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ABSTRACT Mutagenesis is a widely used method for identifying protein positions that are important for function or ligand binding.
Advances in high-throughput DNA sequencing and mutagenesis techniques have enabled measurement of the effects of nearly all
possible amino acid substitutions in many proteins. The resulting large-scale mutagenesis data sets offer a unique opportunity to draw
general conclusions about the effects of different amino acid substitutions. Thus, we analyzed 34,373 mutations in 14 proteins whose
effects were measured using large-scale mutagenesis approaches. Methionine was the most tolerated substitution, while proline was
the least tolerated. We found that several substitutions, including histidine and asparagine, best recapitulated the effects of other
substitutions, even when the identity of the wild-type amino acid was considered. The effects of histidine and asparagine substitutions
also correlated best with the effects of other substitutions in different structural contexts. Furthermore, highly disruptive substitutions
like aspartic and glutamic acid had the most discriminatory power for detecting ligand interface positions. Our work highlights the
utility of large-scale mutagenesis data, and our conclusions can help guide future single substitution mutational scans.
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MAKING and studying mutants is a fundamental way to
learn about proteins, revealing functionally important

positions, validating specific hypotheses about catalyticmech-
anism, and yielding insights into protein folding and stability.
Single amino acid scanning mutagenesis, in which every
position in a protein is sequentially mutated to one particular
amino acid, was a key advance. By searching sequence space
systematically, scanning mutagenesis enabled the unbiased
identification of positions and amino acid side chains important
for protein function. The first application of scanning mutagen-
esis used alanine substitutions to identify positions in human
growth hormone important for receptor binding (Cunningham
and Wells 1989). Alanine was chosen because it represents a
deletion of the side chain at theb-carbon. In addition to alanine,
many other amino acids, including arginine (Nanevicz et al.
1995), cysteine (Kanaya et al. 1990), glycine (Valbuena

et al. 2003), methionine (Woods et al. 1996), phenylalanine
(Borngräber et al. 1999), proline (Vandemeulebroucke et al.
2008), and tryptophan (Zhang et al. 2007), have been used
for scanning mutagenesis, often with a specific hypothesis
in mind (e.g., that bulky amino acids are important). Nev-
ertheless, some have suggested that alanine substitutions
are maximally representative of the effects of other substi-
tutions, or that they are especially useful for identifying
functionally important positions (Bromberg and Rost 2008).

Which amino acid best represents the effect of other sub-
stitutions? Which substitutions are ideal for finding function-
ally important positions, such as those that participate in
binding interfaces? Answering these questions is important
because single amino acid scanningmutagenesis continues to
beused tounderstandandengineerproteins.Despite the large
investment in scanning mutagenesis, little work has been
done to systematically compare the effects of different sub-
stitutions. Some scanning mutagenesis studies compare two
different types of scans (e.g., alanine and cysteine), but gen-
erally find that the information revealed by each substitu-
tion is distinct (Borngräber et al. 1999; Xiao et al. 2009).
Computational predictions for all substitutions at 1073 po-
sitions across 48 proteins in the Alanine Scanning Energetics
Database suggested that alanine substitutions correlated
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best with the mean effect of every mutation at each position
(Bromberg and Rost 2008). However, concrete answers to
these questions require comparing the empirical effects of dif-
ferent substitutions inmany proteins. Thus, we analyzed large-
scale experimental mutagenesis data sets comprising 34,373
mutations in 14 proteins. We found that proline is the most
disruptive substitution, and methionine is the most tolerated.
Global and position-centric analyses revealed that histidine
and asparagine substitutions best represent the effects of other
substitutions, evenwhenwild-type amino acid identity or struc-
tural context is taken into account. We evaluated the utility of
each amino acid substitution for determining whether a po-
sition is in a ligand-binding interface, and found that highly
disruptive substitutions like aspartic acid, glutamic acid, as-
paragine, and glutamine performed best. Thus, our results
suggest that histidine and asparagine are the most represen-
tative substitutions, while aspartic acid and glutamic acid
are the best choices for finding ligand-binding interfaces.

Materials and Methods

Data curation and rescaling

We curated a subset of the published deep mutational scan-
ning data sets. We excluded deep mutational scans of non-
natural proteins, because themutational properties of natural
and non-natural proteins could differ. The result was a set of
16deepmutational scans of 14proteins (Table 1). BRCA1and
UBI4 each have two large-scale mutagenesis data sets corre-
sponding independent experiments in which different func-
tions were assayed (e.g., ligand binding or catalytic activity).
We treated these data sets separately, and did not perform
any averaging of mutational effects between the data sets.
Additionally, we removed any variants with more than one
amino acid substitution from all the data sets.

Most of the data sets reported mutational effect scores as
the log-transformed ratio of mutant frequency before and
after selection, divided by wild-type frequency before and
after selection. For data sets that used a different scoring
scheme, we recalculated mutational effect scores as the log-
transformed ratio of mutant frequency before and after selec-
tion, divided bywild-type frequency before and after selection.
Given that the assays used to detectmutational effect differ, we
rescaled the reportedmutational effect scores for eachdata set.
First, we subtracted the median effect of synonymous muta-
tions from each reported effect score, and then divided by the
negative of the bottom1%of reported effect scores. Finally, we
added 1. In cases where synonymous mutational effect scores
were unavailable, we omitted the synonymous score median
subtraction step. Our rescaling scheme is expressed as

Si;scaled¼
Si;reported2 Smedian  synonymous

2Smedian  bottom  1%
þ 1

whereS is themutational effect score.Ournormalization scheme
resulted in scaled mutational effect scores where the most
disruptive mutations have effect scores �0 and wild-type-like Ta
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mutations have scores �1. Unless otherwise stated, we used
all of the rescaled mutational effect data for each analysis. In
each analysis, we used median as a summary statistic rather
than mean because the frequency distributions of muta-
tional effect are bimodal rather than Gaussian (Supplemen-
tal Material, Figure S1 in File S1).

Variant annotation

DSSP was used to annotate the secondary structure and abso-
lutesolventaccessibilityofeachwildtypeaminoacid inourdata
set (http://swift.cmbi.ru.nl/gv/dssp/DSSP_3.html). To esti-
mate the relative solvent accessibility of amino acids, we di-
vided absolute solvent accessibility as determined using DSSP
by the total surface area of each amino acid. Amino acids with
relative solvent accessibilities .0.2 were labeled as “surface,”
whereas amino acids with relative solvent accessibilities,0.2
were labeled as “buried” (Chen and Zhou 2005).

Identification of interface positions

Four proteins in our data set had high-resolution PDB struc-
tures with peptide or nucleotide ligands, Gal4 (3COQ),
BRCA1 RING domain (1JM7), PSD95 pdz3 domain (1BE9),
and hYAP65 WW domain (1JMQ). We determined interface
positions from the literature (Marmorstein and Carey 1992;
Doyle et al. 1996; Fowler et al. 2010; Starita et al. 2015). The
interface positions in hYAP65 WW domain were 188, 190,
197, and 199. The interface positions in BRCA1RING domain
were 11, 14, 18, 93, and 96. PSD95 pdz3 domain positions
were 318, 322-327, 329, 339, 372, and 379. Gal4 interface
positions were 9, 15, 17, 18, 20, 21, 43, 46, and 51.

Construction of receiver-operator characteristic
(ROC) curves

We constructed empirical ROC curves to illustrate the power
of each substitution to discriminate between interface and
noninterface positions, determined as described above. First,
we defined a discrimination threshold, such that positions
with a mutational effect score below the threshold were
classified “interface,” and positions with a mutational ef-
fect score above the threshold were classified as “noninter-
face.” For each substitution, we varied this discrimination
threshold from the maximum mutational effect score to
the minimum mutational effect score in 200 steps, calcu-
lating the true positive interface detection rate (TPR) and
false positive interface detection rate (FPR) at each step.
The TPR was calculated by dividing the number of inter-
face positions with scores below the mutational effect
threshold by the total number of interface positions. The
FPR was calculated by dividing the number of noninterface
positions with scores below the mutational effect thresh-
old by the total number of noninterface positions. ROC
curves were constructed by plotting the TPR and FPR for
each of the 200 mutational effect thresholds. The area un-
der each ROC curve was determined in R using the auc()
function in the pROC package (https://cran.r-project.org/
web/packages/pROC/pROC.pdf).

Data availability

The data sets used in this study came from a variety of
published works (see Table 1). The curated data sets and
code for generating figures can be found at https://github.
com/FowlerLab/.

Results

Deep mutational scanning is a method that enables measure-
ment of large numbers of mutational effect in a protein simul-
taneously (Fowler et al. 2010; Fowler and Fields 2014). Deep
mutational scanning can be used to quantify the effects of all
mutations at each position in a protein, and is therefore a con-
ceptual extension of single amino acid scanning mutagenesis.
The application of deep mutational scanning has resulted in
an explosion of protein mutagenesis data (Fowler and Fields
2014). These large-scale mutagenesis data sets create the op-
portunity to assess relationships between the effects of different
amino acid substitutions comprehensively.

We curated 16 large-scale mutagenesis data sets from
published deep mutational scans of 14 proteins (Figure 1A
and Table 1). Here, we included two distinct data sets for the
BRCA1 RING domain and for UBI4 because mutations in these
proteins were independently assayed for different protein func-
tions (e.g., BRCA1 BARD1 binding and E3 ligase activity). Our
collection of data sets is ideal for an unbiased analysis of the
general effects of mutations because the mutagenized proteins
are highly diverse, encompassing enzymes, structural proteins
and chaperones from organisms ranging from bacteria to hu-
mans. The frequency of amino acids in the wild-type sequences
of the 14 proteins was similar to amino acid frequencies in all
known proteins (Magrane and UniProt Consortium 2011) (Fig-
ure 1B). For example, leucine (frequency = 11%) and alanine
(8%)were themost frequently occurring wild-type amino acids
in the 14 proteins, while tryptophan (,1%) was the rarest.
However, the unbiased and massively parallel nature of deep
mutational scanning experiments yielded a relatively uniform
distribution of amino acid substitutions (Figure 1C). Further-
more, the data sets were generated by different laboratories at
different times using different types of assays, reducing the
chances of bias arising from specific experimental or analytical
practices. Importantly, the assay formats used for the deep mu-
tational scans included many commonly employed in single
amino acid scanning like phage display and yeast two-hybrid.
Collectively, these large-scale mutagenesis data sets comprised
34,373 nonsynonymous mutations at 2236 positions in the
14 proteins. The data sets contained effect scores for most mu-
tations at each position. To facilitate comparisons between each
data set, we rescaled mutational effect scores for each protein,
using synonymous mutations to define wild-type-like activity,
and the bottom 1% of mutations to define lack of activity
(Figure S1A in File S1). Thus, each mutational effect score
reflects the impact of the mutation, relative to wild type,
with a score of zero meaning no activity, and a score of one
meaning wild-type-like activity.
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To validate the large-scalemutagenesis data,we examined
expected patterns of mutational effect. For example, muta-
tions to proline should generally disrupt protein function, as
proline restricts the conformation of the polypeptide back-
bone and eliminates the amide hydrogen necessary for
hydrogen bonding. Indeed, proline substitutions were over-
whelmingly more disruptive than other substitutions to pro-
tein function (Figure 1D and Figure S1B in File S1). In fact,
proline was the most disruptive substitution in 11 of 14 pro-
teins, and second most disruptive in the remaining three pro-
teins (Figure 1E). Additionally, as expected from the Dayhoff
(Dayhoff 1978), Blosum (Henikoff and Henikoff 1992), and
Grantham (Grantham1974) substitutionmatrices, tryptophan
tended to be deleterious. Methionine was the best-tolerated
substitution, and therefore may be useful for identifying the
most immutable protein positions. Interestingly, mutations to

alanine, which is commonly employed in scanning muta-
genesis, were better tolerated than many other substitu-
tions. Other substitutions were also well tolerated, with
seven different amino acids appearing as the most tolerated
across the 14 proteins (Figure 1, D and E). Tolerance to
substitutions depends on structural context, so the variabil-
ity in the best-tolerated substitution might be due to diver-
sity in the structural composition of each protein in our data
set. Thus, the large-scale mutagenesis data sets we collected
generally recapitulated our expectations about the effects of
mutations, despite coming from 14 distinct proteins that
were each assayed independently.

Next, we determined which amino acid substitution best
represented the effects of all other substitutions. To avoid bias
arising from missing data, we restricted this analysis to the
882 positions in the 14 proteins with measured effects for all

Figure 1 Large-scale mutagenesis data from 14 proteins. (A) The number of single amino acid mutations with effect scores in each of the 14 proteins is
shown. (B) A radar plot shows the relative frequency of occurrence of each amino acid in the wild-type sequences of the 14 proteins (blue) or in 554,515
proteins in the UniProt Knowledgebase (Magrane and UniProt Consortium 2011) (dashed red). (C) A radar plot shows the relative frequency of each of
the 20 amino acid substitutions in the large-scale mutagenesis data sets for all 14 proteins. (D) The median mutational effect score of each amino acid
substitution is shown for 34,373 mutations at 2236 positions in all 14 proteins. (E) A heat map shows the median mutational effect score of each amino
acid substitution for each protein separately. Yellow indicates tolerated substitutions while orange indicates disruptive substitutions. Amino acids and
proteins were ordered according to similarity using hierarchical clustering with the hclust function from the heatmap2 package in R.
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19 possible substitutions. We calculated the median muta-
tional effect at eachof these882positions.Overall, themedian
effects across these positions were mildly disruptive, with a
mean of 0.82 (stop �0, wild type �1). We found that the
effects of phenylalanine, glycine, histidine, isoleucine, leu-
cine, asparagine, glutamine, and tyrosine substitutions were
all indistinguishable from the median effects (Figure 2A and
Table S1). However, proline, aspartic acid and tryptophan
substitutions were much more disruptive than the median
substitution. Alanine, cysteine, methionine, serine, threo-
nine, and valine were considerably less disruptive than the
median substitution. These well-tolerated amino acid substi-
tutions might be useful for detecting the most mutationally
sensitive positions in a protein, but they are not especially
representative of the effects of other substitutions.

We also examined the dispersion of each amino acid’s
mutational effect about the median at all 882 positions, rea-
soning that representative substitutions would have minimal
dispersion. Of substitutions whose effects were indistinguish-
able from the median effect, histidine and asparagine have
the smallest dispersion (SD = 0.15 and 0.14, respectively;
Figure 2B), while tyrosine (0.18), glutamine (0.16), phenyl-
alanine (0.19), glycine (0.17), leucine (0.17), and isoleucine
(0.19) all had larger dispersions. Thus, of all possible substi-
tutions, histidine and asparagine tended to have effects clos-
est to the median effect at the 882 positions we examined.

Next, we investigated the influence of the wild-type amino
acid on the effect of each substitution at all 882 positions.
Wild-type amino acid frequencies differed, so the number of
mutations for each wild-type amino acid also varied. For
example, we observed 1786 mutations at 94 positions where
leucinewas thewild-type amino acid and114mutations at six
tryptophan positions. We found that tryptophan positions
were the most sensitive to mutation (median effect = 0.48
at Trp positions), while glutamine positions were the least
sensitive (median effect = 0.99 at Gln positions). For each
substitution and wild-type amino acid pair, we subtracted
the median effect of all substitutions at positions with the
wild-type amino acid (Figure S2A in File S1) from the me-
dian effect of the substitution at those positions. A difference
greater than zero denoted a substitution that was more tol-
erated than the median substitution for that wild-type amino
acid, while a difference less than zero denoted a more dis-
ruptive substitution.

Hierarchical clustering of wild-type amino acids based on
these differences revealed two major classes (Figure S2B in
File S1). The first class included large hydrophobic amino
acids, which were more sensitive to substitutions, while the
second class included charged and polar amino acids, which
were less sensitive to substitutions (Figure S2A in File S1).
We found that some substitutions, including histidine and
asparagine, had effects close to the median substitution for
most wild-type amino acids (Figure S2C in File S1). However,
histidine substitutions were less disruptive than the median
substitution when the wild-type amino acid was tryptophan
or tyrosine, andmore disruptive than themedian substitution

when the wild-type amino acid was methionine or cysteine.
Meanwhile, asparagine substitutions were less disruptive
when the wild-type amino acid was histidine, and more dis-
ruptive when the wild-type was methionine. Other substitu-
tions had more variable effects across different wild type
amino acids. Thus, histidine and asparagine best represent
the median mutational effect across most wild-type amino
acids.

Because of the comprehensive nature of the large-scale
mutagenesis data sets, we could ask how well the mutational
effect scores of each substitution correlated with the scores of
every other substitution at each position. Thus, we calculated
Pearson correlation coefficients for the mutational effect
scores of each substitution pair across all positions (Figure
2C and Figure S3 in File S1). The effects of histidine and
asparagine substitutions correlated best with the effects of
all other substitutions, while the effect of proline substitu-
tions correlated worst. To visualize the relationships between
each pair of substitutions, we constructed a force-directed
graph (Figure 2D). As expected, substitutions cluster by phys-
icochemical type in the graph, meaning that similar substitu-
tions have similar effects. Proline is not represented because
its effects are poorly correlated with other substitutions. His-
tidine and asparagine are connected to many other amino
acids, owing to the high correlation of the effects of these
substitutions with many other substitutions.

We next askedwhether the secondary structural context of
a position altered the effect of each substitution.We excluded
DBR1 and GB1 from this analysis because they did not have
structures of sufficiently close homologs. We used DSSP to
identify 1007 positions in the remaining proteins that were in
an a-helix, a b-sheet or a turn (Kabsch and Sander 1983).
Overall, substitutions in turns were less disruptive than
substitutions in a-helices or b-sheets (Figure 3A). How-
ever, the relative effects of each substitution in the three
structural contexts were mostly consistent, especially be-
tween a-helices and b-sheets (Figure 3B and Figure S4A in
File S1). Surprisingly, the tolerance for each amino acid
substitution in the different secondary structural contexts
was not strongly correlated with the frequency of that
amino acid’s occurrence in known structures (Costantini
et al. 2006). For example, alanine occurs more frequently
in a-helices, relative to b-sheets. However, in our large-
scale mutagenesis data sets, alanine substitutions were
mildly disruptive in both structural contexts. These obser-
vations suggest that secondary structure does not dominate
mutational tolerance, at least for the proteins we examined.

We next investigated which substitutions were the most
representative regardless of structural context.We found that
histidine substitutions have close to the median effect in
a-helices and turns, but were more disruptive than the me-
dian effect in b-sheets (Figure 3B). Asparagine and gluta-
mine substitutions had near median effects in all three
contexts. As above, we examined how well the effects of
each substitution correlated with every other substitution
at each position in each context. We found that the effects
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of histidine, asparagine, and glutamine substitutions corre-
lated best with the effects of other substitutions (Figure S4,
B and C in File S1). Thus, the effects of histidine, asparagine,
and glutamine are relatively consistent in the different
structural contexts we examined, highlighting the represen-
tativeness of these substitutions.

An important use of single amino acid scanning is to identify
positions in protein-ligand interfaces. In order to determine
which substitution is ideal for that purpose, we analyzed the
effects of substitutions in four proteins with ligand-bound
structures: the hYAP65WWdomain, the PSD95 pdz3 domain,
the BRCA1 RING domain, and GAL4. Among these four
proteins there were 4884mutations at 282 positions. We used
relative solvent exposure to classify each position as either
buried or on the surface. We also determined interface posi-
tions based on published structures and functional studies

(see Materials and Methods). We found that substitutions at
interface positions were substantially more disruptive than
substitutions at buried, noninterface, or surface noninterface
positions (Figure 4A). This result was expected, given that
all four deep mutational scans were conducted using selec-
tions that depended on ligand binding. Alanine, along with
phenylalanine, isoleucine, and methionine, are the least dis-
ruptive amino acid substitutions at interface positions, sug-
gesting that they may not be ideal for interface detection.

We reasoned that the ideal substitution for detecting
protein–ligand interfaces would exhibit a large difference
in mutational effect between interface and noninterface po-
sitions. To formalize this idea, we used a mutational effect
threshold. If a substitution at a particular position had a
mutational effect below the threshold, we classified that
position as “interface.” Conversely, if the mutational effect

Figure 2 Histidine and asparagine substitutions best represent the effect of other substitutions. (A) For each of the 882 positions where the mutational
effects of all 19 substitutions were measured, the difference from the median effect was calculated for each substitution at each position. The median of
these differences across all positions for each substitution is shown, with the red line indicating a median difference of zero. A paired, two-sided Wilcoxon
rank sum test was used to determine whether each substitution’s difference from the median effect across all positions was equal to zero (* indicates
substitutions with a Bonferroni-corrected P-value. 0.01; Table S1). (B) The SD of each substitution’s differences from the median effect at the 882 positions
where the mutational effects of all 19 substitutions were measured is shown. (C) For each substitution, Pearson correlation coefficients were calculated for
the mutational effects of that substitution with every other substitution at each position. The distribution of correlation coefficients for each substitution is
shown. (D) These pairwise mutational effect score correlations are also illustrated using a force directed graph. Each node represents an amino acid and
each edge force value is the Pearson correlation coefficient for the mutational effect scores of the two amino acid substitutions connected by the edge. To
reduce the density of edges, only the top 40% of Pearson correlation coefficients were included. This cutoff removed proline from the graph. Amino acids
are colored by physicochemical type. The graph was constructed using the networkD3 package in R.
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was above the threshold that position was classified as “non-
interface.” For each substitution, we varied the mutational
effect threshold from the maximum mutational effect score
to theminimum effect in 200 steps. At each step, we compared
the true interface positions to those determined using the mu-
tational effect threshold procedure. We then constructed ROC

curves. The area under each ROC curve revealed the ability of
that substitution to discriminate between true interface and
noninterface positions. We found that isoleucine, lysine,
and alanine had the worst discriminatory power (Figure 4B
and Figure S5 in File S1). Substitutions that were highly dis-
ruptive at interfaces, like asparagine, glutamine, aspartic acid,

Figure 3 Secondary structural context of mutational effects. (A) Density plots describing the distribution of mutational effect scores for each substitution are
shown for three different structural contexts as determined using DSSP: a-helices (left panel, N = 8669), b-sheets (middle panel, N = 4796), and turns (right
panel, N = 3329). (B) The mutational effect score distributions for each substitution in a-helices (left panel), b-sheets (middle panel), and turns (right panel) are
shown. The vertical line in each panel represents the median effect score for all substitutions in that secondary structure type.

Figure 4 Asparagine, glutamine, aspartic acid, and glutamic acid are best for identifying positions in protein–ligand interfaces. (A) The distribution of
mutational effect scores for every substitution in four proteins with ligand-bound structures [hYAP65 WW domain, PSD95 pdz3 domain, BRCA1 RING
domain (BARD1 binding) and Gal4] is shown at ligand interface positions as reported in the literature, and for noninterface buried positions or
noninterface surface positions. (B) A mutational effect threshold was defined such that positions with a mutational effect below the threshold were
classified as “interface,” whereas positions with a mutational effect above the threshold were classified as “noninterface.” ROC curves for each amino
acid were generated by varying this threshold. The area under each ROC curve is shown, illustrating the power of each substitution to discriminate
between interface and noninterface positions.
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and glutamic acid, had the best discriminatory power. Next,
we calculated the fraction of true interface positions detected
by each amino acid substitution at a 5% false positive rate.
Here, we found that asparagine and glutamine substitutions
revealed over 60% of the true interface positions; aspartic acid
and glutamic acid substitutions also performedwell (Figure S6 in
File S1). However, alanine substitutions detected ,20% of the
true interface positions at a 5% false positive rate. Thus, aspara-
gine, glutamine, aspartic acid, or glutamic acid substitutions are
all good choices for detecting protein–ligand interfaces.

Discussion

Single aminoacidscanningmutagenesis isawidelyusedmethod
for identifyingproteinpositions thatare important for functionor
ligand binding. Alanine is often employed, and was selected on
rationalgroundsas itconstitutesadeletionof thesidechainat the
b-carbon. By analyzing tens of thousands ofmutations in 14 pro-
teins, we have determined that alanine is not necessarily the
most revealing substitution. For example, histidine and aspara-
gine substitutions have an effect close to the median, and these
substitutions correlate best with the effects of all other substitu-
tions. Thus, they best represent the effects of mutations gener-
ally. Asparagine, glutamine, aspartic acid, and glutamic acid
substitutions are highly disruptive at ligand interfaces, and are
consequently the most useful substitutions for detecting ligand
interface positions.

However, our conclusions are based on only 14 proteins.
While these proteins are diverse in structure and function,
theymay not fully reflect themutational propensities of other
proteins. For example, tryptophan scanning mutagenesis is
often applied to transmembrane domains (Sharp et al. 1995;
Depriest et al. 2011; Rasmussen et al. 2015), which were
absent from the proteins we analyzed. Thus, our conclusions
are most applicable to soluble proteins. Furthermore, we do
not address specialized applications of single amino acid
scanning mutagenesis. For example, cysteine scanning mu-
tagenesis has been used to introduce disulfide bridges (Kanaya
et al. 1990) and glycine scanning mutagenesis has been used
to increase conformational flexibility (Weinglass et al. 2001).
Our conclusions do not apply to these situations. Finally, the
deep mutational scanning data we analyzed arises from
genetic selections for protein function. Biochemical assays
might reveal different patterns. However, we note that a
few of the large-scale mutagenesis data sets we used were
benchmarked against and found to be consistent with bio-
chemical assay results (McLaughlin et al. 2012; Olson
et al. 2014).

Deep mutational scanning can reveal the functional con-
sequences of all possible single amino acid substitutions in
a protein. However, these experiments can be expensive or
unwieldy. Therefore, scanning mutagenesis with one or a few
amino acids will remain useful for determining functionally
important positions, probing protein–ligand interactions,
and answering other specific questions. Our results can be
used to guide future single amino acid scanning mutagenesis

experiments, enabling selection of the amino acid best suited
for the goals of the experiment.
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