the unaffected side during 
the same task. In the future, we should introduce stroke subjects 
to first step over the obstacle with both affected and unaffected 
limbs. Second, moderate to high functional level of persons after 
stroke were recruited in this study. A large-scale study of different 
types of stroke subjects should be recruited in future study to 
investigate the influences of group and obstacle height, which may 
help explore the mechanisms and guide rehabilitation after stroke.

cOnclUsiOn

In this study, the stoke-related changes in complexity of lower 
muscles during obstacle crossing were investigated using fApEn. 
Results show that the complexity of RF in trailing limb during 
stance phase decreased in stroke group, which might be associated 
with the reduced number and firing rate of MU. However, during 
the swing phase, there were non-significant increases in the fApEn 
values of BF and RF in the trailing limb of the stroke group, result-
ing in a coping strategy when facing challenging tasks. During the 
gait, the complexity of muscle activation increases with obstacle 
height. That might be because higher obstacles demand greater 
muscle forces, which causes more motor units to be recruited and 
triggers higher firing rates of motor units. These findings based on 
the fApEn values of the EMG signals indicate that the complexity 
analysis using fApEn could be a suitable and non-invasive method 
to evaluate muscle function changes after stroke.
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