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Abstract

Background: As more and more biological reaction data become available, the full exploration of the enzymatic
potential for the synthesis of valuable products opens up exciting new opportunities but is becoming increasingly
complex. The manual design of multi-step biosynthesis routes involving enzymes from different organisms is very
challenging. To harness the full enzymatic potential, we developed a computational tool for the directed design of
biosynthetic production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates and
permeabilized cells.

Results: We present a method which encompasses the reconstruction of a genome-scale pan-organism metabolic
network, path-finding and the ranking of the resulting pathway candidates for proposing suitable synthesis pathways.
The network is based on reaction and reaction pair data from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and the thermodynamics calculator eQuilibrator. The pan-organism network is especially useful for finding the most
suitable pathway to a target metabolite from a thermodynamic or economic standpoint. However, our method can
be used with any network reconstruction, e.g. for a specific organism. We implemented a path-finding algorithm
based on a mixed-integer linear program (MILP) which takes into account both topology and stoichiometry of the
underlying network. Unlike other methods we do not specify a single starting metabolite, but our algorithm searches
for pathways starting from arbitrary start metabolites to a target product of interest. Using a set of biochemical
ranking criteria including pathway length, thermodynamics and other biological characteristics such as number of
heterologous enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway
alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential side reactions as well as
an SBML file for visualization are generated for each pathway alternative.

Conclusion: We present an in silico tool for the design of multi-enzyme biosynthetic production pathways starting
from a pan-organism network. The method is highly customizable and each module can be adapted to the focus of
the project at hand. This method is directly applicable for (i) in vitro enzyme cascades, (ii) cell hydrolysates and (iii)
permeabilized cells.

Keywords: Network design, Network analysis, Pathway, Biocatalysis, Multi-enzyme catalysis, Mixed-integer linear
program, Path-finding, Side reactions, Thermodynamics, Synthetic biology

Background
While thousands of enzymes are already known, numer-
ous new enzymes or new enzymatic activities are still
discovered every year. Many of these biocatalysts accept
multiple substrates and even catalyze different reactions.
From a biotechnological point of view, the enzymatic
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potential of nature can be considered an extremely ver-
satile tool potentially giving access to countless valuable
products ranging from bulk chemicals to most complex
drug compounds. The methods for such syntheses can
range from using single isolated enzymes over multi-
enzyme systems or enzyme cascades up to syntheses with
cell lysates or permeabilized cells [1].
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However, the full exploration of the enzymatic potential
is often hampered by the sheer amount and complex-
ity of available reaction data. When manually design-
ing a multi-step synthesis route to a certain metabolic
intermediate, the network of alternative synthesis path-
ways quickly grows highly complex as more reaction
steps are introduced. Additionally, assembling all reac-
tions that lead to each reactant is extremely time
consuming. The manual determination of the most suit-
able pathway candidate is challenging as multiple aspects
such as thermodynamics, cofactor use, etc. need to be
considered. To more easily harness the full potential of
the enzymatic toolbox we developed a computational
tool for the directed design of biosynthetic production
pathways for interesting products in cell extracts and
permeabilized cells.
The search for pathways in genome-scale metabolic net-

works is a common task of wide interest and there is a
large variety of path-finding and pathway design methods.
Most of those methods can be categorized into one of two
types, namely stoichiometric methods and graph-based
methods. Stoichiometric methods make use of the stoi-
chiometry of a network to analyze the metabolism under
the assumption of a steady-state condition. Popular and
mathematically well understood methods are for example
elementary flux modes [2] or flux balance analysis [3, 4].
Graph-based methods in general neglect stoichiometry

and treat the networks as graphs in a mathematical sense
and search for pathways based on connectivity [5], with
the use of atom or atom group tracking [6–8], retrosynthe-
sis [9, 10], heuristic search algorithms [11] or evolutionary
algorithms [12]. In the last years, methods combining stoi-
chiometry and structural properties of networks emerged,
e.g. the so called carbon flux paths proposed by Pey et al.
[13, 14].
However, the majority of these methods tackles the

problem of finding pathways between two given metabo-
lites and does not take into account a search starting with
an arbitrary metabolite in the network. Another drawback
of these methods for our focus of application is that most
of them assume a steady-state condition for themajor part
of the network. This is valid for living cells or cells with
intact membranes. In these cases the actual reactions are
running in a cellular compartment that keeps all interme-
diates separated from the bioreactor, whereas in the case
of enzyme cocktails and permeabilized cells the reaction
compartment is identical to the bioreactor used. Exam-
ples of the latter type of reaction systems are becoming
increasingly popular [15–23].
We thus propose a tool which encompasses the recon-

struction of a genome-scale pan-organism metabolic net-
work, the implementation of a path-finding algorithm and
the ranking of pathway candidates for proposing suitable
synthesis pathways starting from arbitrary substrates.

Methods
In the following we will present the individual parts of our
method. Figure 1 shows the workflow through its different
components.
The first step is the network reconstruction where the

network is built with data from KEGG [24, 25] and the
biochemical thermodynamics calculator eQuilibrator 2.0
[26, 27]. Details on how the network is compiled are given
in section Network reconstruction. The path-finding in
the network is based on an optimization algorithm devel-
oped by Pey et al. [13]. It combines graph-based path-
finding and reaction stoichiometry in a mixed-integer
linear program (MILP). The algorithm with our exten-
sions is presented in detail in sectionMathematical model.
In a further stage the resulting pathway candidates are
ranked using different criteria. We will give details on
the ranking in section Filtering and ranking. The out-
put is a list of ranked pathway candidates which can be
assessed with expert knowledge to help determining the
most suitable synthesis pathway for a desired product.

Network reconstruction
We combine data from different KEGG databases and
eQuilibrator 2.0 for the reconstruction of a pan-organism
network with data from all organisms contained in KEGG
release 78.1 fromMay 1, 2016.

Reaction and reaction pair data
The reaction network was reconstructed with COBRA
Toolbox [28] using reactions from KEGG REACTION.
We excluded reactions with the comments ’generic’ and
’incomplete’ in their data entries; reactions with ambigu-
ous stoichiometry with stoichiometric coefficient n in the
reaction equation; as well as reactions involving glycans
with G numbers in KEGG.
From all remaining reactions in the model we built a

network of reaction pairs, the so called arcs. A reaction
pair is a biologically meaningful substrate-product pair in
a reaction. We derived the arcs from the KEGG RPAIR
database1 containing reaction pairs for each reaction. The
reaction pairs in KEGG are classified into five categories
[29] from which we used the main-pairs, describing the
main changes on the substrates in a reaction and the
trans-pairs which describe transferase reactions. We did
not use the remaining three types cofac-pairs, ligase-pairs
and leave-pairs. However, they can be included at user’s
discretion.
Our network reconstruction comprises a total of 9038

reactions (10160 including reversible reactions), 7405
metabolites and 14803 arcs.

Thermodynamic data
The KEGG REACTION database does not contain any
detailed information about reaction directions, so we
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Fig. 1Workflow through the components of our tool. We start with a network reconstruction which is then used for path-finding with the
presented MILP. The resulting pathway candidates are ranked according to the different ranking criteria

incorporated thermodynamic data from the biochemical
thermodynamics calculator eQuilibrator 2.0. The com-
ponent contribution method used [27] provides different
types of the reaction Gibbs energy. �rG′◦ expresses the
change of the Gibbs free energy of a reaction at a given
pH and ionic strength I in 1 M concentration of the reac-
tants. However, for metabolic reactions in cells it makes

more sense to use physiologically meaningful concentra-
tions. For�rG′m the concentration of the reactants is thus
set to 1 mM. For all calculations standard parameters are
used which are a temperature of 25 °C (298.15 Kelvin),
a pH of 7 and a pressure of 1 bar. We set the thresh-
old for the discrimination of reversible and irreversible
to �rG = 15 kJ/mol. Reactions without available
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thermodynamic data are considered irreversible in the
direction given in the reaction equation from KEGG.

Network details
We categorize the metabolites in the model into different
sets which we treat differently in our path-findingmethod.
All sets are given in the Additional file 1. A Venn diagram
of these sets is depicted in Fig. 2.
As start metabolites S we denote all metabolites that can

be potential start points of a metabolite path. A metabo-
lite path is a sequence of metabolites through the network
connected by arcs. We compiled the list of possible start
metabolites with all metabolites in the model contained in
arcs with a molecular mass between 0 and 300. A subset
of the start metabolites are the so called basis metabolites
B. They are an expert-curated set of metabolites that are
hubs of the arc network, easily available and inexpensive,
such as D-glucose (C000312) or pyruvate (C00022).
As cofactors we denote metabolites that are required for

the activity of the enzymes catalyzing the reactions in the
network but are not directly part of the reaction chain.We
exclude arcs containing cofactors from the set of arcs to
prevent biologicallymeaningless shortcuts in the network.
The list is expert-curated and contains mono-, di- and
triphosphates (e.g. AMP (C00020), ADP (C00008) and
ATP (C00002)), electron carriers such as NAD+ (C00003)
and others. The mono- and diphosphates are usually
not considered cofactors, but we chose to incorporate
them into the list to avoid unnecessary interconversions
between them on the pathway candidates.

Fig. 2 Venn diagram with the different metabolite categories in the
network reconstruction. Metabolites M: all metabolites in the network;
metabolite pool Em : metabolites considered available from start; start
metabolites: all metabolites in the model contained in arcs with a
molecular mass between 0 and 300; basis metabolites: expert-curated
subset of start metabolites; cofactors: cofactors for enzymes; excluded
metabolites: treated as cofactors; external metabolites: not contained
in the metabolite pool, cannot be externally supplied; generic
metabolites: marked as ’generic’ in their KEGG entry; the light red
background indicates the set that can contain the product P

The set of excluded metabolites is treated in the same
way as the cofactors. It contains metabolites that are
considered as freely available, such as water, oxygen or
CO2.
As the metabolite pool Em we denote the superset of

metabolites we consider as freely available. This set con-
sists of start metabolites, basis metabolites, cofactors and
excluded metabolites.
As external metabolites we denote all metabolites that

are not contained in the metabolite pool. They have to be
produced in a production pathway and cannot be exter-
nally supplied. Generic metabolites are metabolites that
are marked as ’generic’ in their KEGG entry, such as pep-
tide (C00012) or protein (C00017). In our network we
treat them as external metabolites and exclude arcs con-
taining those metabolites from the arc network. The pool
of external metabolites also contains metabolites with
arcs that are not start metabolites as well as all other
metabolites that are not part of any other set.

Path-finding
In the following we introduce our method for finding
pathway candidates in the network by means of a MILP.

Mathematical model
Given a metabolic model with the set of reactions R and
the set of metabolitesM we build the network of arcs. We
also use the |M|-by-|R| stoichiometric matrix of the net-
work, where each row corresponds to a metabolite and
each column corresponds to a reaction. An entry in the
matrix represents the stoichiometric value of a metabolite
in the respective reaction, where negative values indicate a
reactant and positive values indicate a product. Reversible
reactions appear in the model as two different reactions
with opposite directions.

MILP
The algorithm presented is based on an algorithm pro-
posed by Pey et al. [13]. However, in comparison to the
original algorithmwe changed the problem statement. Pey
et al. dealt with the question of finding the K-shortest flux
paths between a given source and a target metabolite. Dif-
ferent from this problem statement we do not specify any
specific starting metabolite, but our algorithm identifies
suitable starting metabolites for finding a pathway to a
target metabolite P.
In our definition, a pathway consists of two parts.

The first part is a sequence of metabolites connected by
reactions. It starts with a reaction that has one of the
possible start metabolites as substrate and ends with a
reaction with the desired target metabolite as a prod-
uct. This part is called the linear path. The second
part is a minimal set of reactions supplying substrates
that are needed by the reactions on the path which are
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not contained in the metabolite pool. These are called
supplying reactions.
We introduce the set of binary variables uij which are 1,

if an arc from i to j is part of the linear path, and 0 oth-
erwise (for i, j = 1, . . . , |M|). The first constraint given by
Eq. (1) establishes that there is exactly one arc on the lin-
ear path ending in the target metabolite P, whereas the
second constraint in Eq. (2) assures that no arc on the lin-
ear path starts with P. The two constraints ensure that the
target P is always the last node on each identified path and
thus the path actually ends with the desired product. Both
constraints have been adopted from [13].

|M|∑

i=1
uiP = 1 (1)

|M|∑

j=1
uPj = 0 (2)

Inequality (3) states that the number of arcs entering a
node l from the set of possible start nodes S on the path is
smaller or equal to the number of arcs leaving it.

|M|∑

i=1
uil ≤

|M|∑

j=1
ulj l ∈ S; l �= P (3)

This means that a metabolite l is either the starting
metabolite of a path (

∑
uil = 0 and

∑
ulj = 1) or the

metabolite is an intermediate (
∑

uil = ∑
ulj). In the triv-

ial case where l is not on the path, both sums are zero.
The idea of the constraint has been adopted from [13].
However, we changed it to incorporate the set of starting
metabolites, which has not been introduced in the original
MILP.
For the set of basis metabolites B we introduce a con-

straint formulated in equation (5) stating that the number
of arcs entering a node l from the set of basis metabolites
B should be zero. This means that a basis metabolite can
only appear as the first metabolite in ametabolite path and
not as an intermediate.

|M|∑

i=1
uil = 0 l ∈ B; l �= P (4)

For all other nodes k in the network except the target
node P the number of in-going arcs must be equal to the
number of out-going arcs, as given in constraint (5).

|M|∑

i=1
uik =

|M|∑

j=1
ukj k ∈ M \ S; k �= P (5)

This means that if an arc is entering an intermediate
node k, then there must also be an arc leaving this node.
Constraints (3) to (5) ensure that a path can only start with

a start metabolite contained in the set of possible start
nodes S. This constraint was taken from [13], but has been
adapted for start metabolites.
Constraint (6), which was adopted from [13], forces

nodes on a path to be unique, i.e. at most one arc can enter
any given node.

|M|∑

i=1
uik ≤ 1, k = 1, . . . , |M| (6)

Constraints (1) to (6) ensure that a solution contains a
connected simple path from a start node of the set of start
nodes S to a given end node P.
The next set of constraints deals with the feasibility of

the linear path in the given network. Given are the stoi-
chiometric coefficients Smr for a metabolitem in reaction
r (for m = 1, . . . , |M|, r = 1, . . . , |R|). The variables vr
assign each reaction r a non-negative flux. Constraint (7)
expresses that the external metabolites are not necessarily
balanced and can only be produced, but not be taken up.
Only metabolites from the metabolite pool Em containing
the set of start metabolites, basis metabolites, cofactors
and excluded metabolites can be taken up. This means
that all substrates on the pathway must be producible
with metabolites contained in the metabolite pool. This
constraint was adopted from [13].

|R|∑

r=1
Smrvr ≥ 0, ∀m ∈ E,m /∈ Em (7)

We added constraint (8) tomake sure the targetmetabo-
lite P can only be produced.

|R|∑

r=1
SPrvr ≥ 1, (8)

With constraints (9) and (10), (adopted from [13]), we
introduce the binary variable zr which is 1, when reaction
r has a flux and 0 otherwise. All fluxes are scaled between
1 and a chosen positive value Max with Max ≥ 1. This
constraint relates fluxes in the flux distribution defined by
vr to reactions.

zr ≤ vr , r = 1, . . . ,R (9)
and vr ≤ Max · zr , r = 1, . . . ,R (10)

Constraint (11) states that a reaction and its reverse can-
not appear together in a valid flux distribution to exclude
trivial cycles. This constraint was adopted from [13]).

zλ + zμ ≤ 1 (11)
∀(λ,μ) ∈ B = {(λ,μ)|λ and μ are reverse}
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The path-finding and the stoichiometry constraints are
linked through a linking constraint (12).

|R|∑

r=1
dijr · zr ≥ uij i = 1, . . . , |M|; j = 1, . . . , |M|; i �= j

(12)

The binary coefficients dijr are 1, if there exists an arc
between the metabolites i and j in reaction r and 0 other-
wise. If an arc from i to j is used in the path (uij = 1) then
at least one reaction r containing this arc (dijr = 1) has to
be active. This constraint was adopted from [13]).
Constraints (7) to (12) define a valid flux distribution for

the pathway ensuring that the found path is feasible.
The objective function of the problem is formulated in

Eq. (13).

Minimize
|M|∑

i=1

|M|∑

j=1,j �=i
uij + 1

|R| + 1

|R|∑

i=1
zi (13)

As proposed by [13] we also minimize the number of
arcs uij used but additionally we also minimize the num-
ber of active reactions on the whole pathway candidate. In
contrast to [13] we are interested in finding pathways with
different supplying reactions to provide different feasible
pathway alternatives.
A solution to the MILP described by Eqs. (1) to (13) is

a sequence of arcs given by the values of uij and the set
of active reactions given by the values of zr . By minimiz-
ing the objective function we ensure that the linear path is
connected and cycle-free and the number of active reac-
tions and thus of supplying reactions is minimal. From the
active reactions we determine those corresponding to the
active arcs, denoted as Z′. One solution represents one
pathway candidate.
To find further solutions we have to exclude solutions

with the same active arcs and the same reactions Z′. Note
that a valid new solution can have exactly the same set of
active arcs as a previous solution if Z′ is different, since an
arc can be derived frommore than one reaction. LetUk

ij be
the value of uij for the k-th unique solution with respect to
the metabolite path. To indicate that a solution is exactly
the same as solution k regarding the metabolite path, we
introduce a binary variable sk . When a solution is different
from solution k regarding the metabolite path, sk has to
be 0 and 1 otherwise. Whenever we find a metabolite path
Uk′ we have not seen before, we introduce constraints
(14), (15), (16) and a new binary variable sk′ .

|M|∑

i

|M|∑

j
Uk′
ij · sk′ ≤

|M|∑

i

|M|∑

j
Uk′
ij uij (14)

|M|∑

i

|M|∑

j

(
1 − Uk′

ij

)
uij + sk′ |M|2 ≤ |M|2 (15)

Constraints (14) and (15) establishes that, whenever we
find a new solution U and sk′ is set to 1, we know that
U = Uk′ . In more detail, constraint (14) ensures that if
sk′ is 1 all arcs of solution k′ are also active. Additionally,
constraint (15) forbids U to contain any arc that was not
present in Uk′ .
We denote the first metabolite in the path in solution k′

by αk′ .
|M|∑

i

|M|∑

j
Uk′
ij uij −

|M|∑

i
uiαk′ − sk′ ≤

|M|∑

i

|M|∑

j
Uk′
ij − 1 (16)

Constraint (16) ensures that a valid new solution has to
fulfil one of the following three properties. It has either
exactly the samemetabolite pathUk′ ; or at least one of the
arcs from the previous metabolite path Uk′ is not active;
or all arcs from Uk′ are active and one arc entering the
first metabolite αk′ is active extending a previously found
metabolite path. This constraint also ensures that sk′ is set
to 1 if U = Uk′ .
Constraint (17) is always added for each new solution.

Assume the found metabolite path is the same from solu-
tion k (Uk). Let Z′l

i indicate whether reaction i is active
in solution l and corresponds to an active arc in Uk . The
number of ones in Z′l is denoted by ml. This constraint
prevents to find a second solution that is exactly the same
as a previously found solution with regard to both linear
path and reactions.

|R|∑

i
Z′l
i zi + sk|R| ≤ ml − 1 + |R| (17)

Figure 3 depicts an exemplary pathway to the target
metabolite P illustrating a possible solution of the pre-
sented MILP.
The light yellow squareM1 is the starting metabolite of

the linear path, whereas the dark orange square P is the
target metabolite. The light blue squares are metabolites
from the metabolite pool. The linear path highlighted in
yellow is defined through constraints (1) to (6). One of the
substrates for reaction R3, metaboliteM4, is not available
in the metabolite pool and thus must be supplied by other
reactions. These supplying reactions are defined by con-
straints (7) to (12). In this example, reaction R4 depicted
by the white circle is added to the resulting path. The over-
all pathway is a synthesis pathway from M1 to the desired
product P that is feasible within the given network.

Filtering and ranking
We rank the pathway candidates generated by the MILP
by different criteria in order to highlight the most mean-
ingful candidates for the synthesis of the desired product.
As a global optimization method, the MILP cannot take
into account if the first reaction of a pathway candidate is
feasible only with metabolites in the metabolite pool. We
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Fig. 3 Exemplary pathway illustrating a possible solution. The squares depict metabolites, the circles represent reactions. The pathway is a feasible
synthesis pathway from M1 to the product P

thus have to perform a filtering step before the ranking
to eliminate those pathway candidates that do not com-
ply with this requirement. The ranking criteria are listed
in Table 1.
The first criterion is the number of active reactions

in the pathway candidate. Shorter pathways favor a fast
product formation, a reduced substrate demand and are
generally easier to realize than a pathway with more
reactions. The second ranking criterion prefers pathway
candidates starting with basic metabolites only.
A further ranking criterion favors pathways for which

there is thermodynamic information available. This is
based on the notion that reactions without known or
assessable �rG are often poorly described. Another rank-
ing criterion is the sum of the �rG’s and the absolute
value of those �rG’s

∑
r(�rG + |�rG|) for all reactions

r in the linear path of the pathway candidate. Ideally this
sum is 0, since then each reaction has a negative �rG.
Therefore, pathway candidates with positive �rG of inter-
mediate reactions are ranked down, as they would lead
to kinetic traps. Furthermore, the pathway candidates

Table 1 Ranking criteria in the order they are applied to the
pathway candidates

Position Criterion Comment

1 Number of active reactions Shorter pathways are
favourable

2 Candidate starts with basic metabolites
only

’yes’ is preferred

3 Number of reactions without �rG As few as possible

4
∑

(�rG + |�rG|) Preferably all �rG are
negative

5
∑

�rG Negative is preferred

6 Number of heterologous enzymes As few as possible

7 Number of cofactors As few as possible

are ranked by the overall thermodynamics of the linear
path of the pathway candidate. Pathways with a nega-
tive overall �rG are preferred over those with a positive
overall �rG.
The ranking also takes into account the number of

enzymes that are native in a specified host organism. Path-
ways with less heterologous enzymes are preferred as they
potentially require less genetic engineering work in the
practical implementation.
The last ranking criterion counts the number of

different cofactor species that are required by a path-
way candidate. Cofactors are often expensive and require
regeneration which can be difficult to implement. Thus,
pathway candidates with less cofactors are preferred.
In addition to the output of the reactions of each path-

way candidate and an overall balance of each reactant in a
pathway, further information useful for their assessment is
given. The thermodynamic profile allows for a quick visual
assessment of each pathway.
An SBML [30] file containing all reactions on the path-

way allows the visualization of the path and the active
reactions with any tool capable of reading SBML (e.g.
Cytoscape [31, 32]).
A list of possible side reactions for each pathway candi-

date in a given host organism can help to find pathways
with a small number of side reactions or even identify
those side reactions that can be deleted.

Computational details
Our path-finding tool is implemented in MATLAB©
R2015a (8.5.0) (MathWorks). As a MILP solver we used
the IBM CPLEX Optimizer 12.5. All data from KEGG is
obtained using the KEGG REST API. The eQuilibrator 2.0
source code was cloned from their GitHub repository [33].
All computations were carried out on a 64 bit, 3.4 Ghz

Intel Core i7-2600 PC with 8 GB RAM.
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Results
We use geranyl pyrophosphate (GPP) as a first example
to illustrate features of our method. Geranyl pyrophos-
phate is part of the metabolism of most organisms and
plays a key role in the terpenoid biosynthesis. Its precur-
sors isopentenyl pyrophosphate (IPP) and dimethylallyl
pyrophosphate (DMAPP) can be synthesized via two dif-
ferent pathways. The mevalonate pathway starting with
acetyl-CoA is present in fungi, archaea and some bacte-
ria. The non-mevalonate pathway (MEP/DOXP pathway)
with pyruvate as a precursor exists in plants, eubacte-
ria and protozoa [34]. From the computed pathways we
chose interesting candidates depicted in Figs. 4 and 5.
The pathway candidate in Fig. 4 corresponds to the lower
mevalonate pathway. It starts with 2-oxoglutarate synthe-
sizing IPP and DMAPP in seven consecutive reactions
plus an additional reaction to GPP. The pathway candi-
date has 11 potential side reactions which are provided in
more detail in the Additional file 2. These reactions can
potentially be active in permeabilized cells or cell lysates
but might be disrupted by corresponding gene deletions.
If a synthetic mixture of enzymes of interest would be
applied, these reactions would not be active at all. With
the presented network we were also able to recover the
non-mevalonate pathway shown in Fig. 5. The thermody-
namic profiles for the linear path of these pathways are
shown in Figs. 6 and 7. They indicate that the operation of

these pathways is thermodynamically feasible with nega-
tive and constantly dropping �rG. Our tool proposes 11
potential side reactions for the mevalonate pathway and
24 for the non-mevalonate pathway. They are provided in
more detail in the Additional file 2. The candidate for the
mevalonate pathway was chosen because of its favorable
thermodynamic profile (Fig. 6) with a large drop of �rG
in the last two reactions. This final drop has the poten-
tial to lead to high conversion. Additionally, all substrates
for the synthesis are readily available. However, the meval-
onate pathway is not natively present in our chosen host
E. coli. The second pathway candidate based on the non-
mevalonate pathway displays an alternative method for
the production of GPP, which is fully present in E. coli.
We chose amygdalin as a further example. In this case,

we added sucrose as a potential starting and basis metabo-
lite. Sucrose is excluded from the original set of start-
ing metabolites because of its higher molecular mass
but is much cheaper than α-D-glucose 6-phosphate. The
generated pathways contain two interesting candidates
with both four consecutive active reactions to amygdalin.
The first candidate starts with sucrose and the second
with α-D-glucose 6-phosphate. Both candidates require
a uridyl moiety as substrate. Nevertheless, in the search
carried out, UTP, UDP and UMP were considered cofac-
tors to avoid unnecessary interconversion of nucleotides
that would add numerous but not meaningful pathway

Fig. 4 Pathway candidate 1. Synthesis of geranyl pyrophosphate via the mevalonate pathway
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Fig. 5 Pathway candidate 2. Synthesis of geranyl pyrophosphate via the non-mevalonate pathway

Fig. 6 Thermodynamic profile for the mevalonate pathway
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Fig. 7 Thermodynamic profile for the non-mevalonate pathway

candidates. And in both candidates, two of the reactions
are catalyzed by heterologous enzymes. For the first path-
way, four potential side reactions are proposed and five
for the second. These pathway candidates highlight the
impact of the list of potential starting metabolites on the
results. While both pathways look promising, the first one
starts with the cheap starting substrate sucrose and has
a better thermodynamic profile. In an industrial environ-
ment it would be advisable to create a customized list of
starting metabolites considering more criteria, e.g. of cost
and availability.
Another example is pyrrolysine. The selected pathway

candidate has four active reactions and starts with L-
Lysine as substrate. Thermodynamic data for this pathway
is not available in eQuilibrator. In E. coli, this pathway does
not exist, but it is native in methanogenic archaea. The
pathway requires ATP and NAD+ /NADH as cofactors. It
has nine potential side reactions.
As a last example, we chose (S)-2-phenyloxirane. The

selected pathway candidate for (S)-2-phenyloxirane has
four consecutive active reactions. It uses cinnamalde-
hyde as substrate and requires CoA, NADP+ /NADPH
and AxP as cofactors. The thermodynamic profile is not
ideal with regard to the first and last reaction steps that
both have a slightly positive �rG. Potentially, the last step
could be promoted by an efficient FADH2 regeneration
or oxygen supply pushing the equilibrium to the prod-
uct side. However, it remains questionable if FADH2 can

be regenerated in permeabilized cells. Details to all exam-
ples shown are given in the respective sections of the
Additional file 2. The Additional file 3 contains details on
the computation times of all examples.

Discussion
We presented a method for searching potential synthe-
sis pathways for target metabolites without the specifi-
cation of a fixed starting point. Due to the nature of
the search algorithm, the resulting pathway candidates
are unbiased by the user’s knowledge and expectation
of the most suitable pathway. Our method leads to a
large number of results in a broad solution space which
may make it challenging to find the most appropri-
ate candidate. Handling this amount of data requires a
sophisticated tool of filtering, ranking and expert assess-
ment together with additional features such as the quick
evaluation of potential side reactions and thermody-
namics. Altogether, our tool is highly customizable and
offers flexible filtering and ranking options. All metabo-
lite lists, especially the metabolite pool can be easily
adapted to meet the needs of a specific project. This
is especially useful in cases where the metabolite pool
should be composed of chemicals of the laboratories’
inventory or of inexpensive chemicals. Analogously, all
ranking or filtering criteria can be tailored to the focus
of the study, such as reagent costs or a specific host
organism.
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Expert knowledge to assess the pathway candidates is
still needed. However, the same applies to any pathway
design method available to date. The resulting pathway
candidates depend fully on the data used to set up the net-
work. The sheer mass of reactions in KEGG makes errors
hard to identify manually, and we did not carry out any
data cleaning except the measures discussed in section
Network reconstruction. Crude errors such as unbalanced
or ill-formed reaction entries in KEGGwere automatically
identified and excluded from our network.
Thermodynamics of a pathway is complex. Most sub-

stances involved in a pathway are not present at the begin-
ning but are rather formed as the synthesis proceeds. This
is not taken into consideration. We fix the initial starting
concentrations of all metabolites to 1 mM. However, these
can be easily modified by adapting the respective values
for the calculation of the �rG in eQuilibrator. Note, that
all �rG are estimated using the component contribution
method. They can however be replaced by experimental
values, if available.
We do not consider enzyme concentrations or any kind

of kinetic parameters such as enzyme turnover numbers
or Km values. While this would be a relevant addition, to
our knowledge this information is not readily available on
the scale needed for large networks. It could however be
integrated for smaller networks, e. g. [35], particularly in
the ranking procedure.

Conclusions
The presented method provides a helpful computational
tool for the directed design of biosynthetic production
pathways and the planning of syntheses. The tool provides
a very useful basis for the eventual selection of path-
ways to be implemented in the wet lab. Building on this,
expert knowledge is required to tackle possible practical
problems with the implementation of the most promising
candidates. All features presented are autonomous. The
generated thermodynamic profiles of pathways are invalu-
able for selecting the most promising pathway alterna-
tives. Similarly, computing potential side reactions leads
to important insights for all kinds of pathways.
In different use cases different ranking criteria

may be considered important. The user of the tool
can easily select or define own criteria for ranking
results. For the synthesis with cell lysates or per-
meabilized cells, the consideration of heterologous
enzymes and the choice of the most suitable host
as well as potential side reactions are certainly very
important.

Endnotes
1Discontinued since KEGG release 80.0, October 1,

2016
2KEGG compound ID

Additional files

Additional file 1: Lists of reactions and metabolites in the presented
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Additional file 2: Pathway candidates. The file presents the details of the
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