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Background: Transforming growth factor-beta (TGF-β) is a multifunctional cytokine
involved in immune disorders, cancer, asthma, lung fibrosis, and chronic kidney disease,
and its signal pathways are considered crucial mediators of a variety of cellular
processes. In addition, several recent studies have reported that TGF-β receptor (TGF-
βR) gene polymorphism is associated with chronic kidney disease. However, the
association between end-stage renal disease (ESRD) and the TGF-β gene polymorphism
has not been sufficiently investigated. In this study, we hypothesized that polymorph-
isms of the TGF-β ligands or their receptors may be related to ESRD.
Methods: We assessed the relationship between four single-nucleotide polymorphisms
(SNPs) in the TGF-βR2 and TGF-β2 genes and ESRD, in 312 patients with ESRD and 258
controls.
Results: Compared with the control participants, the frequencies of the TGF-βR2
(rs764522nC) and TGF-βR2 (rs3087465nG) alleles were significantly higher in the
patients with ESRD. Genotyping analysis demonstrated that two SNPs in TGF-βR2 of
the four SNPs included in the study were significantly associated with ESRD in the
codominant 1 [rs764522, odds ratio (OR)¼1.65; rs3087465, OR¼1.63], dominant
(rs764522, OR¼1.63; rs3087465, OR¼1.57), and log-additive (rs764522, OR¼1.54;
rs3087465, OR¼1.39) models after adjusting for age and sex.
Conclusion: We suggest that TGF-βR2 polymorphisms (rs764522 and rs3087465)
increase the risk of development of ESRD.

Copyright & 2015. The Korean Society of Nephrology. Published by Elsevier. This is an
open access article under the CC BY-NC-ND license
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Introduction

Recent economic prosperity and medical developments
since 2010 have stabilized the rate of patients with end-stage
renal disease (ESRD) [1]. However, the absolute numbers
continue to increase, leading to growing morbidity and mor-
tality rates directly related to ESRD. Diabetes, hypertension,
and glomerular renal disease are documented as common
hrology. Published by Elsevier. This is an open access article under the
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Table 1. Clinical characteristics of ESRD patients versus controls

ESRD
(n¼312)

Normal
(n¼258)

P

Age 38.47711.64 37.91712.96 0.617
Male:female 186:126 151:107 0.694
Serum creatinine (mg/dL) 8.3072.69
Duration of dialysis (mo) 25.53738.75
Causes of ESRD, n (%)
Glomerulonephritis 141 (45.19)
Hypertension 95 (30.45)
Others 24 (7.69)
Unknown origin 52 (16.67)

Dialysis method, n (%)
Hemodialysis 181 (58.01)
Peritoneal dialysis 75 (24.04)
Both (HDþPD) 5 (1.60)
No dialysis 51 (16.35)

Data are presented as mean± SD.
ESRD, end-stage renal disease; HD, hemodialysis; PD, peritoneal dialysis.
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causes of ESRD worldwide. However, environmental and
genetic factors that lead to progressing renal failure in patients
with this disease are not well understood [2].

Many researchers have suggested that cytokines associated
with immune response and fibrosis are related to the etiology
and progression of renal disease. Tumor necrosis factor-alpha,
interleukin-10 (IL-10), and the transforming growth factor-beta
(TGF-β) complex regulate various inflammation reactions and
activate progressive fibrogenesis in chronic renal injury [3].
TGF-β is a multifunctional protein known to be involved in
various processes associated with the progression of chronic
kidney disease (CKD), including tubular apoptosis and inter-
stitial fibrosis. The three isoforms of TGF-β (TGF-β1, -β2,
and -β3) regulate downstream signals and the combination of
TGF-β receptor 1 (TGF-βR1) and TGF-β receptor 2 (TGF-βR2)
[4,5]. There are few reports that TGF-β2 and TGF-βR2 of the
three TGF-β isoforms are associated with CKD and renal fibrosis.

The hypothesis that common genetic variations predispose
to common diseases has increased the interest in single-
nucleotide polymorphisms (SNPs). A number of recent studies
have suggested that SNPs in TGF-β and its receptor, and
epigenetic factors are associated with the progression of CKD
[4,6–8]. Additionally, several SNPs in TGF-βR2 have been
reported to be associated with various diseases [9–13]. As
mentioned in the previous context, genetic variants of inflam-
matory markers (IL-10, TGF-α, IL-17) have been studied in
relation to the progression of CKD. However, the link between
genetic polymorphism of TGF-β2 and TGF-βR2 and the devel-
opment of ESRD has not been studied. Therefore, we assessed
the association between ESRD and four SNPs located within
the genes of TGF-β2 and TGF-βR2.

Methods

Participants

This study included 312 patients with ESRD (age 418 years)
and 258 control individuals enrolled at three hospitals in Korea
(Kyung Hee University Medical Center, Kyung Hee University
Hospital at Gangdong, and Inje University Busan Paik Hospital)
from 2000 to 2009. All participants provided informed consent.
All patients with ESRD caused by hypertension, glomerulone-
phritis, or other diseases (polycystic kidney, renal tuberculosis,
hemolytic uremic syndrome, etc.) or with ESRD of unknown
origin were recruited. Some patients were on hemodialysis,
peritoneal dialysis, or both. The control participants were
enrolled during regular checkups at the study hospitals from
2002 to 2005. All of them were healthy and had no past medical
history of renal disease. The age and sex of the control partici-
pants were matched to those of the patients with ESRD (Table 1).

Blood collection, genotyping, and SNP selection

Peripheral blood samples were collected in EDTA tubes and
genomic DNA was extracted from peripheral blood lymphocytes
using a commercially available Qiagen DNA extraction kit (Qia-
gen, Tokyo, Japan). All participants were genotyped using direct
sequencing, and genomic DNA was amplified using specific
primers. The polymerase chain reaction products were then
sequenced with an ABI PRISM 3730XL analyzer (PE Applied
Biosystems, Foster City, CA, USA), and sequencing results were
evaluated with the SeManII software (DNASTAR Inc., Madison,
WI, USA). Gene SNPs were identified using the National Center
for Biotechnology Information dbSNP database, version 131
(National Center for Biotechnology Information, Bethesda, MD,
USA; http://www.ncbi.nlm.nih.gov/SNP) and the International
HapMap Project database (http://www.Hapmap.org/index.html).
SNPs with unidentified heterozygosity or low allele frequency
(o5%) were expected for the Asian population. Finally, four SNPs
located in two genes (rs764522, rs3087465, and rs2228048 in
TGF-βR2, and rs7550232 in TGF-β2) were selected.

Statistical analysis

Compliance with the Hardy–Weinberg equilibrium was eval-
uated using the SNPstats software (http://bioinfo.iconcologia.net/
index.php module ¼ SNPStats) for all the SNPs. All continuous
variables were expressed as mean 7 standard deviation of the
allelic frequencies and were assessed using the Chi-square test. For
association tests, we calculated the odds ratios (ORs), 95% con-
fidence intervals (CIs), and P values with SNPstats, Hap Analyzer
version 1.0, and SNPanalyzer (ISTECH, Inc., Goyang, Korea). The
differences between the ESRD group and the control group in
terms of genotype distribution were analyzed using a multiple
logistic regression test to adjust for age and sex. We used
multiple inheritance models, including codominant 1 (major allele
homozygotes vs. heterozygotes), codominant 2 (major allele
homozygotes vs. minor allele homozygotes), dominant (major
allele homozygotes vs. minor allele homozygotesþheterozygotes),
recessive (major allele homozygotesþheterozygotes vs. minor
allele homozygotes), overdominant (heterozygotes vs. major
allele homozygotesþminor allele homozygotes), and log-additive
(major allele homozygotes vs. heterozygotes vs. minor allele
homozygotes). The presence of a linkage disequilibrium block of
polymorphisms was assessed using Haploview, version 4.1 (Broad
Institute of MIT and Harvard, Cambridge, MA, USA; http://www.
broadinstitute.org/haploview/haploview). We also used the online
program AliBaba2.1 (Labmom.com; http://www.gene-regulation.
com/pub/programs/alibaba2). Clinical characteristics were com-
pared using the Chi-square test and Student unpaired t test. A
value of Po0.05was considered to represent statistical significance.

Results

Baseline characteristics

A total of 312 patients with ESRD and 258 healthy controls
were studied. The characteristics of the participants are shown in



Table 2. Allele frequencies of the TGF-β2 and TGF-βR2 genetic polymorphism in ESRD patients and controls

Gene SNP Allele Normal ESRD OR (95% CI) P

n % n %

TGF-β2 rs7550232 A 557 92 482 93 0.84 (0.53–1.32) 0.44
C 47 8 34 7

TGF-βR2 rs2228048 C 455 73 363 72 1.08 (0.83–1.40) 0.59
T 169 27 145 28

TGF-βR2 rs764522 C 564 90 444 86 1.52 (1.06–2.20) 0.023
G 60 10 72 14

TGF-βR2 rs3087465 A 96 15 105 20 1.39 (1.03–1.89) 0.033
G 524 85 411 80

CI, confidence interval; ESRD, end-stage renal disease: OR, odds ratio; SNP, single-nucleotide polymorphism; TGF-β, transforming growth factor-beta;
TGF-βR2, transforming growth factor-β receptor 2.

Table 3. Logistic regression analysis of the TGF-β2 and TGF-βR2 polymorphism in ESRD patients and controls after adjusting for age and sex

SNPs Genotype / allele Normal ESRD Models OR (95% CI) P
n (%) n (%)

rs7550232 A/A 256 (84.8) 226 (87.6) Codominant 1 0.75 (0.46–1.24) 0.263
TGF-β2 A/C 45 (14.9) 30 (11.6) Codominant 2 2.29 (0.21–25.40) 0.50

C/C 1 (0.3) 2 (0.8) Dominant 0.79 (0.48–1.28) 0.33
Recessive 2.37 (0.21–26.34) 0.47
Log-additive 0.84 (0.53–1.32) 0.44

rs2228048 C/C 169 (54.2) 131 (51.6) Codominant 1 1.11 (0.78–1.58) 0.56
TGF-βR2 C/T 117 (37.5) 101 (39.8) Codominant 2 1.09 (0.59–2.01) 0.78

T/T 26 (8.3) 22 (8.7) Dominant 1.11 (0.79–1.54) 0.55
Recessive 1.04 (0.58–1.89) 0.89
Log-additive 1.07 (0.83–1.38) 0.60

rs764522 C/C 255 (81.7) 189 (73.3) Codominant 1 1.65 (1.10–2.47) 0.016
TGF-βR2 C/G 54 (17.3) 66 (25.6) Codominant 2 1.34 (0.27–6.75) 0.72

G/G 3 (1.0) 3 (1.2) Dominant 1.63 (1.09–2.43) 0.016
Recessive 1.21 (0.24–6.07) 0.82
Log-additive 1.54 (1.06–2.24) 0.022

rs3087465 G/G 224 (72.3) 161 (62.4) Codominant 1 1.63 (1.13–2.35) 0.009
TGF-βR2 G/A 76 (24.5) 89 (34.5) Codominant 2 1.11 (0.43–2.88) 0.83

A/A 10 (3.2) 8 (3.1) Dominant 1.57 (1.10–2.24) 0.013
Recessive 0.96 (0.37–2.46) 0.93
Log-additive 1.39 (1.03–1.90) 0.033

CI, confidence interval; ESRD, end-stage renal disease; OR, odds ratio; SNP, single-nucleotide polymorphism; TGF-β, transforming growth factor-beta;
TGF-βR2, transforming growth factor-β receptor 2.

Table 4. Haplotype analysis of the rs764522 and rs3087465 poly-
morphism of TGF-βR2 in ESRD patients and controls

Haplotype Frequency ESRD Normal Chi-
square

P

þ � þ �

CG 0.821 408.9 107.1 526.6 97.4 5.095 0.024
GA 0.113 69.9 446.1 58.9 565.1 4.745 0.0294
CA 0.064 35.1 480.9 37.4 586.6 0.315 0.5747

ESRD, end-stage renal disease; TGF-βR2, transforming growth factor-β
receptor 2.
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Table 1. The two groups were not significantly different regarding
age and sex. The mean serum creatinine level was 8.307
2.69 mg/dL in the patients with ESRD. In this study, glomerulo-
nephritis was the most common cause of ESRD (45.19%), fol-
lowed by hypertension (30.45%), and unknown origin (16.67%).
Most patients (58.01%) were on hemodialysis.

Genotype distribution and genetic association between TGF-β
and TGF-βR2 SNPs

The whole TGF-βR2 and TGF-β2 genes were genotyped to
identify the four SNPs. The genotype distributions of all SNPs
were in agreement with the Hardy–Weinberg equilibrium
(Po0.05). The allele frequencies of the genetic polymorphisms
in the patients with ESRD and control individuals are shown in
Table 2. Two SNPs out of four were associated with ESRD in an
allele-specific manner. The major alleles were TGF-βR2
rs764522nC (OR¼1.52, 95% CI¼1.06–2.20, P¼0.023) and TGF-
βR2 rs3087465nG (OR¼1.39, 95% CI¼1.03–1.89, P¼0.033). Logis-
tic regression analysis showed significant differences in the allele
frequencies of the SNPs of the TGF-βR2 genes between the
patients with ESRD and controls. After adjustment for age and
sex, the following two SNPs were still significantly associated
with ESRD: TGF-βR2 rs764522 and TGF-βR2 rs3087465 (Table 3).
Tests for associationwith individual SNPs showed significance for
two SNPs in the codominant 1 (rs764522; OR¼1.65, P¼0.016;
rs3087465, OR¼1.63, P¼0.009), dominant (rs764522; OR¼1.63,
P¼0.016; rs3087465, OR¼1.57, P¼0.013), and log-additive
(rs764522; OR¼1.54, P¼0.022; rs3087465, OR¼1.39, P¼0.033)
models. In addition, we used Haploview (version 4.1 ) to deter-
mine whether a specific TGF-βR2 haplotype is associated with
ESRD. All four SNPs were explored to estimate pair-wise linkage
disequilibrium. The resulting single linkage disequilibrium block
in TGF-βR2 rs764522 and rs3087465 was evaluated based on the
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standards of Gabriel et al [14]. Three haplotypes, including CG,
GA, and CA, in TGF-βR2 (rs764522 and rs3087465) were identi-
fied. Among these three haplotypes, the frequency of CG and GA
was significantly increased in patients with ESRD compared with
the control participants (Table 4).
Discussion

CKDs are irreversible degenerative disorders in which
excessive fibrosis in the glomeruli and tubular epithelium
eventually leads to ESRD. In simple terms, the renal inflam-
matory reaction and fibrogenesis are because of the failure of
tissue wound healing and subsequent persistent damage.
Therefore, TGF-β has been gradually recognized as an impor-
tant mediator of these cellular processes [7,15,16].

TGF-β signal pathways, which are associated with cell
proliferation, differentiation, and apoptosis; are considered
important for the immune system [5]. TGF-β stimulates spe-
cific receptors on the cell surface membrane and causes both
pathological and physiological events. The three isoforms of
TGF-β (TGF-β1, -β2, and -β3) are part of the TGF-β superfamily,
and they are expressed and activated in most of cell types.
TGF-β1 and TGF-β3 are primarily responsible for early mor-
phogenesis, and TGF-β2 is responsible for epithelial cell
differentiation [7,17]. The TGF-β ligand binds to a dimeric
receptor complex that consists of Type I and II serine/threo-
nine kinase receptors. TGF-β2 ligand binding leads to the
formation of TGF-β2R dimer and phosphorylation of threonine
and serine residues then activates the TGF-β1R. The activated
receptor recruits the downstream signaling regulator, SMAD
(mothers against decapentaplegic homolog; R-SMAD), which
initiates a signaling cascade that ultimately alters gene expres-
sion, leading to renal fibrosis [17]. Therefore, as described
earlier, the TGF-β ligands contribute to all the processes that
involve proliferation, apoptosis, hypertrophy, mesangial cell
fibrosis, and tubulointerstitial fibrosis; resulting in glomerulo-
sclerosis, tubular atrophy, and renal scarring that lead to ESRD
[16,18,19]. An experimental study showed that inhibition of
the TGF-β functions efficiently prevented chronic renal
damage, whereas overexpression of TGF-β2 induced fibrotic
changes of the renal matrix [20].

Although the significance of the TGF-β1 ligand in CKD
pathology has been established by several studies [21,22], few
investigators have examined the role of TGF-β2 and TGF-βR2 in
ESRD. According to several studies, SNPs in TGF-β2 and TGF-βR2
have been reported to be associated with a number of other
diseases. The following results were obtained for the four types
of SNPs in different studies. One study showed that the TGF-β2
rs7550232 polymorphism played a key role in protecting
against the development of high myopia [23]. The rs2228048
SNP in TGF-βR2 was shown to be associated with cerebral
hemorrhage [24], whereas the rs764522 TGF-βR2 SNP was
related to high susceptibility of essential hypertension [25].

As mentioned earlier, only a small number of researchers
have directly examined the role of TGF-β2 and TGF-βR2 in
renal progressive diseases. The rs2228048 SNP in TGF-βR2 was
shown to be associated with acute rejection in kidney trans-
plantation recipients [26]. It was also significantly associated
with the prevalence of CKD [27]. However, the same SNP was
found to have no significant relationships with ESRD in the
present study; instead, rs764522 and rs3087465, two other
SNPs in TGF-βR2, were shown to be associated with the
progression of ESRD.

This article deals solely with TGF-βR2. However, the TGF-β
pathway, as we have explained previously, begins with the
binding of the TGF-β ligand to the TGF-β2R to induce its
activation, consequently causing the phosphorylation of TGF-
β1R, and consequently leading to upregulation, which seems to
be the culprit of renal disease progression. We suggest that the
pathophysiology of ESRD is partly related to the TGF-βR2
signaling-dependent fibrosis pathway.

Our study has several limitations. The reliability of the
relationship between SNP and ESRD may be affected by the
small sample size. In addition, we only analyzed the relation-
ship between the genetic polymorphism of TGF-β and the
development of ESRD, whereas the biological role of TGF-β in
ESRD was not investigated and the comparative concentration
of relevant cytokines was not assessed. It is possible that one
or more of the gene polymorphisms related with ESRD in the
present study are in other adjacent genes that are actually
responsible for the progression of this state. In future studies,
we need to measure the quantitative cytokines and determine
the degree of functional genetic effects.

In conclusion, this study suggests that genomic variations in
TGF-βR2 are associated with the occurrence of ESRD. This
result supports the notion that inflammation and renal fibrosis
might play an essential role in increasing the risk of ESRD.
Additional studies assessing the biological roles of TGF-βR2
genes will be required to confirm our conclusions.
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