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Abstract

Recent advances in consortium-scale genome-wide association studies (GWAS) have

highlighted the involvement of common genetic variants in autism spectrum disorder (ASD),

but our understanding of their etiologic roles, especially the interplay with rare variants, is

incomplete. In this work, we introduce an analytical framework to quantify the transmission

disequilibrium of genetically regulated gene expression from parents to offspring. We

applied this framework to conduct a transcriptome-wide association study (TWAS) on 7,805

ASD proband-parent trios, and replicated our findings using 35,740 independent samples.

We identified 31 associations at the transcriptome-wide significance level. In particular, we

identified POU3F2 (p = 2.1E-7), a transcription factor mainly expressed in developmental

brain. Gene targets regulated by POU3F2 showed a 2.7-fold enrichment for known ASD

genes (p = 2.0E-5) and a 2.7-fold enrichment for loss-of-function de novo mutations in ASD

probands (p = 7.1E-5). These results provide a novel connection between rare and common

variants, whereby ASD genes affected by very rare mutations are regulated by an unlinked

transcription factor affected by common genetic variations.

Author summary

Autism spectrum disorder is a neurodevelopmental disorder with complex genetic etiol-

ogy. Mutational variant studies link damaging and typically rare variants in protein-cod-

ing genes with disease outcomes, while genome-wide association studies identify genetic

variations that are common in the human population associated with autism risk. Inter-

estingly, studies targeting common and rare variants have implicated distinct risk path-

ways for autism. Here, we introduce a novel statistical framework for risk gene mapping,
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i.e., TITANS, to better analyze common genetic variants from parent-proband trios.

TITANS integrates transmission disequilibrium information with tissue-specific regula-

tory annotations of multiple linked variants to infer risk genes. We pinpoint a novel

autism gene POU3F2, which encodes a key transcription factor regulating multiple autism

risk genes implicated in exome sequencing studies. Our findings provide a novel connec-

tion between rare and common variants, whereby autism genes affected by rare mutations

are regulated by an unlinked transcription factor affected by common genetic variations.

Introduction

Autism spectrum disorder (ASD [MIM: 209850]) is a highly heritable neurodevelopmental

disorder affecting 1.5% of the world population [1]. It manifests as impaired social interaction

and communication, repetitive behavior, and restricted interests with highly heterogenous

clinical presentations [2]. Whole-exome sequencing (WES) studies for ASD have identified

numerous ultra-rare or de novo single-nucleotide variants, small insertions and deletions

(indels), and copy number variants (CNVs) [3–7]. Although these protein-disrupting genetic

variations have large effects on the disease risk, they are only found in a moderate proportion

of ASD probands. It has been estimated that the contribution of de novo loss-of-function

mutations and CNVs to the variance in ASD liability was only 3% while common genetic vari-

ants explain 50% of the variance in the population [8]. Recently, genome-wide association

studies (GWAS) with large sample sizes, coupled with novel statistical genetic approaches,

have provided new insights into the involvement of common single-nucleotide polymor-

phisms (SNPs) in ASD. For instance, polygenic risk of ASD is significantly over-transmitted

from parents to ASD probands but not their unaffected siblings in simplex families [9]. Such

over-transmission was also observed in probands with de novo mutations in known ASD

genes. Additionally, a recent GWAS meta-analysis of 18,381 ASD cases and 27,969 controls

identified multiple genome-wide significant loci, but did not implicate apparent associations

at ASD risk genes identified in WES studies [10]. These results suggested that distinct mecha-

nistic pathways may underlie the ASD risk attributed to rare and common genetic variants,

but our understanding of their interplay remains incomplete.

One potential approach to better dissect the genetic basis of ASD is to fine-map candidate

genes affected by common SNPs and then investigate how they interact with genes harboring

rare pathogenic variants implicated in WES studies. Transcriptome-wide association study

(TWAS) is an analytical strategy that integrates expression quantitative trait loci (eQTL) anno-

tations with GWAS data to identify disease genes [11–13]. Through advanced predictive

modeling for gene expression traits, TWAS effectively combines association evidence across

many eQTL in diverse tissues and has identified risk genes for numerous complex diseases

[14].

In this study, we introduce TITANS (TrIo-based Transcriptome-wide AssociatioN Study)

(Material and Methods), a novel statistical framework to conduct TWAS in proband-parent

trios. TITANS uses a pseudo sibling matching procedure conceptually similar to classic trio-

based GWAS approaches and is thus more robust to population stratification compared to

population-based case-control studies [15]. Combining recent advances in TWAS methodol-

ogy and the trio-based study design in multiple ASD cohorts, TITANS leverages multi-SNP

transmission disequilibrium to robustly infer disease genes. Specifically, we performed a

TWAS with eQTL and splicing quantitative trait loci (sQTL) in 12 brain tissues from the

Genotype-Tissue Expression (GTEx) project [16] and the CommonMind consortium (CMC)
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[17]. We also took advantage from variant-based pseudo sibling matching [18–20], a protocol

related to transmission equilibrium test (TDT) [21, 22] but with improved statistical power

and robustness, and proposed a gene-based 3-pseudo-sibling design. For each proband, we

generated 3 pseudo siblings using phased genotype data of the parents (Fig 1A). We imputed

gene expression and intron usage values [23] for all probands and pseudo siblings (Fig 1B)

using UTMOST [12] (10 GTEx brain tissues) and FUSION [11] (CMC dorsolateral prefrontal

cortex; DLPFC) imputation models. We used conditional logistic regression [24] to assess the

transmission disequilibrium of imputed gene expression traits while adjusting for the genetic

similarity between proband and pseudo siblings. We also used the same framework to perform

trio-based GWAS (Fig 1C; Material and Methods).

We demonstrate transmission disequilibrium of genetically regulated gene expression in

brain tissues from parents to ASD probands. Specifically, we conducted GWAS and TWAS on

7,805 ASD trios from the Autism Genome Project (AGP), the Simons Simplex Collection

(SSC), and the Simons Foundation Powering Autism Research for Knowledge (SPARK)

cohort, and replicated our findings in an independent cohort of 13,076 cases and 22,664 con-

trols (Material and Methods, S1 and S2 Tables). We identified 31 associations at the tran-

scriptome-wide significance level. In particular, we identified POU3F2 (MIM: 600494), a

master regulator highly expressed in developmental brain whose downstream target genes are

strongly enriched for known ASD genes and mutations.

Results

Transmission disequilibrium of polygenic risk, gene expression, and SNP

alleles

We applied multiple analytical approaches to dissect common SNPs’ contributions to ASD

risk at different scales. First, we performed pTDT [9] to examine the transmission disequilib-

rium of ASD polygenic risk in probands. ASD polygenic risk scores (PRS) were constructed

using case-control samples from the iPSYCH cohort (N = 35,740; Material and Methods). We

confirmed a highly significant over-transmission of ASD PRS from parents to probands in

multiple datasets (p = 1.4E-25 in the meta-analysis), including the SPARK cohort which has

Fig 1. TITANS workflow. (A) We generate three matched pseudo siblings for each proband using the phased genotype data of parents and impute gene expression

values. (B) We compare the impute gene expression traits between probands and matched pseudo siblings and use conditional logistic regression to quantify the

associations. (C) We simulate genotype data for matched pseudo siblings and use conditional logistic regression to assess SNP-disease associations. A1 count stands for

the counts of the minor allele.

https://doi.org/10.1371/journal.pgen.1009309.g001

PLOS GENETICS Trio-based TWAS for autism spectrum disorder

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009309 February 4, 2021 3 / 25

https://doi.org/10.1371/journal.pgen.1009309.g001
https://doi.org/10.1371/journal.pgen.1009309


not been previously analyzed (p = 1.0E-11; S1 Fig). No significant over-transmission was iden-

tified in 3,245 healthy siblings (p = 0.88).

We identified significant transmission disequilibrium of POU3F2 expression (p = 5.6E-7,

cross-tissue adjusted p = 0.035; GTEx hippocampus) and MSRA (MIM: 601250) intron usage

(p = 2.3E-7, cross-tissue adjusted p = 0.028; CMC DLPFC splicing) in 7,805 trios after correct-

ing for the number of genes in each tissue (Tables 1 and S1). Both associations were replicated

in an independent cohort of 13,076 cases and 22,664 controls (p = 0.015 and 0.002, respec-

tively). Meta-analysis enhanced the associations at POU3F2 and MSRA and identified 29 addi-

tional significant associations at the transcriptome-wide significance level (S1 Table and S2–

S11 Figs). Five associations, i.e. POU3F2 (p = 2.1E-7), MSRA (p = 5.7E-9), MAPT (MIM:

157140) (p = 3.6E-7), KIZ (MIM: 615757) (p = 1.9E-7), and NKX2-2 (MIM: 604612) (p = 1.5E-

10), remained significant after a stringent Bonferroni correction for all genes and all tissues in

the analysis (Table 1 and Fig 2). In total, these associations implicated 18 unique candidate

genes from 7 loci, including 5 novel loci not previously identified in GWAS.

We performed extensive analyses to demonstrate the robustness and well-controlled type-I

error of TITANS and validate the association results. We first examined if genotype imputa-

tion error or inaccurate gene expression imputation could inflate type-I error. Hard genotype

calls and dosages produced highly consistent gene expression imputation results (S12 Fig). We

also added random noises to imputed gene expressions and showed that inaccurate gene

expression imputation does not inflate type-I error rate in TITANS (S13 and S14 Figs). Next,

no significant associations were identified in unaffected sibling-parent trios (S15 Fig) or after

randomly shuffling probands and pseudo siblings (S16 Fig), suggesting well-controlled type-I

error in TITANS. Finally, we compared TITANS with two alternative trio-based approaches

which contrast probands with parental data and one-sibling control generated from non-

transmitted parental alleles, respectively (Material and Methods). TITANS showed superior

statistical power in both simulations and analyses of real data (S17–S19 Figs).

GWAS meta-analysis of trios and case-control cohorts identified 4 genome-wide significant

loci (S2 Table), 3 of which (1p21.3, 8p23.1, and 20p11.23) were among previously identified

loci [10]. A locus on chromosome 8 is novel but we note that the top SNP did not exist in the

trio-based analysis. Overall, TWAS identified significant genes at multiple known ASD loci

but also pinpointed novel ASD loci without significant signal in GWAS (Fig 2). Two GWAS

loci on chromosomes 8 and 20 were also identified in TWAS. No significant associations were

found in sibling-parent trios (S15 Fig).

Candidate risk genes and gene set enrichment analysis

Among the 5 significant genes after a stringent Bonferroni correction for all genes and all tis-

sues in the analysis (Figs 3 and S20), POU3F2 (also known as BRN2) is primarily expressed in

Table 1. Cross-tissue significant associations in TWAS. Beta and SE indicate the normalized effect size estimates and standard error in conditional logistic regression.

Some effect size estimates are unavailable in the replication cohort since FUSION does not provide effect size estimates.

Discovery Stage (N = 7,805

trios)

Replication Stage (N = 35,740) Meta-analysis

Gene Chr Tissue Beta SE P Beta SE P Beta SE P

POU3F2 6 GTEx hippocampus 0.09 0.02 5.56E-07 0.03 0.01 0.015 0.05 0.01 2.05E-07

MSRA 8 CMC DLPFC—splicing 0.09 0.02 2.26E-07 - - 0.002 - - 5.67E-09

MAPT 17 CMC DLPFC—splicing 0.06 0.02 2.42E-04 - - 4.09E-04 - - 3.62E-07

KIZ 20 CMC DLPFC 0.05 0.02 1.73E-03 - - 2.62E-05 - - 1.88E-07

NKX2-2 20 GTEx nucleus accumbens basal ganglia -0.05 0.02 2.44E-03 -0.07 -0.01 2.91E-09 -0.06 0.01 1.49E-10

https://doi.org/10.1371/journal.pgen.1009309.t001
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the central nervous system (S21 Fig), especially in hippocampus and hypothalamus [25]. It

encodes a transcription factor with important roles in neurogenesis and brain development

[26, 27]. It is a known risk gene for bipolar disorder [28, 29] and has been identified as a master

regulator of gene expression changes in schizophrenia and bipolar disorder [27, 30]. Deletions

resulting in loss of one copy of POU3F2 cause a disorder of variable developmental delay, intel-

lectual disability, and susceptibility to obesity [31]. Heterozygous POU3F2 knockout mice

showed deficits in adult social behavior [32] and it has been linked to neural proliferation phe-

notypes in stem cell models of ASD [33]. Although this locus did not reach genome-wide sig-

nificance in the GWAS, gene-level association at POU3F2 was supported by a SNP-level

association peak 700 kb upstream of POU3F2 (Fig 3A; lead SNP rs2388334, p = 1.0E-6).

Other association findings also have support from the literature for their involvement in

psychiatric disorders. MAPT encodes the microtubule-associated protein tau known to associ-

ate with multiple neurodegenerative diseases including Alzheimer’s disease (MIM: 104300)

and Parkinson’s disease (MIM: 605909) [34] and balance of MAPT isoforms is critical for neu-

ronal normal functioning [35]. This locus showed suggestive associations in the GWAS (lead

SNP rs2532274, p = 6.9E-8). KIZ, NKX2-2, and MSRA are located at 2 loci previously identified

in ASD GWAS [10]. KIZ encodes the Kizuna centrosomal protein which is critical for

Fig 2. Mirrored Manhattan plot for TWAS and GWAS results. TWAS results are shown in the upper panel. GWAS associations are shown in the

lower panel. The dashed line in the upper panel indicates the cross-tissue transcriptome-wide significance cutoff (p = 4.0E-7) and the dashed line in

the lower panel is the genome-wide significance cutoff (p = 5.0E-8). TWAS associations for all 12 tissues are shown.

https://doi.org/10.1371/journal.pgen.1009309.g002
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stabilizing mature centrosomes during spindle formation [36]. NKX2-2 encodes the

homeobox protein NKX2.2, a transcription factor with an essential role in interpreting graded

Sonic hedgehog signals and selecting neuronal identity [37]. MSRA shows high levels of

expression in the human central nervous system and Msra knockout mice show abnormal

behaviors [38, 39].

We performed conditional analysis using 7,805 ASD trios (Material and Methods). Our

analysis suggests that DDHD2 (P = 2.68E-5) and CTSB (P = 0.002) may independently contrib-

ute to ASD risk in DLPFC and the alternative splicing of MSRA (chr8:10163257:10177393:

clu_45644, P = 0.002) may be the driver association on chromosome 8 (S3 Table). Our analysis

Fig 3. Significant loci identified in TWAS. We identified 5 cross-tissue transcriptome-wide significant associations from 4 loci. (A)

Chromosome 1, 99.4 mb (B) Chromosome 8, 10.5 mb (C) Chromosome 17, 44.5 mb (D) Chromosome 20, 21.3 mb. For each locus, the

index SNP with the most significant association in GWAS is marked as purple diamond and the color of data points indicates linkage

disequilibrium (LD) of neighboring SNPs with the index SNP. Genes are highlighted in red if they reached transcriptome-wide

significance in at least one tissue. The x-axis denotes genome coordinates and the y-axis denotes association p-values in GWAS.

https://doi.org/10.1371/journal.pgen.1009309.g003
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did not reveal a clear candidate at the MAPT locus on chromosome 17, 44.5 mb, possibly due

to multicollinearity caused by extensive LD at this locus.

Next, we compared TWAS findings and ASD risk genes identified in rare variant studies.

We investigated if genes with nominal associations (p< 0.05) in TWAS are enriched in

known ASD pathways. Among the 15 gene sets we tested (Material and Methods), only genes

encoding postsynaptic density proteins (PSD; enrichment = 1.18, p = 3.6E-5) and SFARI genes

with evidence score 3–6 (enrichment = 1.20, p = 4.8E-4) showed significant enrichment for

TWAS findings after multiple testing correction (Fig 4A and S4 Table). Additionally, we note

that some genes with weaker evidence in the SFARI Gene database [40] were identified using

samples from the AGP and SSC cohorts and thus may not represent independent evidence.

Notably, gene sets that are known to harbor significant burden of rare or de novo variants in

ASD, e.g. FMR1 target genes (enrichment = 1.07, p = 0.14), SFARI genes with evidence score

S-2 (enrichment = 1.13, p = 0.14), and chromatin modifier genes (enrichment = 0.94,

p = 0.77), showed negligible enrichment for TWAS associations. These results confirmed the

distinct etiologic pathways underlying common and rare genetic variations in ASD.

TWAS associations in subgroups

Further, we investigated if the effects of candidate genes are consistent in different phenotypic

subgroups. We applied TITANS to assess the 31 associations identified in TWAS in sample

subgroups stratified by sex and full-scale intelligence quotient (FSIQ) [7, 9]. In sex-stratified

analysis of 6,484 male probands and 1,321 female probands, most genes showed comparable

effect sizes in males and females (correlation = 0.65; Fig 4B). Cross-tissue significant genes

POU3F2, KIZ, and NKX2-2 had higher effects in females. Of note, POU3F2 showed a 2.26-fold

ratio (p = 0.026, permutation test) between its effects in females and in males, reaching statisti-

cal significance even under a substantially smaller sample size of female probands (S5 Table).

This is consistent with a female protection mechanism that requires a larger effect size and risk

load. We next performed FSIQ-stratified analysis and compared the transmission disequilib-

rium in probands with higher (FSIQ> = 70, N = 2,127) and lower FSIQ (FSIQ< 70,

N = 731). The effect size estimates in two subgroups were mostly consistent (correlation = 0.71;

Fig 4C). POU3F2 showed a stronger effect in the subgroup with lower FSIQ (p = 0.023 in sub-

group with higher FSIQ, p = 0.009 in subgroup with lower FSIQ), with a 2-fold effect differ-

ence (p = 0.036, permutation test).

Fig 4. Gene set enrichment analysis and subgroup TWAS results. (A) Enrichment -log10 p-values for different gene sets are shown in the bar plot. Fold

enrichment values are labeled next to each bar. (B) The normalized effect size estimates in sex-stratified TWAS. Effects of 31 associations identified in the

pooled TWAS are shown in the plot. Five cross-tissue significant associations are highlighted in red. For each cross, the interval indicates normalized

effect ± standard error. A diagonal suggestive line passing through the origin is also included. (C) The normalized effect size estimates in FSIQ-stratified

TWAS. Each interval indicates normalized effect ± standard error. A diagonal suggestive line passing through the origin is also included.

https://doi.org/10.1371/journal.pgen.1009309.g004
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Regulatory role of POU3F2 in ASD

The transcription factor encoded by POU3F2 is a key regulator in multiple psychiatric disorders

[27, 30]. Based on its robust association with ASD in our analysis and the absence of protein-alter-

ing mutations in ASD probands, we hypothesized that POU3F2 may also play a central role in

ASD through its regulatory network. We investigated the biological underpinnings of POU3F2 by

leveraging diverse types of genomic data. First, we confirmed the link between the gene-level asso-

ciation at POU3F2 and GWAS associations in the same region through integrating fetal brain Hi-

C data from the germinal zone (GZ) and postmitotic-zone cortical plate (CP) [41]. POU3F2 and

the GWAS association peak 700 kb upstream are located in the same topological associating

domain (TAD) that is conserved in both GZ and CP zones (chr6: 97.52–99.76 mb; Fig 5A). Addi-

tionally, we identified 59 non-overlapping bins, each of 10 kb in size and within 1 mb from the

transcription start site of POU3F2, showing significant interactions with the promoter region of

POU3F2 (p< 1.0E-4; Material and Methods; S6–S8 Tables). Multiple bins showing significant

interactions with POU3F2 promoter colocalized with GWAS associations in this region. For

example, SNP rs62422661 (p = 2.0E-5 in GWAS) is located in the bin located at 98.54–98.55 mb

on chromosome 6 which significantly interacts with POU3F2 in the CP zone (p = 2.0E-12). In

addition, 15 SNP predictors for POU3F2 expression, including 2 strong predictors with effect

sizes ranked at top 15%, are located in bins interacting with POU3F2 promoter (Fig 5A).

Next, we examined the spatiotemporal expression pattern of POU3F2 in 5 brain regions, i.e.

cerebellar cortex (CBC), striatum (STR), hippocampus (HIP), mediodorsal nucleus of thala-

mus (MD), and amygdala (AMY), spanning from fetal development to adulthood [42] (Mate-

rial and Methods). POU3F2 showed significantly elevated expression in developmental brains

compared to postnatal brains across all 5 brain regions (p = 5.3E-3, permutation test; Fig 5B).

A similar pattern was also observed in several other genes (e.g. MAPT) while NKX2-2 showed

elevated expression in postnatal brains (S22 Fig).

Additionally, we used the regulatory network from Chasman et al. [43] to investigate the

enrichment of known ASD genes in target genes regulated by POU3F2. The transcription fac-

tor target network of POU3F2 contained 1,013 genes (Fig 5C and S9 Table) in neuro progeni-

tor cells. Among 1,013 POU3F2 targets, 26 genes overlapped with SPARK genes (i.e. 153

curated genes known to be associated with autism) or SFARI genes with scores S to 2 [40]

(Material and Methods). These genes showed strong enrichment (enrichment = 2.1,

p = 0.012) for the SPARK genes and for SFARI genes with scores S to 2 (enrichment = 2.66,

p = 2.0E-5). Furthermore, 5 out of 26 regulated ASD genes showed significant coexpression

with POU3F2 in hippocampus after multiple testing correction (Pearson’s correlation coeffi-

cient test; Fig 5D and S10 Table), significantly more than what is expected by chance alone

(p = 4.0E-4, permutation test). Many remaining ASD genes also showed moderate evidence of

coexpression with POU3F2.

Various gene sets previously shown to enrich for rare and de novo mutations in ASD,

including chromatin modifiers (p = 2.6E-4), FMR1 targets (p = 0.009), and loss-of-function

intolerant genes (p = 2.2E-6), were significant enriched in POU3F2 targets (S9 Table). Further-

more, POU3F2 target genes were significantly enriched for loss-of-function de novo mutations

(enrichment = 2.68, p = 7.1E-5, Poisson test; Material and Methods) in 2,508 SSC probands

(Fig 5D and S11 Table). Enrichment remained substantial with suggestive statistical evidence

even after we removed known ASD genes in either the SPARK gene list or SFARI genes with

scores S to 2 from the analysis (enrichment = 1.75, p = 0.04) (S23 Fig and S12 Table). Further,

we observed substantially weaker enrichment for loss-of-function mutations in target genes of

950 other transcription factors (p = 0.015, one-sided Poisson test), suggesting that such enrich-

ment is specific to POU3F2.
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Fig 5. Biological underpinnings of POU3F2. (A) The upper panel shows GWAS associations at the POU3F2 locus. Predictor SNPs in the POU3F2 imputation model

highlighted in red or pink based on their effect size rankings (top 15% or lower 85%). The middle panel shows the TADs in CP and GZ zones and the Hi-C interactions

between each 10-kb bin in the region and POU3F2 promoter which is indicated by the vertical line. The lower panel lists the genes at this locus. (B) The spatiotemporal

expression pattern of POU3F2 in 12 developmental stages across 5 brain regions. The periods span fetal development, infancy, childhood, adolescence, and adulthood,

from 4 post-conceptional weeks (PCW) to 40 postnatal years (Y). Average log2 of reads per kilo base per million mapped reads (RPKM)+1 value for samples of the same

region and developmental stage are shown. The dashed line indicates the boundary between later fetal and early infancy stages (0 month). (C) Transcription factor target

genes of POU3F2. ASD genes in the SPARK gene list are highlighted in blue and additional genes with SFARI evidence score S to 2 are highlighted in pink. (D)

Coexpression between ASD genes and POU3F2 in hippocampus. The -log10 p-values for testing coexpressions are shown in the plot. The correlation coefficients between

ASD genes and POU3F2 are labeled next to each bar. Genes reaching the Bonferroni-corrected statistical significance are colored in red. (E) Enrichment of de novo
mutations in 1,013 POU3F2 targets. Enrichment results in 2,508 ASD probands and 1,911 unaffected siblings across four annotation categories (all mutations, loss-of-

function, missense, deleterious missense, and synonymous) are shown. p-values are shown above each bar.

https://doi.org/10.1371/journal.pgen.1009309.g005
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Finally, we obtained TFBS of POU3F2 based on the prior network in Chasman et al. [43],

and used LDSC to assess the enrichment of ASD heritability in these TFBS [44] (Material and

Methods). SNPs located near POU3F2 binding sites explained 11.7% of ASD heritability,

showing a 5.3-fold enrichment with moderate statistical evidence (p = 0.054; S13 Table).

Discussion

In this study, we have presented TITANS, an analytical framework for testing the transmission

disequilibrium of genetically regulated molecular traits between parents and probands.

Through integrative modeling of GWAS data in trios and rich QTL annotations from large

consortia such as GTEx [16], this approach effectively combines association evidence at multi-

ple SNPs to implicate novel risk genes affected by common genetic variations. It extends the

classic SNP-level TDT analysis to quantify the transmission disequilibrium of genetically

imputed gene expression from parents to probands. Compared to existing TWAS approaches,

our method leverages the trio-based design to enhance the robustness and interpretability of

association findings.

Our approach enjoys well-calibrated type-I error, suggested by extensive simulations and

real-data analysis. Applied to multiple large-scale ASD cohorts including the SPARK study

which has not been previously reported, we conducted a TWAS on 7,805 proband-parent trios

and replicated our findings in 35,740 case-control samples. Meta-analysis identified a total of

31 transcriptome-wide significant associations, with 5 novel loci not previously implicated in

GWAS.

Among the identified associations, convergent evidence suggested a critical etiologic role of

POU3F2 in ASD. POU3F2 encodes a transcription factor which mainly expresses in the central

nervous system [26] and has known key regulatory roles in schizophrenia and bipolar disorder

[27, 30]. In our analysis, it reached transcriptome-wide statistical significance in trio-based

TWAS and was successfully replicated in the case-control replication. Furthermore, meta-

analysis strengthened the association at POU3F2, and it remained significant after a stringent

multiple testing correction for all genes and all tissues analyzed in this study. Subtype analysis

suggested that POU3F2 has enhanced over-transmission in female probands (2.3-fold) and

individuals with lower FSIQ (2-fold). Furthermore, we demonstrated its etiologic importance

and its connection to other ASD risk genes through integrative analysis of diverse types of

genomic data. Analysis of fetal brain Hi-C data confirmed significant interactions between

POU3F2 promoter and multiple genome regions near GWAS associations located in the same

TAD. Analysis of spatiotemporal gene expression data suggested significantly elevated

POU3F2 expression in developmental brain. TFBS of POU3F2 were enriched for ASD herita-

bility. Downstream target genes regulated by POU3F2 were enriched for known ASD risk

genes identified in WES studies. POU3F2 targets were also significantly enriched for loss-of-

function de novo mutations in ASD probands. Enrichment remained substantial even after

known ASD genes were removed from the gene set. To our knowledge, this is the first time

POU3F2 is implicated as an ASD risk gene, showcasing TITANS’ ability to identify novel risk

genes that cannot be implicated by traditional case-control GWAS.

We note that TITANS inherited TWAS’ limitations [14]. Statistical power in TWAS is

determined by many factors including technical issues such as the quality of gene expression

imputation [14]. In our study, we have used the UTMOST method [12], a state-of-the-art

approach that utilizes cross-tissue eQTL information to improve expression imputation in

rarer tissue types. Still, accurate imputation remains challenging given the moderate sample

size of brain transcriptomic data from GTEx and CommonMind. Although TITANS suggested

the role that hippocampus played on ASD (Table 1 and Fig 5D), we do not rule out the
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involvement of other brain regions and developmental stages. In our analysis. POU3F2
achieved the highest imputation quality (R2 = 0.21) in hippocampus compared to other brain

regions [12], which is consistent with the higher disease association of POU3F2 in hippocam-

pus (S14 Table). Although a strong association in TWAS may hint at a mechanistic role of the

identified gene in the given tissue, a lack of association does not suggest that the tissue and dis-

ease is truly unassociated. Pinpointing the tissue- and temporal-specific role of ASD risk genes

in both pre- and post-natal brains is an important future direction. Also, many associations in

our meta-analysis only reached transcriptome-wide significance, instead of experiment-wide

significance. The lack of power in our analysis was not only due to low imputation accuracy

but lack of ASD samples. We need future replication to confirm the role of those associations.

Finally, although trio-based analysis is robust to population stratification, our analysis focused

on individuals with European descents only due to the poor trans-ethnic portability of gene

expression imputation performance [45]. It remains unclear how these associations will repli-

cate in other populations.

WES studies have identified numerous extremely rare, protein-disrupting variants in ASD

and have implicated risk genes and pathways [3–7]. Successful studies focusing on other types

of genetic variants using GWAS and whole-genome sequencing approaches have just begun to

emerge [9, 10, 46–48]. A common and somewhat puzzling observation in these studies was

that common SNPs associated with ASD did not influence the same genes and pathways

enriched for rare variants. Our analysis partly confirmed this observation–genes showing

strong associations in TWAS had limited overlap with genes identified through WES. How-

ever, the POU3F2 results provide a clear example of the direct link of genes affected by very

rare mutations with common genetic variations at a second, unlinked locus. These findings

provide insights into the interplay of common and rare genetic variations in ASD, shed light

on regulatory network-based modeling of epistatic interactions, and have broad implications

for the genetic basis of other diseases.

Material and methods

Sample information and data processing

We accessed AGP samples through dbGaP (accession: phs000267). The total sample size was

7,880. Genotyping was performed using the Illumina Human 1M-single Infinium BeadChip.

Details on these samples have been described elsewhere [49, 50]. We accessed samples from

the SSC and the SPARK study through the Simons Foundation Autism Research Initiative

(SFARI) [51, 52]. The SSC cohort contains comprehensive genotype and phenotype informa-

tion from 2,600 simplex families, each family has one ASD child, and healthy parents and sib-

lings. Genotyping was performed in batches by the Illumina IMv1, IMv3 Duo, and Omni2.5

arrays. Details on these data can be found on the SFARI website and have been described else-

where [48, 51]. Samples in the SPARK study were genotyped by the Illumina Infinium Global

Screening Array. Details on these samples have been previously reported [53, 54] and are avail-

able on the SFARI website [52].

We performed pre-imputation quality control (QC) using PLINK [55]. Only individuals

with self-reported European ancestries were included in the study. SNPs with genotype call

rate< 0.95, minor allele frequency (MAF) less than 0.01, or significant deviation from Hardy-

Weinberg equilibrium (p< 1.0E-6) were removed from the analysis. Samples with genotype

missing rate> 0.05 were also excluded from the analysis. We used genetic relationship coeffi-

cients estimated from GCTA [56] to identify and remove overlapped samples among different

cohorts. After QC, 2,188, 1,794, and 3,823 independent proband-parent trios remained in

AGP, SSC, and SPARK cohorts respectively. 1,432 and 1,813 trios of sibling-parent trios
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remained in SSC and SPARK. The UCSC liftOver tool was used to liftover the genome coordi-

nates in AGP samples from hg18 to hg19. The genotype data were phased and imputed to the

HRC reference panel version r1.1 2016 using the Michigan Imputation server [57]. We

removed SNPs with imputation quality < 0.8 or MAF < 0.01 in the post-imputation QC.

7,260,224 SNPs remained in the AGP study after QC. 7,298,961 SNPs, 7,029,817 SNPs, and

6,866,248 SNPs remained in the SSC 1Mv1, 1Mv3, and Omni2.5 datasets, respectively.

7,031,717 SNPs remained in the SPARK data.

We used case-control samples from the iPSYCH cohort as the replication dataset in our

study (13,076 cases and 22,664 controls). The iPSYCH ASD sample contains all Danish chil-

dren born between 1981 and 2005 and details on this cohort are described elsewhere [58]. This

cohort has been included in a recent ASD GWAS meta-analysis [10]. Samples in the iPSYCH

cohort are independent from samples in the AGP, SSC, and SPARK.

Polygenic transmission disequilibrium analysis

We used the iPSYCH GWAS summary statistics as the training dataset to generate ASD poly-

genic risk score (PRS) on samples from the AGP, SSC, and SPARK cohorts. We performed a

LD-clumping using PLINK with a p-value threshold of 1, a LD threshold of 0.1, and a distance

threshold of 1,000 kb. After clumping, 167,085 SNPs remained in the dataset. PRSice was used

for PRS calculation [59]. We quantified the transmission disequilibrium of ASD PRS using the

pTDT approach [9].

Trio-based TWAS and GWAS analysis

We developed a statistical framework TITANS to perform trio-based TWAS (Fig 1B). We

used UTMOST [12] gene expression imputation models for 10 brain tissues in GTEx and

imputation models for CMC DLPFC expression and intron usage values implemented in

FUSION [11]. UTMOST model uses a cross-tissue penalized regression model to borrow

information from tissues with larger sample size and improve imputation accuracy of gene

expression [12]. FUSION trains multiple imputation models in each tissue separately, includ-

ing Bayesian sparse linear mixed model, elastic net, LASSO, and an ordinary least square

model using single best eQTL as the predictor. We selected the best model using the cross-

validation.

Given a gene with m predictor SNPs, we extracted those SNPs from parents’ phased geno-

types and recombined the chromosomes based on Mendelian inheritance to create the geno-

types of pseudo siblings (Fig 1A). Since only cis-regulators within the local region are included

in gene expression and intron usage imputation models, we assumed no crossover events in

our analysis. Given the parental data, four recombined pseudo offspring genotypes can be cre-

ated, each having a paternal haplotype and a maternal haplotype. We imputed gene expression

and intron usage on each proband and all four simulated pseudo siblings. We excluded the

pseudo sibling whose imputed expression is the closest to the proband’s since one of the four

simulated offsprings’ genotype should be identical to the proband if there is no phasing error

or crossover. We tested the association between imputed gene expression and disease pheno-

type using conditional logistic regression [24] (Fig 1B), with conditional likelihood

L ¼ PN
i¼1

expðxpibÞ
expðxpibÞ þ expðxs1ibÞ þ expðxs2ibÞ þ expðxs3ibÞ

Here, xpi,xs1i,. . .,xs3i denote the imputed gene expression or intron usage values of the pro-

band and 3 pseudo siblings in the ith family, with N families in total. We used the clogit func-

tion in the R package ‘survival’ to numerically estimate the effect size β, which can be
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interpreted as transmission disequilibrium of imputed expression. The SE of β, the z-score test

statistic, and association p-value are also reported. TWAS was conducted in the AGP, SSC,

and SPARK cohorts separately. Adjusted p-values were calculated using the Benjamini-Hoch-

berg procedure to control the false discovery date (FDR) [60]. Results in different trio-based

cohorts were meta-analyzed using the inverse-variance weighted method [61]. These results

were then meta-analyzed with the associations in the replication stage using z-score-based

meta-analysis weighted by sample sizes [61].

We performed TWAS in sample subgroups based on sex and FSIQ. We conducted sex-

stratified TWAS in each cohort and meta-analyzed the result across AGP, SSC, and SPARK

using the inverse-variance weighted method [61]. FSIQ-stratified analysis based on a cutoff of

70 was conducted in SSC and SPARK separately and then combined through meta-analysis. P-

values for fold enrichment were obtained by permutation test. In each permutation, we ran-

domly shuffled sex and FSIQ subgroup assignment in AGP, SSC, and SPARK cohorts and re-

estimated enrichment. The fold enrichment estimate in real data was compared with the

empirical null distribution based on 10,000 permutations to compute the p-values.

We used a similar framework to conduct GWAS in trios (Fig 1C). For each SNP, we create

four recombined genotypes based on parental data, exclude a genotype identical to the pro-

band’s genotype, and perform conditional logistic regression to assess the association between

each SNP and ASD status.

Alternative TWAS approaches using one-sibling controls and parental

controls

We compared the three-sibling approach implemented in TITANS with two alternative

approaches. The first alternative approach generates one pseudo sibling within each family

using only non-transmitted parental alleles. The gene expression of pseudo sibling is the sum

of parental gene expressions minus the proband’s gene expression. We used glm in base R to

perform logistic regression and estimate the effect size β, the SE of β, the z-score test statistic,

and association p-value. The second alternative approach performs conditional logistic regres-

sion on probands and parent controls. We used the clogit function in the R package ‘survival’

and reported the effect size β, the SE of β, the z-score test statistic, and association p-value for

each gene.

We performed the alternative TWAS approaches on 7,805 trios in AGP, SSC, and SPARK

in GTEx hippocampus and their shuffled data. For 1-sibling matching, we randomly assigned

one sample from four members generated by 3-sibling matching (i.e. a proband and 3 pseudo

siblings) as cases in each family, and constructed their pseudo siblings using untransmitted

parental alleles. For parent-control matching, we selected one sample from the four members

in 3-sibling matching in each family, and matched the them with their parents.

Assessing the robustness of TITANS

We added random noises ε ~ N(0,σ2) to the genetically imputed gene expressions of POU3F2
in hippocampus in 3,823 proband-parent trios from the SPARK cohort. We chose a grid of val-

ues for σ2 (i.e., σ2 ranging evenly from 0.05 to 1, with each grid size 0.05) to represent small to

large technical noise. We then applied conditional logistic regression to test the disease associa-

tion of POU3F2 using these gene expressions with uncertainty. We repeated the whole proce-

dure 100 times for each noise level σ2 and calculated the statistical power by averaging the

counts of significant p-values (p< 0.05).

Next, we repeated the analysis at the transcriptome-wide scale. Similar to the first analysis,

we added random noise ε ~ N(0,σ2) to the hippocampal expression of all genes using trios in
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the SPARK cohort. For each noise level σ2 (i.e. 0, 0.005, 0.1, 0.015, and 0.2), we performed

TWAS to identify disease-associated genes.

Further, we randomly shuffled the phenotype status of 7,805 ASD probands and 23,415

matched pseudo-siblings in our analysis of AGP, SSC, and SPARK cohorts on 12 brain tissues.

We applied TITANS to 3,245 trios of unaffected siblings and their parents as well.

Finally, we conducted simulations to compare the power of 3-sibling-matching, 1-sibling-

matching, and parent-control approaches. We randomly sampled gene expression values for

1,000 parents-offspring trios from N(0, 1) and used a logistic model

P D ¼ 1ð Þ ¼
1

1þ expð� b0 � b1 � GÞ

to determine the disease status for offspring. Here, D and G denote the disease status and gene

expressions, respectively, while β0 and β1 denote prevalence and effect parameters, respec-

tively. Notably, the baseline disease prevalence is

1

1þ expð� b0Þ
:

We considered the offspring to be affected by the disease when the modeled disease proba-

bility is greater than 0.5. We compared the power between disease under β0 equals 2.25 and

-2.5. That is, the disease prevalence of 0.9 and 0.07, respectively, while the corresponding sam-

ple sizes are 900 trios and 7 trios.

Conditional analysis

Since several loci harbor multiple candidate ASD genes, we performed conditional analysis

using 7,805 ASD trios by incorporating multiple genes identified at the same loci in the same

tissue in conditional logistic regression. We fine-mapped the associations on chromosome 8,

10.5 mb (CMC DLPFC and CMC DLPFC splicing) and on chromosome 17, 44.5 mb (CMC

DLPFC, CMC DLPFC splicing, GTEX cerebellum, and GTEx nucleus accumbens basal gan-

glia) (S3 Table). In each family, we removed the pseudo sibling whose normalized imputed

expression for the genes to be fine-mapped has the lowest sum of squared difference to the

proband’s since one of the four simulated siblings should be identical to the proband if there is

no phasing error or crossover. We performed inverse variance weighted method to meta-ana-

lyze results in different cohort.

Gene set enrichment analysis

We used hypergeometric test to assess if genes with nominal TWAS associations (p< 0.05 in any

tissue) were enriched in gene sets that have been linked to ASD in past literatures (S3 Table).

Gene sets assessed in our analysis included co-expression modules M2, M3, M13, M16, and M17

from Parikshak et al. [62], FMR1 (MIM: 309550) targets, genes encoding postsynaptic density

proteins (PSD), gene preferentially expressed in human embryonic brains downloaded from

BRAINSPAN [63], essential genes [64], chromatin modifier genes [5], and genes with probability

of loss-of-function intolerance (pLI)> 0.9 from the Exome Aggregation Consortium [65]. In

addition, we downloaded genes from the SFARI Gene database in August 2019 [40] and created

two gene sets based on evidence scores. The gene set based on scores S, 1, or 2 include genes

involved in ASD with high to suggestive evidence and genes predisposing to ASD in the context

of a syndromic disorder. Genes with scores 3–6 have limited evidence or have only been hypothe-

sized to link to ASD. Finally, we obtained a list of 153 genes with known roles in ASD curated by

the SPARK study [66]. We refer to this gene set of SPARK genes in our analyses.
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Hi-C analysis

We used the human fetal brain Hi-C data (GEO: GSE77565) [41, 67] at resolution 10 kb in the

analysis. The samples were sequenced using Illumina HiSeq 2000 chip, collecting from three

individuals aging gestation week (GW) 17–18 (one sample from GW17 and two samples from

GW18). The Hi-C libraries were constructed in two brain zones GZ and CP. The TAD region

of GZ and CP are also provided. We converted the Hi-C contact matrices (HDF5 format) nor-

malized by ICE [68] into the sparse contact matrix format (BED format) and leveraged Fit-Hi-

C [69] to detect the significant interactions in the regions of interest. Benjamini-Hochberg

procedure [60] was employed to control the false discovery rate.

Spatiotemporal expression analysis

We obtained spatiotemporal gene expression data from BRAINSPAN for 17 candidate genes

[63] with significant associations in our TWAS analysis. Average log2(RPKM+1) values for sam-

ples of the same region and developmental stage were calculated. Expression data were derived

from 5 brain regions, i.e. CBC, STR, HIP, MD, and AMY, and spanned from 8 weeks post-con-

ception (PCW) to 40 years as indicated in Kang et al. [70]. mRNA sequencing was performed

using the Illumina Genome Analyzer IIx. Details on these data are described elsewhere [42].

POU3F2 transcription factor binding network

The transcriptional targets of POU3F2 were obtained using the procedure from Chasman et al.
[43]. We downloaded POU3F2 motif position weight matrices (PWM) from 3 databases,

CIS-BP [71], ENCODE [72], and JASPAR [73]. We obtained DNase-I seq data for neural pro-

genitor cells from the Roadmap Epigenome Consortium [74] (GEO: GSE18927). Next, we

applied the Protein Interaction Quantification (PIQ) algorithm [75] to identify POU3F2 motif

binding sites across the human genome. Using the DNase-I seq data, the PIQ algorithm

defines a purity score (0.5–1.0) for a motif instance, which quantifies the likelihood of a true

binding event in that site. PIQ motif instances were mapped to the transcription start sites

from Gencode v10 within a 10 kb radius. The confidence of the edge between a transcription

factor and the target was defined as the maximum PIQ purity score among all transcription

factor motif instances and the target gene. Furthermore, the confidence score was converted to

percentile ranks ranging from 0 to 1. Only edges with confidence score > 0.99 were preserved

in the final network, containing 1,013 outgoing edges of POU3F2. We also obtained target

genes for other 950 transcription factors using a similar procedure.

Coexpression between ASD genes and POU3F2 in hippocampus

We first defined ASD genes as genes in either SPARK genes or SFARI genes with scores S, 1,

or 2, and there were 26 ASD genes regulated by POU3F2 in neuro progenitor cells. We

obtained the hippocampal expression of POU3F2 and 26 ASD genes regulated by POU3F2
from BRAINSPAN [63]. log2(RPKM+1) values for samples of the same region were calculated.

We used the function rcorr in R package ‘Hmisc’ [76] to calculate the correlation coefficients

between expression of ASD genes and POU3F2. We shuffled the sample IDs in gene expres-

sions and obtained the p-value for coexpressing by calculating the proportion of permutations

with a higher or equal number significantly coexpressed genes.

De novo mutation enrichment analysis

We used published de novo mutability [77] of synonymous, missense, and loss-of-function

variants to estimate the expected counts of mutations. Published de novo mutation data [5] in
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2,508 probands and 1,911 controls from the SSC cohort were accessed through denovo-db

[78]. Loss-of-function mutations were defined as frameshift, stop-gained, splice-donor, stop-

gained near splice, frameshift near splice, stop-lost, or splice-acceptor mutations. Missense

mutations included missense and missense-near-splice labels from the denovo-db. Synony-

mous mutations included synonymous and synonymous-near-splice labels. Variants with Mis-

sense badness, PolyPhen-2, and Constraint (MPC) [79] score greater than 2 are considered

deleterious missense. We used ANNOVAR [80] to obtain MPC scores and we generated the

deleterious missense mutability table using the mutational model in Samocha et al. [77].

Finally, we used Poisson test to assess enrichment and quantify the statistical evidence [77].

Partitioned heritability analysis

We used stratified linkage disequilibrium score regression [44] (LDSC) to assess the parti-

tioned ASD heritability in POU3F2 transcription factor binding sites (TFBS). We used the PIQ

motif instances we generated in the network analysis and expanded each TFBS by 100, 150,

and 250 base pairs up- and downstream. Further, we partitioned the heritability from the

using the meta-analyzed GWAS summary statistics as input. The model also included 53

LDSC baseline annotations, as recommended in Finucane et al. [44].

Supporting information

S1 Fig. Transmission disequilibrium of PRS in different cohorts. Transmission disequilib-

rium was quantified by the pTDT approach. Results in probands and unaffected siblings are

highlighted in different colors. The mean pTDT deviation and the SE are shown. P-values are

labeled above each interval.

(PNG)

S2 Fig. Forest plot for the significant association in GTEx anterior cingulate cortex BA24.

LRRC37A2 reached transcriptome-wide significance in the TWAS in GTEx anterior cingulate

cortex BA24. Standardized effect sizes (beta) and SEs are provided for all cohorts. Beta and SE

in the discovery cohort are meta-analyzed results based on AGP, SSC, and SPARK. Beta and

SE in the combined cohort are calculated from the meta-analysis of discovery and replication

stages.

(PDF)

S3 Fig. Forest plot for significant associations in GTEx caudate basal ganglia. FBXW12 and

LRRC37A2 reached transcriptome-wide significance in the TWAS in GTEx caudate basal gan-

glia. Standardized effect sizes (beta) and SEs are provided for all cohorts. Beta and SE in the

discovery cohort are meta-analyzed results based on AGP, SSC, and SPARK. Beta and SE in

the combined cohort are calculated from the meta-analysis of discovery and replication stages.

(PDF)

S4 Fig. Forest plot for significant associations in GTEx cerebellar hemisphere. NME6 and

LRRC37A2 reached transcriptome-wide significance in the TWAS in GTEx cerebellar hemi-

sphere. Standardized effect sizes (beta) and SEs are provided for all cohorts. Beta and SE in the

discovery cohort are meta-analyzed results based on AGP, SSC, and SPARK. Beta and SE in

the combined cohort are calculated from the meta-analysis of discovery and replication stages.

(PDF)

S5 Fig. Forest plot for significant associations in GTEx cerebellum. MAPT and LRRC37A2
reached transcriptome-wide significance in the TWAS in GTEx cerebellum. Standardized

effect sizes (beta) and SEs are provided for all cohorts. Beta and SE in the discovery cohort are
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meta-analyzed results based on AGP, SSC, and SPARK. Beta and SE in the combined cohort

are calculated from the meta-analysis of discovery and replication stages.

(PDF)

S6 Fig. Forest plot for the significant association in GTEx hippocampus. POU3F2 reached

transcriptome-wide significance in the TWAS in GTEx hippocampus. Standardized effect

sizes (beta) and SEs are provided for all cohorts. Beta and SE in the discovery cohort are meta-

analyzed results based on AGP, SSC, and SPARK. Beta and SE in the combined cohort are cal-

culated from the meta-analysis of discovery and replication stages.

(PDF)

S7 Fig. Forest plot for the significant association in GTEx hypothalamus. LRRC37A2
reached transcriptome-wide significance in the TWAS in GTEx hypothalamus. Standardized

effect sizes (beta) and SEs are provided for all cohorts. Beta and SE in the discovery cohort are

meta-analyzed results based on AGP, SSC, and SPARK. Beta and SE in the combined cohort

are calculated from the meta-analysis of discovery and replication stages.

(PDF)

S8 Fig. Forest plot for significant associations in GTEx nucleus accumbens basal ganglia.

SLC35G5, ARHGAP27, LRRC37A2, ARL17A, and NKX2-2 reached transcriptome-wide signifi-

cance in the TWAS in GTEx nucleus accumbens basal ganglia. Standardized effect sizes (beta)

and SEs are provided for all cohorts. Beta and SE in the discovery cohort are meta-analyzed

results based on AGP, SSC, and SPARK. Beta and SE in the combined cohort are calculated

from the meta-analysis of discovery and replication stages.

(PDF)

S9 Fig. Forest plot for significant associations in GTEx putamen basal ganglia. SLC35G5 and

LRRC37A2 reached transcriptome-wide significance in the TWAS in GTEx putamen basal gan-

glia. Standardized effect sizes (beta) and SEs are provided for all cohorts. Beta and SE in the dis-

covery cohort are meta-analyzed results based on AGP, SSC, and SPARK. Beta and SE in the

combined cohort are calculated from the meta-analysis of discovery and replication stages.

(PDF)

S10 Fig. Forest plot for significant associations in CMC DLPFC. CTSB, DDHD2,

LOC441455, ARHGAP27, MAPT, and KIZ reached transcriptome-wide significance in the

TWAS in CMC DLPFC. Standardized effect sizes (beta) and SEs are provided for the trio-

based cohorts. Beta and SE labeled as the discovery cohort are meta-analyzed results based on

AGP, SSC, and SPARK. Effect estimates are not shown in the replication and the combined

cohorts since FUSION does not output beta and SE estimates.

(PDF)

S11 Fig. Forest plot for significant associations in CMC DLPFC splicing. SOX7, MFHAS1,

MSRA, CRHR1, MAPT, and XRN2 reached transcriptome-wide significance in the TWAS in

CMC DLPFC splicing. Intron cluster IDs are shown below the gene names. Standardized effect

sizes (beta) and SEs are provided for the trio-based cohorts. Beta and SE labeled as the discov-

ery cohort are meta-analyzed results based on AGP, SSC, and SPARK. Effect estimates are not

shown in the replication and the combined cohorts since FUSION does not output beta and

SE estimates.

(PDF)

S12 Fig. Imputed expression of POU3F2 in GTEx hippocampus. The x- and y-axes illustrate

the imputed gene expression of POU3F2 in GTEx hippocampus using hard calls and dosages,
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respectively.

(PNG)

S13 Fig. Power curve for disease association of POU3F2 in hippocampus with imputation

noises. The power curve for the disease association of POU3F2 with imputation errors is

shown. Sigma indicates the standard deviation for the imputation error added to the gene

expression.

(PNG)

S14 Fig. QQ plot for TWAS with added noise in gene expression values. The QQ plot for

TWASs with imputation errors added to gene expressions under different simulation settings.

SD indicates the standard variation σ of the random imputation errors. A suggestive diagonal

line is also added in the background.

(PNG)

S15 Fig. Mirrored Manhattan plot for TWAS and GWAS results in 3,245 sibling-parent

trios. (A) TWAS results are shown in the upper panel. GWAS associations are shown in the

lower panel. The dashed line in the upper panel indicates the cross-tissue transcriptome-wide

significance cutoff (p = 4.0E-7) and the dashed line in the lower panel is the genome-wide sig-

nificance cutoff (p = 5.0E-8). TWAS associations for all 12 tissues are shown. (B) The QQ plot

for TWAS associations in 3,245 sibling-parent trios for all 12 tissues.

(PDF)

S16 Fig. QQ plot for TWAS in 7,805 proband-parent trios after randomly shuffling the sta-

tus of probands and pseudo siblings. The QQ plot for TWAS associations in 7,805 proband-

parent trios after randomly shuffling the status of probands and pseudo siblings for all 12 tis-

sues.

(PDF)

S17 Fig. Power comparisons under different disease prevalence. The power curves under

different gene expression effect sizes for different disease prevalence are shown. (A) The power

curve under disease prevalence 0.90. Under high prevalence, proband vs parents underper-

forms relative to pseudo sibling approaches, (B) The power curve under disease prevalence

0.07. Under low prevalence, 1 pseudo sibling underperforms relative to 3 pseudo siblings and

parent-proband matching.

(PDF)

S18 Fig. Scatterplot of TWAS p-values between different matching methods in hippocam-

pus. (A) The −log10 P values between 3-sibling and 1-sibling matching. (B) The −log10 P values

between 3-sibling and parent-control matching. (C) The QQ plots for 3-sibling, 1-sibling, and

parent-control matching.

(PDF)

S19 Fig. QQ plot for TWAS using different matching methods on proband-sibling match-

ings with shuffled disease status. The QQ plot for 3-sibling, 1-sibling, and parent-control

matching performed on 7,805 trios in GTEx hippocampus with shuffled disease status. The

1-sibling matching TWAS is conducted on proband-pseudo sibling pairs where the pseudo

siblings were constructed using untransmitted parental alleles. The parent-control matching

TWAS is conducted on parents versus a random sample from the quad in 3-sibling matching

(Material and Methods). The association results were obtained using conditional logistic

regression.

(PDF)

PLOS GENETICS Trio-based TWAS for autism spectrum disorder

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009309 February 4, 2021 18 / 25

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009309.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009309.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009309.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009309.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009309.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009309.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009309.s019
https://doi.org/10.1371/journal.pgen.1009309


S20 Fig. Additional significant loci identified in TWAS. We identified 31 transcriptome-wide

significant associations from 7 independent loci. Four loci with associations that remained sig-

nificant after correcting for all genes and all tissues are shown in Fig 3 in the main text. (A)

Chromosome 3, 48.4 mb (B) Chromosome 8, 38.5 mb (C) Chromosome 9, 99.7 mb. For each

locus, the index SNP with the most significant association in GWAS is marked as purple dia-

mond and the color of data points indicates LD of neighboring SNPs with the index SNP. Genes

are highlighted in red if they reached transcriptome-wide significance in at least one tissue. The

x-axis denotes genome coordinates and the y-axis denotes association p-values in GWAS.

(PNG)

S21 Fig. Multi-tissue gene expression profile of POU3F2 in GTEx Release V8.

(PDF)

S22 Fig. The spatiotemporal expression pattern of candidate genes identified in TWAS.

The spatiotemporal expression pattern of 17 TWAS genes across 5 brain regions and 12 devel-

opmental stages. The periods span fetal development, infancy, childhood, adolescence, and

adulthood, from 4 post-conceptional weeks (PCW) to 40 postnatal years (Y). The dashed line

indicates the boundary between later fetal and early infancy stages (0 month).

(PNG)

S23 Fig. Enrichment of de novo mutations in 987 non-ASD genes regulated by POU3F2.

Enrichment results in 2,508 ASD probands and 1,911 unaffected siblings across four annota-

tion categories (all mutations, loss-of-function, missense, deleterious missense, and synony-

mous) are shown. p-values are shown above each bar.

(PNG)

S1 Table. Transcriptome-wide significant associations in TWAS meta-analysis. Beta and

SE indicate the standardized effect size and standard error estimates in conditional logistic

regression. Some effect size estimates are unavailable in the replication cohort since FUSION

does not provide effect size estimates.

(XLSX)

S2 Table. Genome-wide significant loci in GWAS meta-analysis. Beta and SE indicate the

effect size estimates with respect to A1 counts and standard error in GWAS.

(XLSX)

S3 Table. Fine-mapping TWAS results on 7,805 ASD trios. Fine-mapping results on loci

with different significant associations. The intron usage clustering ID is listed in the parenthe-

sis, if applicable. P indicates the p-value in multivariate conditional logistic regression.

(XLSX)

S4 Table. Gene set enrichment results based on nominally significant TWAS genes

(P<0.05). The expected and observed values of gene set overlap are shown. The size of gene

set indicates the number of overlapped genes between all genes in the TWAS and the pre-spec-

ified gene set. P-values were calculated using hypergeometric test.

(XLSX)

S5 Table. Sex-stratified and FSIQ-stratified TWAS results. Beta and SE indicate the stan-

dardized effect size and standard error estimates.

(XLSX)

S6 Table. Hi-C interaction statistics with POU3F2 promoter region. P-values and q-values

were calculated by Fit-Hi-C. NegLogP and negLogQ are negative log10 transformed p-values
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and q-values.

(XLSX)

S7 Table. TAD regions in CP and GZ zones.

(XLSX)

S8 Table. Predictive weights in the imputation model for POU3F2 in GTEx hippocampus.

(XLSX)

S9 Table. Predicted target genes of POU3F2.

(XLSX)

S10 Table. Coexpression between ASD genes regulated by POU3F2 and POU3F2 in Hippo-

campus. P indicates the P-value for coexpression.

(XLSX)

S11 Table. De novo mutation enrichment in POU3F2 target genes. The observed and

expected mutation counts in each annotation category are shown. P-values were calculated

using the Poisson test.

(XLSX)

S12 Table. De novo mutation enrichment in POU3F2 target genes, after removing genes in

the SPARK gene list or with SFARI scores S-2. The observed and expected mutation counts

in each annotation category are shown. P-values were calculated using the Poisson test.

(XLSX)

S13 Table. Enrichment of ASD heritability in POU3F2 binding sites.

(XLSX)

S14 Table. TWAS association summary statistics for POU3F2 in GTEx brain regions. Z

and P indicate the Z statistics and p-values. R2 indicates the expression imputation qualities in

UTMOST training dataset, measured by the square of correlation coefficients between true

and predicted gene expressions. Some R2 values are unavailable due to all zero predicted gene

expression from low sample sizes during training.

(XLSX)
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