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Abstract

In this research, we have investigated doubly singular ordinary differential equations and a

real application problem of studying the temperature profile in a porous fin model. We have

suggested a novel soft computing strategy for the training of unknown weights involved in

the feed-forward artificial neural networks (ANNs). Our neuroevolutionary approach is used

to suggest approximate solutions to a highly nonlinear doubly singular type of differential

equations. We have considered a real application from thermodynamics, which analyses

the temperature profile in porous fins. For this purpose, we have used the optimizer, namely,

the fractional-order particle swarm optimization technique (FO-DPSO), to minimize errors

in solutions through fitness functions. ANNs are used to design the approximate series of

solutions to problems considered in this paper. We find the values of unknown weights such

that the approximate solutions to these problems have a minimum residual error. For global

search in the domain, we have initialized FO-DPSO with random solutions, and it collects

best so far solutions in each generation/ iteration. In the second phase, we have fine-tuned

our algorithm by initializing FO-DPSO with the collection of best so far solutions. It is graphi-

cally illustrated that this strategy is very efficient in terms of convergence and minimum

mean squared error in its best solutions. We can use this strategy for the higher-order sys-

tem of differential equations modeling different important real applications.

1 Introduction

Real-world problems which are modeled as a singular boundary value problem (BVP) of ordi-

nary differential equations are often hard to solve. Such systems frequently arise in physics, or

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0235829 July 9, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Waseem W, Sulaiman M, Kumam P,

Shoaib M, Raja MAZ, Islam S (2020) Investigation

of singular ordinary differential equations by a

neuroevolutionary approach. PLoS ONE 15(7):

e0235829. https://doi.org/10.1371/journal.

pone.0235829

Editor: Hector Vazquez-Leal, Universidad

Veracruzana, MEXICO

Received: February 1, 2020

Accepted: June 23, 2020

Published: July 9, 2020

Copyright: © 2020 Waseem et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors acknowledge the financial

support provided by the Center of Excellence in

Theoretical and Computational Science (TaCS-

CoE), King Mongkut’s University of Technology

Thonburi (KMUTT). Funder role: Professor Poom

Kumam had a role in the preparation of the

manuscript, and financial support in article

processing charges.

http://orcid.org/0000-0002-4040-6211
https://doi.org/10.1371/journal.pone.0235829
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235829&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235829&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235829&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235829&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235829&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235829&domain=pdf&date_stamp=2020-07-09
https://doi.org/10.1371/journal.pone.0235829
https://doi.org/10.1371/journal.pone.0235829
http://creativecommons.org/licenses/by/4.0/


specifically astrophysics, thermodynamics, physical chemistry, nuclear technology, atomic

energy, and all studies involving non-linear conic systems [1–4]. Singular BVPs are been tack-

led numerically and analytically by different researchers using techniques like the monotonic

iterative method of Bessel functions [5], an improved iterative technique [6], homotopy per-

turbation method (HPM) [7], finite difference method with uniform mesh [8], monotonic

iterative technique involving expansion of eigenfunction [9], modified adomian decomposi-

tion method (MADM) [10], Borel–Laplace transformation technique [11], and approximate

power series solution method [12].

A review of all these numerical methods shows that they are deterministic and require

prior information about the problem. Which is a disadvantage in case we do not have any

information about a problem under consideration [13–16]. One example of such problem is

the class of doubly non-linear singular differential equations. Meta-heuristic techniques are

better alternatives for a variety of singular differential equations like doubly non-linear singu-

lar problems.

In this study, a soft computing approach based on hybridization of feed-forward neural net-

works and fractional-order darwinian PSO is suggested. To investigate the capability of our

approach, we have solved three singular non-linear differential equation known as differential

equations with doubly singularities. To further analyse our approach, we have solved nine sub-

cases with different combinations of parameters. A real application is also considered in prob-

lem 4 to further highlight the effectiveness of our approach. We give a general representation

of this system in Eq (1).

ðpðxÞy0ðxÞÞ0 ¼ qðxÞf ðx; yðxÞÞ; 0 < x � 1; ð1Þ

this differential equation is subject to the Dirichlet type of boundary conditions, which are

given below.

yð0Þ ¼ a1; yð1Þ ¼ c1; ð2Þ

some problems are also bounded by mixed boundary conditions as

yð0Þ ¼ 0; ayð1Þ þ by0ð1Þ ¼ c; ð3Þ

here a, a1, c1 are non-zero positive real numbers and b� 0. On the other hand, c can be any

real number. When the value of p(0) is zero, the system becomes a singular differential equa-

tion. If q(x) is treated as a discontinuous function over the y-axis, then the problem stated in

Eqs (1)–(3) becomes a doubly-singular type of differential equation.

From the above discussion, we have understood the singular doubly boundary value

problem and based on this understanding we have developed our proposed soft computing

approach to get better numerical solutions of these problems.

In the recent couple of years, alternate approaches based on artificial neural networks com-

bined with heuristics and meta-heuristic are extensively developed to solve non-linear differ-

ential equations. Some important problems which are worth mentioning, include conduction

problem in electrical engineering [17, 18], thermodynamics [19, 20], non-linear pantograph

differential equations [21], models of atom known as Thomas-Fermi equations [22], Fuzzy

logic based problems [23], Navier-stokes equations [23], Volterra differential equations [24,

25], problems in nanofluids [26], Fredholm integro-differential equations [27], non-linear

Flierl-Petviashvili differential systems [28], problems in fractional control theory [29], bilinear

programming differential systems [30], flow studies of non-linear differential system of Jeff-

ery-Hamel problems [28], Bratu differential systems [31], differential systems in electromagne-

tism [32].
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In [33], two techniques namely GA and SQP are combined to tackle the doubly non-linear

singular differential equations. However, this combined algorithm takes more time and is

computationally expensive. Also, these techniques are local search routines which stuck in a

local minimum. By viewing all these contributions, it has led us to design an easy-to-use

approach based on soft computing, which can produce better solutions with less computa-

tional time in solving these problems which are already handled by classical techniques. The

main disadvantage of those classical techniques was their requirement of prior information

about the problem in hand. In this paper, our proposed approach is used to solve a second-

order non-linear differential equation with double singularities and complex boundary

conditions.

Our approach aims to train the unknown weights in ANN by minimizing the error function

through a well-balanced single meta-heuristic algorithm known as FO-DPSO [34, 35]. We

have considered different case studies of non-linear doubly singular BVPs to check the capabil-

ities of our approach. To examine the robustness of our approach, we have performed multiple

simulations to get the best values of unknown weights. A real application is considered in

problem 4 to further illustrate the effectiveness of our algorithm.

Key contributions in this paper are given below:

• A theoretical and graphical model that explains why our soft computing approach works,

and it is novel, is presented in section 2 (2.1, 2.2) and Figs (1), (2) and (3).

• Series solutions based on artificial neural networks are designed with the help of fractional-

order particle swarm optimizer (FO-DPSO). Our novel soft computing approach is used to

solve non-linear doubly singular differential equations, see Fig 1.

• A real application problem is considered to further elaborate on the competitiveness of our

approach. In this problem, we have analyzed the temperature profile in a porous fin model,

see Fig 8.

• We have compared our results with GA and a variant GA-SQP algorithm.

• The statistical analysis is presented in terms of absolute errors, global mean absolute error

(GMAE), mean absolute error (MAE), and mean value of fitness (Mfit).

• Computational times, maximum iterations took to solve our problems by ANN-based

FO-DPSO are presented.

• Frequency plots of performance indicators fitted with normal distribution are graphically

illustrated.

The rest of this paper is organized as, in section 2, mathematical modeling of approximate

solution based on ANNs is illustrated. Fitness functions and FO-DPSO is briefly explained.

Sections 3 and 4 contain problems description, numerical results for different case studies. Sec-

tion 5, comprises the statistical analysis based on different performance indicators. Conclu-

sions and future work are given in section 6.

2 The hybrid ANN and FO-DPSO approach

In this section, we have presented our novel approach. This approach constructs ANN-based

approximate solutions with unknown weights for the doubly singular BVPs. The unknown

weights are determined such that the approximate solution satisfies the problem with a less

residual error. We have presented a detailed graphical abstract of the novel procedure in Fig 1.
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Fig 1. Graphical illustration of our soft computing procedure for doubly singular non-linear ODEs and Porous fin model.

https://doi.org/10.1371/journal.pone.0235829.g001
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2.1 ANN based approximation

Most of the real-world problems are mathematically modeled in the form of differential equa-

tions containing the derivative of integer and/ or fractional order. ANNs are frequently used to

suggest approximate solutions for such problems [36–41].

In [42] the author presented a generalized method of neural networks to tackle both ODE’s

as well as PDE’s. This method is based on approximation of a function and the capability of

feedforward artificial neural network is to construct a solution of the differential equation

which is differentiable and in a closed analytic form. Evolutionary optimization algorithm has

been applied to train the weights and biases of the network, which results in minimum mean

squared error and turn a good approximate solution of the problem.

Fig 2. Pseudo-code of our soft computing technique.

https://doi.org/10.1371/journal.pone.0235829.g002

Fig 3. Neural network architecture.

https://doi.org/10.1371/journal.pone.0235829.g003
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The mathematical form of an approximate solution for BVPs with doubly singularities is

suggested by feed-forward ANN as given in Eq (4),

ŷðxÞ ¼
Xk

i¼1

giuðwixþ biÞ; ð4Þ

dnŷðxÞ
dxn

¼
Xk

i¼1

gi
dn

dxn
uðwixþ biÞ; ð5Þ

ŷ(x) represents the approximate solution, x is the independent variable, γi, βi and wi are

the unknown weights, and Eq (5) expresses the nth derivative of this approximate solution.

A detailed discussion of neural networks is given in [36, 37, 41]. An activation function

uðxÞ ¼ 1

1þe� x also known as Log-sigmoid mapping function is used to train the unknown

weights. We substitute the approximate solutions in Eqs (1)–(3) to design an ANN-based

solution for doubly singular BVPs. We show a detailed architecture of interaction among

input-output and hidden stages of ANN in Fig 3. The objective function includes the mini-

mization of mean squared errors in the approximate solutions.

Minimize e ¼ e1 þ e2; ð6Þ

where e1, e1 are associated mean sqï»¿uared errors in ODE and boundary conditions,

respectively.

e1 ¼
1

N

XN

m¼1

ððpmŷ
0

mÞ
0
� qmf ðxm; ŷmÞÞ

2
; ð7Þ

where x�(0, 1), step size h = 0.05, N ¼ 1

h, pm = p(xm), qm = q(xm), and xm =mh.

Error due to boundary conditions is represented in Eq (8)

e2 ¼
1

2
ððŷ0 � a1Þ

2
þ ðŷN � c1Þ

2
Þ: ð8Þ

If the boundary conditions are mixed as discussed in Eq (3), then e2 can be approximated as,

e2 ¼
1

2
ððŷ 0

0
Þ

2
þ ðaŷN þ bŷ

0

N � c1Þ
2
Þ: ð9Þ

2.2 Search method of FO-DPSO

According to published findings, fractional calculus (FC) has received much interest to adapt

it in the interpretation and solution of engineering challenges [43–45], applied mathematics,

mechanical/dynamics [46, 47]. Grunwald-Letnikov defined a fractional derivative that con-

tains fractional coefficients α�R, a real number, by adjusting an unknown function x(t) as in

Eq (10),

Da½xðtÞ� ¼ lim
h!0

1

h

Xþ1

k¼0

ð� 1Þ
k
Gðaþ 1Þxðt � khÞ

Gðkþ 1ÞGða � kþ 1Þ

" #

; ð10Þ

where the symbol Γ represent gamma function.

It is further elaborated that the series is characterized by bounded terms in Eq (10), if the

derivative is of integer order. If α is fractional, infinite terms represent the result. It is therefore

important to note that ordinary derivatives are operators which are local / instantaneous,
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whereas fractional operators represent a memory of past variations. With time, the memory of

past instances declines. The Eq (11) determines a derivative for discrete instances. [48–52],

Da½xðtÞ� ¼
1

Ta
Xr

k¼0

ð� 1Þ
k
Gðaþ 1Þxðt � khÞ

Gðkþ 1ÞGða � kþ 1Þ

" #

; ð11Þ

The term T refers to the time intervals of events and r is number of truncated terms. Because

of their memory retention properties, methods found in fractional calculus are useful in irre-

trievable and disorganised systems. Taking into account swarms ‘chaotic behavior in the Dar-

winian Particle swarms optimization algorithm, fractional calculus tools are appropriate to

keep track of swarms’ past movements.

Taking into account the inertial weight in FO-DPSO w = 1, T as 1 and the research per-

formed in [35, 53, 54], we have the following expression:

Da½vntþ1
� ¼ r1r1ð�gnt � x

n
t Þ þ r2r2ð�xnt � x

n
t Þ þ r3r3ð�nnt � x

n
t Þ: ð12Þ

The empirical results of the algorithm are identical for r� 4. The computational complexity

also increases almost linearly, and therefore takes up the memory of O(r). Hence, it truncates

the fifth term and onward for faster convergence. Thus r’s value is kept as 4. The inclusion of

these four differential derivative terms means that the velocity term in FO-DPSO is as in Eq

(13),

vntþ1
¼ avnt þ

1

2
avnt� 1

þ
1

6
að1 � aÞvnt� 2

þ
1

24
að1 � aÞð2 � aÞvnt� 3

þ r1r1ð�g
n
t � x

n
t Þ

þr2r2ð�xnt � x
n
t Þ þ r3r3ð�nnt � x

n
t Þ:

ð13Þ

3 Test problems and empirical results

In this section, we present three doubly singular type of differential equations, and their nine

case studies are considered here to test the efficiency of our new approach.

3.1 Problem 1

This problem is a linear ODE with a doubly singularity with a polynomial forcing term. It is a

boundary value problem with a non-homogenous ODE. Mathematically, it can be represented

as in Eq (14) [2],

y00ðxÞ þ
1

x
y0ðxÞ þ my ¼ f ðxÞ;

yð0Þ ¼ 1; yð1Þ ¼ 3;

8
<

:
ð14Þ

where the exact solution is given in Eq (15)

yðxÞ ¼ x3 þ xþ 1: ð15Þ

Below we consider three cases of the problem by taking μ = −9, −1, 1 and forcing term as

f1ðxÞ ¼ � 9 � 9x3 þ 1

x, f2ðxÞ ¼ � 1 � x3 þ 8xþ 1

x and f3ðxÞ ¼ 1þ x3 þ 10xþ 1

x respectively.

Case 1: From Eq (14) with μ = −9 and f(x) = f1(x) we get Eq (16),

y00ðxÞ þ
1

x
y0ðxÞ � 9y ¼ � 9x3 � 9þ

1

x
: ð16Þ

We give the error function which is used to measure the quality of the approximate solution in
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Eq (17)

E ¼
1

N

XN

m¼1

ðxmŷ
00

m þ ŷ
0

m � 9xmŷm þ 9xm þ 9x4

m � 1Þ
2
þ

1

2
ððŷ0 � 1Þ

2
þ ðŷN � 3Þ

2
Þ ð17Þ

Case 2: From Eq (14) with μ = −1 and f(x) = f2(x) we get Eq (18),

y00ðxÞ þ
1

x
y0ðxÞ � y ¼ � x3 þ 8x � 1þ

1

x
: ð18Þ

We give the error function which is used to measure the quality of the approximate solution in

Eq (19)

E ¼
1

N

XN

m¼1

ðxmŷ
00

m þ ŷ
0

m � xmŷm þ xm þ x
4

m � 8x2

m � 1Þ
2
þ

1

2
ððŷ0 � 1Þ

2
þ ðŷN � 3Þ

2
Þ ð19Þ

Case 3: From Eq (14) with μ = 1 and f(x) = f3(x) we get Eq (20),

y00ðxÞ þ
1

x
y0ðxÞ þ y ¼ x3 þ 10xþ 1þ

1

x
: ð20Þ

We give the error function which is used to measure the quality of the approximate solution in

Eq (21)

E ¼
1

N

XN

m¼1

ðxmŷ
00

m þ ŷ
0

m þ xmŷm � xm � x
4

m � 10x2

m � 1Þ
2
þ

1

2
ððŷ0 � 1Þ

2
þ ðŷN � 3Þ

2
Þ ð21Þ

The unknown decision weights in error functions (17), (19) and (21) are determined by

using the novel ANN based FO-DPSO approach. We briefly present approximate solutions

for cases 1, 2, and 3 in Eqs (22), (23) and (24). We show the best values of weights along with

convergence plots and step sizes in Figs 4, 5, 6 for Problems 1, 2, and 3. After getting the best

weights, we used their values in approximate solutions given in Eq (4). For reproduction of

our results, we have presented the complete solutions in the Appendix section without round-

ing off errors.

ŷ1ðxÞ ¼
� 0:8218

1þ e� ð0:6157xþ1:57378Þ
þ � � � þ

3:5514

1þ e� ð0:1380xþ0:1581Þ
ð22Þ

ŷ2ðxÞ ¼
5:597

1þ e� ð2:3355x� 3:0491Þ
þ � � � þ

� 0:3914

1þ e� ð4:1093xþ2:4261Þ
ð23Þ

ŷ3ðxÞ ¼
5:7670

1þ e� ð1:9282xþ4:0689Þ
þ � � � þ

� 2:8305

1þ e� ð0:1369xþ0:3719Þ
ð24Þ

Results got by FO-DPSO are compared with exact solutions, Genetic algorithm, its variant

GA-SQP and are presented in Tables 1, 2, 3, 4, 5, 6, and 7 with step sizes h = 0.05 and 0.2, for

problems 1, 2, 3 and 4. Input variable x is varied in interval [0 1]. The Absolute Error (AE) is

calculated to highlight the better performance of our approach. Mathematically, it can be

expressed as in Eq (25):

AE ¼ jyðxÞ � ŷðxÞj: ð25Þ

Values of AEs show better results in terms of accuracy of our approach. We give all values of
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AEs for step size h = 0.2 in Tables 2, 4 and 6. A graphical illustration of AEs with h = 0.05 is

given in Fig 7.

FO-DPSO is better than GA-SQP and GA based approach as our approach is more accurate

in solving problem 1. Results of AE show that ANN based FO-DPSO has produced values

laying in ranges 10−7 to 10−12, 10−8 to 10−12 and 10−8 to 10−11 for problem 1, case 1, 2, and 3

respectively. We establish that ANN based on FO-DPSO is a successful technique for solving

the problem under consideration.

3.2 Problem 2

In this problem, we consider a doubly singular ODE with boundary values and variable coeffi-

cients. It is a homogenous differential equation of second order. Mathematically, this problem

can be represented as in Eq (26) [2],

ðxmy0ðxÞÞ0 ¼ nxmþn� 2ðnxn þ mþ n � 1Þy 0 < x � 1 m; n > 0

yð0Þ ¼ 1; yð1Þ ¼ e:

(

ð26Þ

An exact solution for this problem is suggested in [2], Eq (27)

y ¼ exn : ð27Þ

We formulate three cases according to the variable coefficients μ, ν. We have tested the pro-

posed method by solving these three cases.

Fig 4. Best weights obtained, convergence of error values and step sizes used to reach the best solution for problem 1

case 1, 2, 3 using feed-forward ANNs based on FO-DPSO algorithm.

https://doi.org/10.1371/journal.pone.0235829.g004
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Case 1: choosing μ = 0.5 and ν = 1 in problem (26), we get,

ffiffiffi
x
p
y00ðxÞ þ

1

2
ffiffiffi
x
p y0ðxÞ ¼

1
ffiffiffi
x
p

2xþ 1

2
y: ð28Þ

The error function to judge the quality of the solutions is formulated as

E ¼
1

N

XN

m¼1

ð2xmŷ
00

m þ ŷ
0

m � 2xmŷm � ŷmÞ
2
þ

1

2
ððŷ0 � 1Þ

2
þ ðŷN � eÞ

2
Þ: ð29Þ

Case 2: choosing μ = 0.75 and ν = 1 in problem (26), we get,

x3=4y00ðxÞ þ
3

4x1=4
y0ðxÞ ¼

1

x1=4
ðxþ

3

4
Þy: ð30Þ

The error function to judge the quality of the solutions is formulated as

E ¼
1

N

XN

m¼1

ð4xmŷ
00

m þ 3ŷ 0m � 4xmŷm � 3ŷmÞ
2
þ

1

2
ððŷ0 � 1Þ

2
þ ðŷN � eÞ

2
Þ: ð31Þ

Case 3: choosing μ = 0.25 and ν = 1 in problem (26), we get,

x1=4y00ðxÞ þ
1

4x3=4
y0ðxÞ ¼

1

x3=4
ðxþ

1

4
Þy: ð32Þ

Fig 5. Best weights obtained, convergence of error values and step sizes used to reach the best solution for problem 2

case 1, 2, 3 using feed-forward ANNs based on FO-DPSO algorithm.

https://doi.org/10.1371/journal.pone.0235829.g005
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The error function to judge the quality of the solutions is formulated as

E ¼
1

N

XN

m¼1

ð4xmŷ
00

m þ ŷ
0

m � 4xmŷm � ŷmÞ
2
þ

1

2
ððŷ0 � 1Þ

2
þ ðŷN � eÞ

2
Þ: ð33Þ

The unknown decision weights in error functions (29), (31) and (33) are determined by

using the novel ANN based FO-DPSO approach. Values of AE show better results in terms

of accuracy of the corresponding approach. We give all values of solutions and AEs (for

h = 0.2) in Tables 3 and 4 for problem 2. FO-DPSO is better than GA-SQP and GA based

approach by solving problem 2 more accurately. Results of AE show that ANN-based

FO-DPSO has produced, ranges in 10−8 to 10−11, 10−8 to 10−11 and 10−9 to 10−11 respectively.

We establish it that ANN-based on FO-DPSO is a successful technique for solving the prob-

lem under consideration.

3.3 Problem 3

In this problem, we consider a nonlinear doubly singular ODE with boundary values and vari-

able coefficients. It is a homogenous differential equation of second order. Mathematically,

this problem can be represented as in Eq (34) [2],

ðxmy0ðxÞÞ0 ¼ nxmþn� 2eyðeyxn � m � nþ 1Þ 0 < x � 1 m; n > 0

yð0Þ ¼ lnð
n

4
Þ; yð1Þ ¼ lnð

n

5
Þ:

8
<

:
ð34Þ

Fig 6. Best weights obtained, convergence of error values and step sizes used to reach the best solution for problem 3

case 1, 2, 3 using feed-forward ANNs based on FO-DPSO algorithm.

https://doi.org/10.1371/journal.pone.0235829.g006
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An exact solution for this problem is suggested in [2], Eq (35)

y ¼ ln
n

4þ xn
: ð35Þ

We formulate three cases according to the variable coefficients μ, ν. We have tested the pro-

posed method by solving these three cases,

Case 1: choosing μ = 0.25 and ν = 1 in problem (34), we get,

x1=4y00ðxÞ þ
1

4x3=4
y0ðxÞ ¼

ey

x3=4
ðeyx �

1

4
Þ 0 < x � 1 m; n > 0

yð0Þ ¼ lnð
1

4
Þ; yð1Þ ¼ lnð

1

5
Þ:

8
>><

>>:

ð36Þ

Table 1. Empirical solutions for problem 1 (Case 1, 2, 3) achieved by FO-DPSO and GA. Which are compared with exact solutions for inputs x varying from 0 to 1 with

a step size h = 0.05.

x Case 1 Case 2 Case 3

Exact FO-DPSO GA FO-DPSO GA FO-DPSO GA

0 1 1.000031 1 1.000025 1 1 1

0.05 1.050125 1.050163 1.050124 1.050145 1.050125 1.050085 1.050122

0.1 1.101 1.101024 1.101 1.101008 1.101 1.100973 1.100999

0.15 1.153375 1.15338 1.153375 1.153373 1.153375 1.153365 1.153375

0.2 1.208 1.207991 1.208 1.207993 1.208 1.208002 1.208

0.25 1.265625 1.265613 1.265625 1.265617 1.265625 1.26563 1.265624

0.3 1.327 1.326993 1.327 1.326992 1.327 1.327002 1.326999

0.35 1.392875 1.392879 1.392875 1.392869 1.392875 1.39287 1.392875

0.4 1.464 1.464015 1.464 1.463995 1.464 1.463989 1.464

0.45 1.541125 1.541146 1.541125 1.54112 1.541125 1.541112 1.541125

0.5 1.625 1.625021 1.625 1.624993 1.625 1.62499 1.625001

0.55 1.716375 1.716391 1.716375 1.716365 1.716375 1.716369 1.716376

0.6 1.816 1.816008 1.816 1.815985 1.816 1.815998 1.816

0.65 1.924625 1.924625 1.924625 1.924607 1.924625 1.924626 1.924625

0.7 2.043 2.042996 2.043 2.042979 2.043 2.043 2.043

0.75 2.171875 2.171872 2.171875 2.171854 2.171875 2.171873 2.171876

0.8 2.312 2.312002 2.312 2.31198 2.312 2.311996 2.312001

0.85 2.464125 2.464133 2.464125 2.464105 2.464125 2.464121 2.464126

0.9 2.629 2.629013 2.629 2.62898 2.629 2.628997 2.629001

0.95 2.807375 2.807389 2.807375 2.807353 2.807375 2.807373 2.807376

1 3 3.000013 3 3 3 3 3.000001

https://doi.org/10.1371/journal.pone.0235829.t001

Table 2. Absolute errors in results for problem 1 (Case 1, 2, 3) achieved by FO-DPSO and GA-SQP. Which are matched with exact solutions for inputs x varying from

0 to 1 with a step size h = 0.2.

x Case 1 (AE) Case 2 (AE) Case 3 (AE)

FO-DPSO GA-SQP FO-DPSO GA-SQP FO-DPSO GA-SQP

0 9.98E-09 1.36E-07 4.19E-08 2.17E-07 4.69E-09 4.40E-07

0.2 6.25E-07 9.96E-09 8.94E-08 4.39E-08 3.71E-07 2.45E-07

0.4 1.43E-06 4.07E-08 1.17E-06 1.03E-07 1.04E-06 1.94E-08

0.6 1.19E-06 9.64E-10 1.50E-06 9.63E-08 9.23E-07 3.75E-07

0.8 3.30E-07 3.95E-08 5.96E-07 1.60E-07 2.53E-07 7.77E-07

1 1.34E-08 8.07E-08 2.26E-08 1.73E-07 1.85E-08 1.02E-06

https://doi.org/10.1371/journal.pone.0235829.t002
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Case 2: choosing μ = 0.5 and ν = 1 in problem (34), we get,

x1=2y00ðxÞ þ
1

2x1=2
y0ðxÞ ¼

ey

x1=2
ðeyx �

1

2
Þ 0 < x � 1 m; n > 0
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Table 3. Empirical solutions for problem 2 (Case 1, 2, 3) achieved by FO-DPSO and GA. Which are compared with exact solutions for inputs x varying from 0 to 1 with

a step size h = 0.05.

x Case 1 Case 2 Case 3

Exact FO-DPSO GA FO-DPSO GA FO-DPSO GA

0 1 1.000001 1 1.000002 1.000014 1 1.000001

0.05 1.051271 1.051271 1.051245 1.051272 1.05129 1.051271 1.051273

0.1 1.105171 1.105171 1.10516 1.105172 1.105187 1.105171 1.105172

0.15 1.161834 1.161834 1.161832 1.161835 1.161844 1.161834 1.161835

0.2 1.221403 1.221403 1.221406 1.221403 1.221408 1.221403 1.221403

0.25 1.284025 1.284026 1.284031 1.284026 1.284027 1.284025 1.284026

0.3 1.349859 1.349859 1.349866 1.349859 1.349859 1.349859 1.349859

0.35 1.419068 1.419068 1.419074 1.419068 1.419068 1.419067 1.419068

0.4 1.491825 1.491825 1.49183 1.491825 1.491825 1.491825 1.491825

0.45 1.568312 1.568312 1.568317 1.568312 1.568314 1.568312 1.568312

0.5 1.648721 1.648721 1.648725 1.648721 1.648723 1.648721 1.648721

0.55 1.733253 1.733253 1.733257 1.733253 1.733254 1.733253 1.733253

0.6 1.822119 1.822119 1.822123 1.822118 1.822119 1.822119 1.822118

0.65 1.915541 1.915541 1.915547 1.91554 1.91554 1.915541 1.91554

0.7 2.013753 2.013753 2.013761 2.013752 2.01375 2.013753 2.013752

0.75 2.117 2.117 2.117011 2.117 2.116997 2.117 2.117

0.8 2.225541 2.225541 2.225555 2.22554 2.225537 2.225541 2.22554

0.85 2.339647 2.339647 2.339663 2.339646 2.339642 2.339647 2.339646

0.9 2.459603 2.459603 2.459621 2.459603 2.459598 2.459603 2.459602

0.95 2.58571 2.58571 2.585728 2.585709 2.585704 2.58571 2.585708

1 2.718282 2.718282 2.7183 2.718281 2.718276 2.718282 2.718281

https://doi.org/10.1371/journal.pone.0235829.t003

Table 4. Absolute errors in results for problem 2 (Case 1, 2, 3) achieved by FO-DPSO and GA. Which are matched with exact solutions for inputs x varying from 0 to 1

with a step size h = 0.2.

x Case 1 (AE) Case 2 (AE) Case 3 (AE)

FO-DPSO GA-SQP FO-DPSO GA-SQP FO-DPSO GA-SQP

0 6.45E-08 5.41E-07 2.48E-07 1.54E-06 8.66E-07 4.74E-07

0.2 9.19E-08 2.22E-07 2.67E-06 2.09E-07 3.23E-06 1.84E-07

0.4 1.05E-08 5.38E-08 8.41E-06 2.50E-08 1.88E-05 3.49E-08

0.6 2.22E-08 3.52E-08 5.33E-06 3.27E-07 2.65E-05 5.87E-08

0.8 5.91E-09 4.08E-08 9.07E-07 4.63E-07 1.17E-05 1.64E-07

1 2.77E-10 7.29E-08 2.94E-08 6.47E-07 1.05E-06 2.62E-07

https://doi.org/10.1371/journal.pone.0235829.t004
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ððŷ0 � ln

1

4
Þ

2
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Case 3: choosing μ = 0.75 and ν = 1 in problem (34), we get,
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Table 5. Empirical solutions for problem 3 (Case 1, 2, 3) achieved by FO-DPSO and GA. Which are compared with exact solutions for inputs x varying from 0 to 1 with

a step size h = 0.05.

x Case 1 Case 2 Case 3

Exact FO-DPSO GA FO-DPSO GA FO-DPSO GA

0 -1.38629 -1.386296 -1.38629 -1.386294 -1.38629 -1.386294 -1.38629

0.05 -1.39872 -1.398717 -1.39872 -1.398716 -1.39872 -1.398717 -1.39872

0.1 -1.41099 -1.410987 -1.41099 -1.410986 -1.41099 -1.410987 -1.41099

0.15 -1.42311 -1.423108 -1.42311 -1.423107 -1.42311 -1.423108 -1.42311

0.2 -1.43508 -1.435084 -1.43508 -1.435083 -1.43508 -1.435085 -1.43508

0.25 -1.44692 -1.446919 -1.44692 -1.446918 -1.44692 -1.446919 -1.44692

0.3 -1.45862 -1.458615 -1.45862 -1.458614 -1.45862 -1.458615 -1.45862

0.35 -1.47018 -1.470175 -1.47018 -1.470175 -1.47018 -1.470176 -1.47018

0.4 -1.4816 -1.481604 -1.4816 -1.481604 -1.4816 -1.481604 -1.4816

0.45 -1.4929 -1.492903 -1.4929 -1.492903 -1.4929 -1.492904 -1.4929

0.5 -1.50408 -1.504076 -1.50408 -1.504076 -1.50408 -1.504077 -1.50408

0.55 -1.51513 -1.515126 -1.51513 -1.515126 -1.51513 -1.515127 -1.51513

0.6 -1.52606 -1.526055 -1.52606 -1.526055 -1.52606 -1.526056 -1.52606

0.65 -1.53687 -1.536866 -1.53687 -1.536866 -1.53687 -1.536867 -1.53687

0.7 -1.54756 -1.547561 -1.54756 -1.547561 -1.54756 -1.547563 -1.54756

0.75 -1.55814 -1.558143 -1.55814 -1.558143 -1.55814 -1.558145 -1.55814

0.8 -1.56862 -1.568614 -1.56862 -1.568615 -1.56862 -1.568616 -1.56862

0.85 -1.57898 -1.578977 -1.57898 -1.578978 -1.57898 -1.578979 -1.57898

0.9 -1.58924 -1.589233 -1.58924 -1.589234 -1.58924 -1.589235 -1.58924

0.95 -1.59939 -1.599386 -1.59939 -1.599387 -1.59939 -1.599388 -1.59939

1 -1.60944 -1.609436 -1.60944 -1.609437 -1.60944 -1.609438 -1.60944

https://doi.org/10.1371/journal.pone.0235829.t005

Table 6. Absolute errors in results for problem 3 (Case 1, 2, 3) achieved by FO-DPSO and GA-SQP. Which are matched with exact solutions for inputs x varying from

0 to 1 with a step size h = 0.2.

x Case 1 (AE) Case 2 (AE) Case 3 (AE)

FO-DPSO GA FO-DPSO GA FO-DPSO GA

0 1.39E-08 1.30E-08 7.68E-12 2.06E-07 8.55E-10 1.22E-09

0.2 6.01E-09 1.14E-09 5.51E-12 1.70E-08 5.98E-09 1.16E-09

0.4 2.79E-10 6.65E-09 4.90E-11 6.57E-08 6.20E-09 3.97E-09

0.6 1.16E-08 8.70E-09 3.55E-13 1.57E-07 2.43E-09 2.83E-09

0.8 1.44E-08 1.23E-08 7.72E-11 1.90E-07 9.90E-09 3.27E-09

1 1.65E-09 1.60E-08 1.97E-11 2.31E-07 1.49E-09 3.65E-09

https://doi.org/10.1371/journal.pone.0235829.t006
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ŷm þ 3eŷmÞ2 þ

1

2
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The unknown decision weights in error functions (37), (39) and (41) are determined by using

the novel ANN based FO-DPSO approach. We briefly present approximate solutions for all

cases in Eqs (42), (43) and (44). Values of AEs show better performance in terms of accuracy

of our approach. We give all solutions and AEs (for h = 0.2) in Tables 5, and 6 for problem 3.

FO-DPSO is better than GA and its variant GA-SQP by solving problem 3 more accurately.

Results of AE show that ANN-based FO-DPSO has produced values laying in ranges 10−11

to 10−13, 10−11 to 10−16 and 10−10 to 10−15 respectively. We establish it that ANN-based on

FO-DPSO is a successful technique for solving the problem under consideration.

4 Mathematical model of the porous fin

Problem 4: The schematic diagram of straight fin problem possessing the arbitrary cross-sec-

tional area Ac, perimeter P, and length b, is presented in Fig 8, [55]. The fin is joined with the

base surface having the temperature Tb, and extends into fluid having temperature Ta, and its

tip is insulated. The energy balance equation is written as:

Ac
d
dx

kðTÞ
dT
dx

� �

� Ph T � Tað Þ ¼ 0: ð45Þ

Table 7. Comparison of solution obtained for the problem 4 of porous fin designed model using FO-DPSO.

ξ Analytical FO-DPSO GA-SQP GA

0 0.700465898 0.701211994 0.701171286 0.701382837

0.1 0.703355803 0.704109143 0.704069922 0.704273632

0.2 0.712042101 0.712810621 0.712779543 0.71301169

0.3 0.72657335 0.727352198 0.727330423 0.727587757

0.4 0.747026504 0.747792755 0.747775149 0.74800451

0.5 0.773500952 0.774210653 0.774192242 0.774320572

0.6 0.806110215 0.806702499 0.806683296 0.806665864

0.7 0.844971293 0.845383557 0.845368094 0.845227794

0.8 0.890191724 0.890388584 0.890380987 0.890213813

0.9 0.941854371 0.941871225 0.941870115 0.941798879

1 1 0.99999949 0.999999331 1.000067362

MSE 6.50E-08 1.00E-07 1.00E-04

https://doi.org/10.1371/journal.pone.0235829.t007
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Fig 7. Graphical illustration of absolute errors in best solutions, for problem 1, 2 and 3 (Case 1, 2, 3), obtained by

FO-DPSO and GA.

https://doi.org/10.1371/journal.pone.0235829.g007
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In the Eq (45), k(T) indicates the temperature-dependent thermal conductivity and h repre-

sents the coefficient of heat transfer. It is considered that the thermal conductivity for the fin

material is expressed:

kðTÞ ¼ kb½1þ lðT � TbÞ�: ð46Þ

In the expression (46), kb represents the thermal conductivity at the ambient fluid temperature

of the fin, and λ is standing for the variation of the thermal conductivity. Using the non-

dimensional variables:

y ¼
T � Ta
Tb � Ta

; x ¼
x
b
; m ¼ l Tb � Tað Þ; and c ¼

Phb2

kaAc

� �1=2

; ð47Þ

consequently the Eq (45) reduces into the following form:

d2y

dx2
þ my

d2y

dx2
þ m

dy
dx

� �2

� c
2
y; 0 � x � 1; ð48Þ

with the boundary conditions

dy
dx

�
�
�
�
x� 0

¼ 0 and yjx� 1 ¼ 1: ð49Þ

We have solved a porous fin model using ANNs based FO-DPSO approach. The unknown

weights are tuned by the FO-DPSO algorithm. Results obtained by FO-DPSO are compared

with GA-SQP and GA and are given in Table 7. The graphical illustration of this model is

given in Fig 8. Solutions obtained for this problem are plotted in Fig 9. Among the three

Fig 8. Design of a porous fin.

https://doi.org/10.1371/journal.pone.0235829.g008
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algorithms, FO-DPSO performed well and gave us minimum error as compared to the other

algorithms, see Fig 9.

5 Statistical analysis

Performance indicators like global mean absolute error (GMAE), mean absolute error

(MAE), and mean value of fitness (Mfit) are used to asses the performance of ANNs based on

FO-DPSO approach. We use these indicators on the data we have got through 100 indepen-

dent simulations to determine the stability and robustness of our approach. We present MAE

values in terms of sorted and unsorted form, see Figs 10, 11 and 12. Hence, the sorted results

are presented in Figs 10b, 11b and 12b, while the unsorted errors in the solutions are given

in Figs 10a, 11a and 12a, respectively. To further elaborate the difference between the errors

obtained, and those reported in the literature, we have used the log scale plots for MAEs. From

our graphical analysis, we get the minimum values of MAEs and better fitness for all problems.

The performance of our approach is statistically analyzed in terms of the best minimum value,

mean, and standard deviation (SD). This further validates our claim that our approach is better

in convergence rate and has produced accurate results for all three BVPs with doubly singulari-

ties, and porous fin model. We present statistical results in terms of GMAE, Mean-time, Max

Fig 9. Solution obtained by our proposed method and other comparative algorithms for porous fin model.

https://doi.org/10.1371/journal.pone.0235829.g009

Fig 10. Graphical illustration of sorted absolute errors in solutions, for problem 1 (Case 1, 2, 3), obtained by

FO-DPSO during 100 runs.

https://doi.org/10.1371/journal.pone.0235829.g010
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iterations in Tables 8, 9 and 10. Our experimental outcome dictates that the ANNs based

FO-DPSO approach has consistently produced better solutions to the non-linear ODEs and a

real application problem.

To verify the stability and robustness of the proposed technique, we got better values of

global performance indicators; global mean absolute error (GMAE) as in Eq (50) and mean of

fitness values denoted as (Mfit) as in Eq (51). All results in terms of these global performance

indicators, see Tables 8, 9, and 10 revealed the fact that our approach is better than state-of-

the-art approaches reported in the literature [33].

GMAE ¼
1

R
ð
XR

r¼1

1

p
ð
Xp

i¼1

jyi � ŷi;rjÞÞ; ð50Þ

Fig 11. Graphical illustration of sorted absolute errors in solutions, for problem 2 (Case 1, 2, 3), obtained by

FO-DPSO during 100 runs.

https://doi.org/10.1371/journal.pone.0235829.g011

Fig 12. Graphical illustration of sorted absolute errors in solutions, for problem 3 (Case 1, 2, 3), obtained by

FO-DPSO during 100 runs.

https://doi.org/10.1371/journal.pone.0235829.g012

Table 8. Performance indicators based on proposed results for Problem 1.

Type Parameters Case 1 Case 2 Case 3

GMAE Values 9.40E-06 3.0273E-06 6.6613E-06

STD 5.6686E-06 2.7162E-06 5.3095E-06

Mfit VALUES 4.0931E-08 4.2931E-09 1.2824E-08

STD 3.2671E-08 4.6459E-09 9.6663E-09

Mean Time 27.8 30 28.4

Max Iteration 1000 1000 1000

https://doi.org/10.1371/journal.pone.0235829.t008
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MFit ¼
1

R
ð
XR

r¼1

ErÞ; ð51Þ

MeanTime ¼
1

R
ð
XR

r¼1

TrÞ; ð52Þ

Table 9. Performance indicators based on proposed results for Problem 2.

Type Parameters Case 1 Case 2 Case 3

GMAE Values 1.51E-06 4.164E-06 3.207E-06

STD 9.542E-07 3.328E-06 2.047E-06

Mfit VALUES 7.747E-09 8.493E-09 1.037E-09

STD 1.005E-08 9.361E-09 1.729E-09

Mean Time 40.9 27.7 30.7

Max Iteration 1000 1000 1000

https://doi.org/10.1371/journal.pone.0235829.t009

Table 10. Performance indicators based on proposed results for Problem 3.

Type Parameters Case 1 Case 2 Case 3

GMAE Values 1.48E-08 5.4029E-09 1.2547E-08

STD 1.101E-08 3.7189E-09 1.0439E-08

Mfit VALUES 1.9996E-11 6.9589E-12 3.2591E-11

STD 2.4734E-11 4.8198E-12 6.6736E-11

Mean Time 29.5 29.9 28.9

Max Iteration 1000 1000 1000

https://doi.org/10.1371/journal.pone.0235829.t010

Fig 13. Normal plots of MAE obtained by FO-DPSO during 100 runs.

https://doi.org/10.1371/journal.pone.0235829.g013
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where the number of inputs and the number of simulations is denoted by P, and R, respectively,

and yi denote the corresponding exact solutions and ŷi;r the corresponding best approximate val-

ues obtained with our approach. Er represents the best objective value achieved during the rth sim-

ulation. In our experiments, input variable varies from 0 to 1 with h = 0.05, and 0.2 as step size.

Thus, the total grid points were 20, and 6. We repeated our simulations for 100 times. Moreover,

mean absolute errors in all solutions are negligible, and histograms with normal distribution fit

for mean absolute errors (MAEs) in solutions of problems 1, 2, 3 are given in Figs 13 and 14.

6 Conclusion

In this paper, we present a new soft computing approach that combines artificial neural net-

works with a fractional-order particle swarm optimization (FO-DPSO) algorithm. We con-

clude this research by following key findings.

Fig 14. Normal plots of MAE obtained by FO-DPSO during 100 runs.

https://doi.org/10.1371/journal.pone.0235829.g014
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• The proposed method to exploit ANNs based FO-DPSO accurately solves variants of non-

linear, doubly singular ordinary differential equations according to the computational

evaluations.

• We calculate absolute errors in our results using the exact reference solutions, and the errors.

Experimental results show that our designed scheme is more accurate compared to the state-

of-the-art algorithms GA, and its latest variant GA-SQP.

• We have considered three hard problems with nine cases. A real application is also consid-

ered. We have analyzed a mathematical model of porous fins, and temperature profiles are

studied for this model.

• We have analyzed several actual application problems. The Values of performance indica-

tors, GMAE, andMfit dictate that our approach gives results with lower errors compared to

other algorithms.

• Frequency graphs of 100 experiments in terms of MAD are presented with normal distribu-

tion fittings. These graphs have proved that our approach is reliable and stable in terms of

success rate.

• The solutions to the problems are in the appendix to help the reader reproduce the results

presented in this paper.

• The proposed approach provides a more accurate solution to differential equations with

multiple singularities and systems of such equations. Problems arising in thermodynamics,

electromagnetic, and nanotechnology can be handled by the proposed method by changing

the activation function of the artificial neural network.
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