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ABSTRACT

Introduction: As therapy-refractory giardiasis is an emerging health issue, this review aimed at sum-
marizing mechanisms of reduced antimicrobial susceptibility in Giardia duodenalis and strategies to
overcome this problem. Methods: A narrative review on antimicrobial resistance in G. duodenalis was
based upon a selective literature research. Results: Failed therapeutic success has been observed for all
standard therapies of giardiasis comprising nitroimidazoles like metronidazole or tinidazole as first line
substances but also benznidazoles like albendazole and mebendazole, the nitrofuran furazolidone, the
thiazolide nitazoxanide, and the aminoglycoside paromomycin. Multicausality of the resistance phe-
notypes has been described, with differentiated gene expression due to epigenetic and post-translational
modifications playing a considerable bigger role than mutational base exchanges in the parasite DNA.
Standardized resistance testing algorithms are not available and clinical evidence for salvage therapies is
scarce in spite of research efforts targeting new giardicidal drugs. Conclusion: In case of therapeutic
failure of first line nitroimidazoles, salvage strategies including various options for combination therapy
exist in spite of limited evidence and lacking routine diagnostic-compatible assays for antimicrobial
susceptibility testing in G. duodenalis. Sufficiently powered clinical and diagnostic studies are needed to
overcome both the lacking evidence regarding salvage therapy and the diagnostic neglect of antimi-
crobial resistance.
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INTRODUCTION

Giardia duodenalis (also termed G. lamblia or G. intestinalis) is an enteric protozoan parasite
with a quite characteristic shape (Fig. 1) of etiological relevance. Human disease, mediated by
damage of the enterocytes, loss of the brush border of the epithelial cells of the intestine,
shortening of microvilli and altered epithelial barrier function, comprises acute to aqueous
diarrhoea, flatulence, steatorrhea, nausea, abdominal pain, vomiting and, as complications in
case of chronic disease, malabsorption and weight loss [1]. Especially in resource-poor high-
endemicity settings, however, infections frequently stay asymptomatic [2, 3] as confirmed by
studies indicating 50%–75% asymptomatic children in high-endemicity areas [4]. Trans-
mission on the faecal-oral route makes the pathogen relevant for hospital and food hygiene
[4]. In line with this, enforcement of strict food and drinking water hygiene precautions, e.g.,
by purification of water in endemicity settings, helps to prevent disease transmission [4]. In
Germany, diagnostic proof of G. duodenalis is notifiable according to x7 of infection
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prevention law (“Infektionsschutzgesetz”). Identified risk
factors, mostly identified in areas of endemicity, comprise
day-care for children, working in child-care settings, status
as institutionalized individual, travelling in endemic areas,
ingestion of contaminated or recreational water, immuno-
deficiency, cystic fibrosis, and oral-anal sex techniques [4].
In Germany, round about half of detected G. duodenalis
infections is imported from abroad, mostly due to travelling
under poor hygiene conditions as described for soldiers and
police officers without regular access to field camp infra-
structure [5–8], for travellers visiting friends and relatives
[9], and for migrants [10], respectively.

Microscopy and real-time PCR are the diagnostic pro-
cedures of choice [4] with modern real-time PCR assays
being considerably more sensitive than microscopy [11] and
quite stabile in inter-assay comparisons [11, 12]. Micro-
scopy, in contrast, is investigator-dependent, which is
associated with reduced diagnostic reliability even in refer-
ence centres as observed in the course of laboratory control
trials [13].

Internationally applied treatment options comprise the
application of azole compounds like metronidazole or tini-
dazole as well as nitazoxanide [4]. Although there is no
internationally accepted general recommendation for the
treatment of asymptomatic patients and there is a thera-
peutic neglect of this patient group in many countries [4],
treatment of asymptomatically infected individuals is usually
performed in Germany in order to interrupt transmission
chains and infected individuals are prevented from com-
mercial food handling by infection prevention law.

However, resistance or tolerance towards the antimi-
crobial agents of choice makes the therapy of infection or
asymptomatic colonization with G. duodenalis challenging
[4]. As recently summarized [14], up to 50% therapy-re-
fractory courses of giardiasis after 5-nitroimidazole (like
metronidazole, tinidazole) standard therapy have been re-
ported in international literature [14, 15] with hints for an
increase in the last decade, particularly in returnees from the
Indian subcontinent [16]. Evidence levels of salvage therapy
in case of such therapeutic failures like adding of a

benzimidazole (like mebendazole, albendazole) to a new
therapy course with a 5-nitroimidazole drug or prescribing
the anti-malarial drug quinacrine, a substituted acridine
with considerable side effects, instead are usually low, just
based on small studies or expert opinions [16]. In contrast,
sufficiently powered, well designed randomized, double-
blinded, controlled trials are widely missing [14]. In a similar
way, large predictor studies for therapeutic failure are un-
available so far [17].

The aim of this narrative mini-review is to summarize
present knowledge on antimicrobial resistance in G. duo-
denalis as well as to highlight the way ahead with focus on
therapeutic alternatives.

METHODS

A selective literature research based on the search words
“Giardia” and “resistance” with the database NCBI (Na-
tional Center for Biotechnology Information) pubmed
(https://pubmed.ncbi.nlm.nih.gov/, last accessed at 11th
May 2021) was conducted.

HISTORICAL BACKGROUND OF THE TIME
BEFORE THE CHANGE OF THE MILLENNIUM

In the 1960s, nitroheterocyclic drugs including the 5-nitro-
imidazoles, which depend on reduction by ferredoxin or
flavodoxin, became available for the treatment of anaerobic
or microaerophilic protozoa lacking mitochondria like G.
duodenalis [18, 19], but their use was early accompanied by
the emergence of resistance. Indeed, resistance of G. duo-
denalis to 5-nitroimidazoles, but also to related nitrofurans
requiring nitroreductase activity, has been known for de-
cades [18, 20]. Thirty years ago, a patient with symptomatic
chronic giardiasis was described, who had been cured by a
combination of metronidazole and quinacrine after seven
courses of monotherapy with metronidazole or quinacrine
alone had failed to achieve clinical cure. Thereby, no
increased susceptibility of the parasites to the drug combi-
nation compared to monotherapy could be shown in vitro
but only reduced cellular cytotoxicity of the patient’s mac-
rophages for G. duodenalis [21]. Quinacrine, also called
metacrine or by its trade name AtebrineTM, was repeatedly
successfully used in the 1980s to cure giardiasis patients who
had failed to clinically respond to metronidazole [22]. As
early as in the middle of the 1980s, when 5-nitroimidazoles
like tinidazole and metronidazole still showed low minimum
inhibitory concentrations (MIC) for many G. duodenalis
isolates, about 50% of the strains already had increased
MICs for alternative drugs like paromomycin, pyrimeth-
amine, and chloroquine, while furazolidone was – in com-
parison – the most active nonimidazole agent [23]. A linkage
between MIC increase for various chemically related sub-
stances suggested common mechanisms of resistance [23].
At the beginning of the 1990s, significant variability of in

Fig. 1. Typical morphological features of a trophozoite of Giardia
duodenalis
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vitro susceptibility of different Giardia spp. isolates towards
metronidazole and ornidazole was shown. Thereby,
decreased in vitro susceptibility was well correlated with
therapeutic failure in vivo [24]. Interestingly, metronidazole,
although considered as the therapeutic standard for giardi-
asis, did not have an Food and Drug Administration
(“FDA”) clearance for this indication in the early 1990s [25].
In 1991, a patient with multidrug-resistant giardiasis was
treated at a Swiss hospital. After therapeutic failure with oral
administration of metronidazole, tinidazole, ornidazole, and
quinacrine, a combination of oral and intraduodenal
administration of quinacrine finally cured the patient.
Interestingly, no signs of immune deficiency or IgA deficit
had been recorded for this patient [26]. In the middle of the
1990s, giardiasis experts called for action in order to prevent
resistance dimensions as known from bacterial pathogens in
G. duodenalis [27]. In a review published in 2001 [28],
nitroimidazoles like metronidazole, tinidazole or ornidazole
were still suggested as the treatment of choice due to the
broadest respective experience with cure rates >90%. Quin-
acrine use was – in spite of comparably good efficacy –
discouraged due to considerable side effects, furazolidone
due its pharmacokinetics requiring application 4 times a day.
Due to lack of enteric absorption, paromomycin was sug-
gested for giardiasis requiring therapy in the early pregnancy
in spite of its inconsistent therapeutic effectiveness [28].

RESISTANCE MECHANISMS

Details on the molecular mechanisms of resistance leading
to 5-nitroimidazole refractory G. duodenalis infection as well
as other resistance types are not yet completely deciphered
[14], in spite of considerable effort both with laboratory and
clinical strains [29]. Immunodeficiency and IgA deficit in
particular as well as hypogammaglobulinaemia in general
have been associated with increased risk of therapeutic
failure in giardiasis patients [16, 26]. Also, the organochlo-
rine DDT has been shown to increase G. duodenalis-asso-
ciated disease severity due to aversive immunomodulating
effects in animal experiments [30]. Further, an association of
primary treatment failure and increased blood haemoglobin
at the time of diagnosis but not with CD4-positive T-cell
counts could be shown at least for the subpopulation of
HIV-positive giardiasis patients [17].

Induced drug resistance in G. duodenalis

As early as in the 1980s, it has been described that suscep-
tibility towards metronidazole can be reduced in vitro by
constant exposure about several weeks towards sublethal
concentrations by factor eight. However, it became also clear
by those experiments that the so-induced resistance was
unstable and that the protozoa tend to revert to their original
metronidazole susceptibility after several weeks of growth
without antibiotic pressure [31]. A similar mode of in vitro
resistance induction in G. duodenalis has been described for
other antiparasitic drugs like furazolidone [32], albendazole

[33] and quinacrine [34] as well. Interestingly, it has been
demonstrated in vitro that subpopulations of differing
resistance levels may exist within defined strains, which
show competition when cultured under various degrees of
antimicrobial pressure [35]. Thereby, this variability seems
to be bigger for nitroimidazoles than for benzimidazoles
[35].

Resistance against 5-nitroimidazoles

Associated with reduced susceptibility, altered intracellular
metronidazole concentrations were early recorded, resulting
in speculation either on defective transport mechanisms
across the cellular membrane or insufficient intracellular
reduction of the substance to its biologically active metab-
olite [31, 36, 37]. The latter is due to modifications of pro-
teins involved in drug activation [38]. In detail, influences of
pyruvate:ferredoxin oxidoreductase, ferredoxin pathways
and thiol-dependent peroxidase and reductase activities
were shown to be of etiological relevance for resistance in G.
duodenalis [39, 40]. Thereby, reduced cellular concentra-
tions of pyruvate:ferredoxin oxidoreductase as well as
downregulation of ferredoxin pathways in G. duodenalis’
low-redox-potential anaerobic metabolism lead to decreased
metronidazole uptake into the protozoa [40–44]. Also,
reduced expression of the oxygen-insensitive nitroreductase-
1 (ntr-1) gene of G. duodenalis may be associated with
decreased drug activation, which in turn leads to tolerance
towards metronidazole [44, 45]. NAD(P)H- and flavin-
generating pathways and redox-sensitive epigenetic regula-
tion can show similar effects [46]. As a consequence of
reduced drug activation, reduced production of radicals that
can form adducts with proteins such as thioredoxin reduc-
tase and a- and b-giardins as well as DNA damage follows,
resulting in decreased probability of the trophozoites’ death
[47]. In addition, low expression of oxygen-detoxification
enzymes can allow passive, non-enzymatic metronidazole
detoxification mediated by futile redox cycling [44]. Such
passive mechanisms are supplemented by active resistance
strategies, comprising mechanisms of complete enzymatic
detoxification of the pro-drug by nitroreductase-2 as well as
enhanced repair of oxidized biomolecules mediated by thi-
oredoxin-dependent antioxidant enzymes [44]. Of note, not
all mechanisms are evenly expressed in all resistant strains.
In a recent assessment with three different resistant G.
duodenalis cell lines, common mechanisms comprised up-
regulating of genes encoding for variant-specific surface
proteins, a high cysteine membrane protein, calcium and
zinc channels, a Mad-2 cell cycle regulator and a putative
fatty acid a-oxidase as well as down-regulated genes
encoding nitroreductase-1, putative chromate and quinone
reductases, as well as numerous genes that act proximal to
the gene encoding the pyruvate:ferredoxin oxidoreductase.
In contrast to those similarly regulated genes, a cell line with
increased passive resistance mediated by a nonsense muta-
tion in nitroreductase-1 transcripts showed increased tran-
scription of nitroreductase-2 and a MATE transmembrane
pump system, supporting active drug detoxification and
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efflux, respectively. Lines without this mutation had to cope
with a higher oxidative stress load caused by metronidazole-
and oxygen-derived radicals [44]. In addition, it has been
suggested that posttranslational modifications like protein
acetylation, methylation, ubiquitination, and phosphoryla-
tion play a role in metronidazole resistance [48]. More than
this, it has been shown that metronidazole fails to arrest the
cell cycle progression in resistant strains while it shows this
effect in susceptible ones [49]. Other than reported for
metronidazole resistance in Trichomonas vaginalis, however,
measurably defective O2-scavenging capabilities compared
to metronidazole-sensitive isolates were not reported for G.
duodenalis, although elevated NADPH-oxidase activities
have been shown for metronidazole-resistant G. duodenalis
strains [50]. Of note, metronidazole resistance in G. duo-
denalis is accompanied by a glucose metabolism-related
attachment defect to mucosal cells. So, metronidazole-
resistance appears to be evolutionarily balanced against the
infectious potential of a G. duodenalis strain [51]. Alto-
gether, polygenically mediated changes in the antioxidant
network, glycolysis, and electron transport affect metroni-
dazole resistance, which is also influenced by protein acet-
ylation as indicated by cross-resistance to the deacetylase
inhibitor trichostatin A [48].

Co-resistance against metronidazole and nitozoxanide

Co-resistance against metronidazole and nitazoxanide was
found to be associated with changed expression of stress
response-related and heat shock proteins (HSP70 B2,
HSP40), major surface antigens such as the variant surface
protein (TSA417, AS7), nitazoxanide-binding proteins like
nitroreductase 1 (GlNR1) and the protein disulphide isom-
erase PDI4 [43, 52, 53]. Interestingly, as observed with a G.
duodenalis strain expressing this resistance type, a cycle of
en- and excystation leads to vanishing or resistance, sug-
gesting epigenetic changes rather than changes of the DNA
sequence to be responsible for the resistance pattern [52].
Further, in a cell line with stabile co-resistance to the nitro-
compounds metronidazole and nitazoxanide, multiple
metabolic adaptations were observed. They comprised a
reduction of the activities of FAD-dependent oxidoreduc-
tases, lower nitroreductase activities, lower oxygen con-
sumption and resazurin reduction rates, lower ornithine-
carbamyl-transferase activity, reduced FAD and NADP(H)
pool sizes and higher ADP/ATP ratios, respectively,
compared to the wildtype [54]. As resistance against nitro
drugs is mediated by several distinct mechanisms and not
the consequence of a directed process, it is consequently not
correlated with a specific pattern of differentially expressed
proteins as demonstrated with mass spectrometry shotgun
analysis of the proteomes of distinct nitro drug-resistant
strains [55].

Resistance against benzimidazoles

Albendazole resistance, which is associated with parbenda-
zole cross-resistance, is reported to be mediated by alter-
ations of the cytoskeleton of G. duodenalis with particular

emphasis on the median body [56]. In particular, alterations
of the so-called ROD-domain of the beta-giardin protein
have been associated with albendazole resistance [57].
Further, efflux of both albendazole and nitazoxanide from G.
duodenalis cells has been shown to be mediated by proteins
of the ATP-binding cassette (ABC) transporter superfamily,
in particular with the ABC-C1 transporter, also known as
multidrug resistance protein 1 [58]. In addition and next to
b-tubulin changes in albendazole-resistant G. duodenalis,
pro-oxidant cytotoxicity of albendazole is counteracted by
an increased antioxidant response involving reactive oxygen
species-(ROS-)metabolizing enzymes (NADH oxidase, per-
oxiredoxin 1a, superoxide dismutase and flavodiiron pro-
tein) and higher levels of intracellular free thiols [59].

Resistance against other therapeutic drugs for
giardiasis

The thiol cycling enzymes mediate furazolidone resistance
[41], while metronidazole only slightly reduces the thiol pool
even within susceptible G. duodenalis strains [60]. Quina-
crine resistance has been reported to be associated with
active exclusion from resistant trophozoites. Of note, G.
duodenalis strains with pre-existing furazolidinone resis-
tance tend to adapt more quickly to increasing quinacrine
concentrations as well [34].

HINTS FOR GENETIC VERSUS EPIGENETIC
DETERMINANTS OF RESISTANCE IN G.
DUODENALIS

There are no well-defined resistance genes to be used for
diagnostic purposes like, e.g., for methicillin-resistance in
bacteria of the species Staphylococcus aureus [61]. This is
well in line with lacking stability of resistance induction in
the absence of selective pressure by the antimicrobial drug as
early observed [31]. Instead, redox-sensitive epigenetic
regulation is discussed [46] and molecular resistance
mechanisms are likely to be largely founded on reversible
transcriptional changes. This, in addition to post-
translational modifications, best explains the observed phe-
nomena that resistant lines revert to drug sensitivity during
drug-free culture in vitro or during passage through the life
cycle [44, 48].

Nitroimidazole resistance

Matching the abovementioned, metronidazole resistance
induced by long-term growth of G. duodenalis with sublethal
metronidazole doses can occur completely without muta-
tions in metronidazole resistance-associated genes like pfor,
fd, nr-1 or trxr [62]. Nevertheless, some associations have
been described. Genomic sequencing of various strains of
the G. duodenalis assemblages A and B showed that, even
irrespective of individual metronidazole resistance, genetic
variability is common in important genes in metronidazole
metabolizing pathways and in the management of oxidative
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and nitrosative stress, including high numbers of non-syn-
onymous (amino acid-changing) single nucleotide poly-
morphisms [63]. Also, rearrangements on the chromosome
and repetitive DNA level have been early seen in metroni-
dazole resistant G. duodenalis strains [41]. In particular, the
loss of the 3000-base pair-sequence G6/1 on chromosome 4
of G. duodenalis, which seem to interfere with cell division of
the parasite, has been associated with the onset of metro-
nidazole resistance [64]. Increased levels of expression of the
gene for protein disulphide isomerase 2 (PDI2) has been
described for strains resistant against either metronidazole
or nitazoxanide, while combined resistance was also asso-
ciated with PDI4 expression. Also, drastic changes in the
expression of genes for variant surface proteins (VSP) in
strains resistant against those substances have been reported
[65]. Altered expression of pfor RNA, coding for the pyr-
uvate:ferredoxin oxidoreductase, was identified in metroni-
dazole resistant strains [66]. However, altered pfor RNA
expression levels were only found in case of severe metro-
nidazole resistance and the association was generally weak,
so pfor expression is a poor diagnostic marker of metroni-
dazole resistance [67]. More than this, this mechanism does
not seem to be a necessary condition for metronidazole
resistance at all, as it was found to be completely absent in
highly 5-nitroimidazole resistant G. duodenalis strains [68,
69]. Indeed, a multi-factorial nature of metronidazole
resistance was confirmed by the identification of strains, in
which impaired flavin metabolism played the major role for
nitroimidazole resistance, mediated by the flavin-dependent
G. duodenalis thioredoxin reductase (GlTrxR) and the
NADPH oxidase [69]. Interestingly, resistance associated
changes in the expression of stress response-related and heat
shock proteins (HSP70 B2, HSP40), major surface antigens
such as the variant surface protein (TSA417, AS7) as well as
the nitazoxanide-binding proteins nitroreductase and pro-
tein disulphide isomerase PDI4 can vanish after an en- and
excystation cycle, confirming epigenetic changes rather than
persistent changes of the DNA sequence [52]. Metronida-
zole-induced cellular stress leads to downregulation of the
antioxidant system and a-giardins, while associated resis-
tance-development is believed to be influenced by multiple
epigenetic mechanisms of transcriptional control as sug-
gested by antisense de-repression and differential regulation
of RNA [70]. However, it has been suggested that accelerated
mutagenesis resulting from metronidazole-induced DNA
damage might also contribute to resistance development
[71], mediated by triggering the parasite’s DNA homologous
recombination repair pathway [47]. In line with this, in a
metronidazole-resistant G. duodenalis cell line, a nonsense
mutation in nitroreductase-1 transcripts has been observed,
which supports metronidazole resistance but is not a
necessary condition for such resistance by itself [44].

Benzimidazole resistance

Associated with albendazole resistance [56], chromosome
rearrangements affecting the cytoskeleton structure were
observed, but without coding for a tyrosine for phenylalanine

amino acid exchange at position 200 in beta-tubulin, which
has been described for benzimidazole-resistance in helminths
and fungi, or other consistent sequence changes in the target
structure beta-tubulin [56, 59, 72]. However, permanent
sequence changes in the beta-giardin gene, resulting in amino
acid changes in the protein’s ROD domain from TIARERA
to IDRPRE, have also been associated with reduced suscep-
tibility to albendazole [57]. Further, RNA of the variant
surface protein ARR-VSP was found to be upregulated in
albendazole resistant G. duodenalis clones [66]. Altogether,
the differential expression of several genes for proteins
playing a role in maintaining cell structural stability, coping
with oxidative stress and adapting energy supply to altered
metabolic states is crucial for albendazole resistance. The
affected proteins comprise proteins with functional roles not
only in the cytoskeletal system (alpha 2-giardin and RanBP1)
but also in the antioxidant metabolism (NADH oxidase) and
in the energy metabolism (triosephosphate isomerase,
phosphoglycerate kinase and ornithine carbamoyltransfer-
ase), respectively [73].

Resistance against other drugs

Changes in the expression of the variant surface protein as
well as reduced expression of the parasite’s nucleoside hy-
drolase (NH) are considered to be responsible for resistance
against isoflavones like daidzein and formononetin [74].
Increased transcription of the neomycin phosphotransferase
(neo(r)) gene is known to mediate resistance against the
aminoglycoside G418 (geneticin) in G. duodenalis [75].

TREATMENT ATTEMPTS ALTERNATIVE TO THE
“5-NITROIMIDAZOLES STANDARD”

Natural and synthetic substances with giardiacidal effects
were early tried to identify [76, 77] and those efforts pro-
ceeded with ongoing resistance issues [78].

Alternative nitroheterocyclic substances

Although there is considerable cross-resistance between
nitroimidazoles in G. duodenalis, there are also substance-
specific differences, making it worth testing various sub-
stances of the group for potential therapeutic success [51,
79–81]. The ongoing effort for optimizing nitroimidazoles in
order to overcome metronidazole resistance have shown that
easier redox activation is positively correlated with greater
giardicidal activity. For example, olefins with a conjugated
bridge connecting the core and a substituted phenyl or
heterocyclic ring were identified as promising options [82].
In vitro assessments also suggested high effectiveness of 2-
lactam-substituted 5-nitroimidazoles for the treatment of G.
duodenalis [79]. A modification based on a side chain car-
rying a remote phenyl group in the 2-position of the imid-
azole ring was found to be 14-fold more active against G.
duodenalis than metronidazole [61]. Metronidazole-triazole
conjugates and nitroimidazole carboxamides were also able
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to overcome some types of metronidazole resistance in vitro
[83, 84]. Parasite cell vesicle trafficking, autophagy, and
triggered differentiation into cysts are processes which are
targeted by modern metronidazole derivates for giardiasis
treatment [85]. In silico drug design offers new options of
designing nitroheterocyclic drugs with therapeutic effects
against giardiasis. In addition to nitroimidazoles, such
nitroheterocyclic drugs also comprise nitropyrroles and ni-
trofurans [86]. The nitrofuran furazolidone has been shown
in vitro to provide more severe damage than metronidazole
to cyst stages of G. duodenalis, associated with morpholog-
ical alterations like the presence of cavities, lamellar bodies
as well as thread-like structures and inhibition of in vitro
cyst differentiation [87]. Similar like metronidazole but
other than nitazoxanide, furazolidone uses the parasite’s
antioxidative enzyme thioredoxin reductase to be converted
into its active form which is toxic to G. duodenalis [88].

Benzimidazoles

In vitro experiments with G. duodenalis suggested 30- to 50-
fold higher activity of albendazole and mebendazole
compared to metronidazole and 4- to 40-fold higher activity
compared to quinacrine, respectively, while thiabendazole
scored poorer. Static in vitro effects have been reported for
mebendazole, which shows poor intestinal absorption and
interacts with the microtubules of the parasite even at lower
concentrations than required for the standard agent
metronidazole [89]. In detail, microtubule polymerization is
inhibited through selective binding to the b-tubulin subunit
[72]. Of note, the giardicidal effects of different benzimid-
azoles and tubulin inhibitors vary. While mebendazole,
albendazole and fenbendazole have been described to induce
irreversible effects on the cells, only transient effects have
been reported for nocodazole, oxfendazole, and albendazole
sulfoxide, respectively [90]. At least in calves, effective
eradiation of Giardia cysts from stool due to fenbendazole
therapy has been shown in vitro, but reoccurrence within 4
weeks after treatment suggests occasional need for repeated
therapy [91]. Further, in vitro experiments suggested
increased activity of S-substituted 4,6-dibromo- and 4,6-
dichloro-2-mercaptobenzimidazoles against G. duodenalis
compared to metronidazole [92]. Therapeutic activity of
benzimidazoles against G. duodenalis can further be
increased by the combination with phenyl-carbamates,
which has been discussed as an option for strains with
reduced susceptibility for benzimidazoles [93]. Albendazole,
in particular, also partially inhibits encystation and, to a
lower degree, excystation [94]. Such interruption of the
parasitic life cycle is considered to be important for the
prevention of the spread of giardiasis [95]. While showing
therapeutic effects on giardiasis comparable to metronida-
zole, albendazole has the advantage of lower side effect rates
[96]. Chemically modified benzimidazole derivates have
been shown to allow higher activity against G. duodenalis
and may be suitable therapeutic alternatives for the future
[51]. In benzimidazole-susceptible G. duodenalis cells,
albendazole induced oxidative stress results in DNA damage

as indicated by 8OHdG adducts, DNA degradation and
histone H2AX phosphorylation, partial arrest within the cell
cycle, and subsequent induction of apoptosis associated with
phosphatidylserine exposure on the parasite surface [97].

Nitazoxanide

In vitro activity of the thiazolide nitazoxanide [2-acetoly-
loxy-N-(5-nitro 2-thiazolyl) benzamide] against G. duode-
nalis has been thoroughly assessed since 2001. Nitazoxanide
induced changes in trophozoite volume, loss of characteristic
shape and swelling, but the effects were less severe in direct
comparison to tinidazole [98]. Both nitazoxanide and its
metabolite tizoxanide were shown to be considerably more
active than metronidazole in metronidazole-susceptible G.
duodenalis strains and at least slightly more active in
metronidazole resistant strains [99], which is not surprising
as resistance formation in G. duodenalis against nitazox-
anide and metronidazole is linked, most likely due to altered
gene expression [65]. In spite of this, successful treatment of
a giardiasis patient with HIV co-infection and a G. duode-
nalis isolate resistant to metronidazole and albendazole by
application of nitazoxanide could be demonstrated [100].
Nitazoxanide is known to inhibit the protein disulphide
isomerases PDI2 and PDI4 of G. duodenalis [65]. Nitro-
reduction and free radical production are the likely modes of
giardicidal action, because analogues lacking the reducible
nitro-group showed reduced activity [99]. Further, the
giardicidal effect of nitazoxanide was shown to be partially
mediated by activation of the nitroreductase GlNR1 [101].

Quinacrine

In spite of considerable side effects, the antimalarial drug
quinacrine had a renaissance in the treatment of nitro-
imidazole-resistant giardiasis. In a retrospective assessment
at the London School of Hygiene and Tropical Medicine,
London, United Kingdom, 100% of cases of metronidazole-
refractory giardiasis could be successfully cured with quin-
acrine. Of note, however, those data were from a retro-
spective assessment and the sample size (n 5 20 patients)
was small [16]. However, 100% therapeutic success with
quinacrine in 13 giardiasis patients, infected with strains of
the assemblages A and B as identified by PCR, after failed
nitroimidazole therapy was reported from Spain as well
[102]. Similarly, 15 out of 15 patients with nitroimidazole-
refractory giardiasis were successfully treated with quina-
crine in Cuba [103].

Antibiotics and anti-viral substances

As predicted from the sequence of ribosomal RNA and
subsequently confirmed in vivo, the aminoglycosides
hygromycin and paromomycin can successfully inhibit the
growth of wild-type strains of G. duodenalis. This is, how-
ever, not a group-specific, but a substance-specific effect, as
growth inhibition cannot be achieved with other amino-
glycosides like kanamycin or apramycin in the same
way [104]. Altogether, sequences within domain V of
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G. duodenalis’ large-subunit rRNA resemble archaebacterial
rRNA, suggesting a high level of evolutionary conservation
[105]. Paromomycin susceptibility of G. duodenalis is
considered to be associated with the presence of a C:G base-
pair near the decoding region of the small subunit ribosomal
RNA [106].

In vitro, ciprofloxacin as well inhibits G. duodenalis
growth, adherence and O2 uptake in a concentration-
dependent manner and finally leads to death of the
G. duodenalis trophozoites due to a necrosis process. Based
on those in vitro results, ciprofloxacin has been discussed as
a potential option for therapy-refractory giardiasis [107].

While high concentrations of the macrolide azi-
thromycin are required of achieve growth inhibition of
G. duodenalis, hundred-fold lower concentrations are suffi-
cient for adherence inhibition [108]. Thereby, however,
azithromycin susceptibility varies considerably in different
strains [41].

Bacitracin shows in vitro inhibiting effects on G. duo-
denalis which can be increased by zinc substitution [109].

Interestingly, also some anti-retroviral protease in-
hibitors, in particular ritonavir-boostered lopinavir (trade
name KaletraTM), show therapeutic effect against G. duo-
denalis. While standard dosage of ritonavir alone can also
inhibit G. duodenalis, lopinavir alone is insufficient for
complete inhibition but at least results in blockage of cyto-
kinesis in G. duodenalis trophozoites [110].

Anti-rheumatic and anti-tumoral substances

The antirheumatic drug auranofin eradicated G. duodenalis
in different rodent models by blocking the activity of giardial
thioredoxin oxidoreductase and thus by interfering with
normal protein function and with combating oxidative
damage [111]. The membrane-active alkylphospholipid
hexadecylphosphocholine (miltefosine), which has been
developed as an anti-tumoral drug and which is nowadays
applied to cure visceral leishmaniasis, eliminates giardiasis in
the mouse model by affecting the parasites’ cellular mem-
brane and adhesive disc [112]. Another anti-tumoral com-
pound with in vitro giardicidal effects is NBDHEX, which is
active on several levels in G. duodenalis trophozoites,
comprising inhibition of glycerol-3-phosphate dehydroge-
nase, binding to metabolic enzymes like thioredoxin
reductase (gTrxR), elongation factor 1B-g (gEF1Bg), and
structural proteins like a-tubulin. Thioredoxin reductase, in
particular, is able to nitroreduce NBDHEX leading to drug
modification of catalytic cysteines in thioredoxin reductase,
with concomitant disulphide reductase activity inhibition
and NADPH oxidase activity upsurge, resulting in increased
toxicity of the compound [113].

Synergistically acting drugs, drug combinations and
hybrid compounds

Synergistic effects on adherence inhibition of G. duodenalis
were observed for dyadic combinations of azithromycin-
furazolidone, doxycycline-mefloquine, doxycycline-tinida-
zole, and mefloquine-tinidazole, respectively, suggesting

increased therapeutic effects of such combinations [108].
Further in vitro synergistic action could be shown for
albendazole and the synthetic derivatives 2-aryl-3-hydrox-
ymethylimidazo[1,2-a]pyridine and -pyrimidine against
G. duodenalis trophozoites [114].

Synergisms have not only been shown in vitro. Also,
there are hints for clinical superiority of combination ther-
apy in patients with therapy-refractory giardiasis, although
evidence is scarce [115, 116]. In a small group of giardiasis
patients who could not be cured with metronidazole ther-
apy, combination of albendazole plus metronidazole was
superior to albendazole alone [117]. In a review from 2001,
prolonged application of a combination of nitroimidazole
and quinacrine was recommended for patients with resistant
giardiasis [28], as therapeutic success was repeatedly
observed with this approach [28, 118]. Combination therapy
of mebendazole plus secnidazole was successfully applied as
a salvage therapy for patients with nitroimidazole-resistant
giardiasis as well [103].

As a comparatively new approach, hybrid compounds
created by combining different giardicidal drugs within one
molecule have been introduced [119]. For example, CMC-
20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid
molecule, showed giardicidal effects in G. duodenalis strains
resistant against albendazole or nitazoxanide alone by
affecting the parasite’s microtubule reservoir, triggering the
parasite’s encystation and alpha-7.2 giardin co-localization
with CWP-1 protein in vitro and in the murine model [120].

Herbal preparations

Herbal treatment approaches have been assessed as prom-
ising options for therapy-refractory giardiasis as well [121].
In India, Pippali rasayana, prepared from Piper longum and
Butea monosperma, has been tested for giardicidal effects in
mice. The substance did not affect the parasite itself but
increased both the macrophage migration index (MMI) and
the macrophages’ phagocytic activity, resulting in 98% re-
covery of the mice from G. duodenalis infection [122]. The
component (-)-epigallocatechin from the plant Heli-
anthemum glomeratum, which had already been used in
Mayan traditional medicine for the treatment of diarrhoea,
shows growth inhibiting potential against G. duodenalis in
vitro [123]. Lippia beriandieri (oregano) has been reported
to lead to giardicidal effects in vitro even more pronounced
than observed with tinidazole, resulting in damage of
nucleo-skeleton proteins associated with an altered structure
of the nucleus as well as in deterioration of size and shape of
G. duodenalis trophozoites [124]. Reduction of the MTT-
tetrazolium salt levels is believed to be one mode of
giardicidal action of oregano. Naringenin, thymol, and
pinocembrin were identified among oregano’s giardicidal
components [125]. Polyphenolic-rich blueberry extract leads
to a dose-dependent reduction of G. duodenalis trophozoite
viability; the polyphenols are considered as the components
in charge of the reduced survival of the parasites [126]. In
mouse experiments, dichloromethane extracts of Zingiber
officinale (ginger) and Curcuma longa (curcumin) showed
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therapeutic effects against giardiasis. Thereby, the giardicidal
effect of ginger was more pronounced than the effect of
curcumin [127]. In vitro assessment also indicated a dose-
dependent giardicidal effect of a chloroformic extract of
Artemisia annua [128, 129]. Olive leaf extracts and extracts
of Satureja khuzestanica (a plant used for medical purposes
by nomads in southwestern Iran) show in vitro giardicidal
effects in the range of metronidazole or better [130]. In
contrast, Allium sativum (garlic) scores poorer in vitro,
discouraging its therapeutic use [130]. Also, methylger-
ambullin, a sulphur-containing amide in Glycosmis spp.
(family Rutaceae) [131], 2,3-Dihydroxyphenyl B-D-gluco-
pyranosiduronic acid as well as the tannins gallic acid and
chebulic acid extracted from Terminalia ferdinandiana in
combination with ascorbic acid, respectively [132], and
crude Ageratum conyzoides extracts [133] showed giardicidal
effects in vitro and partly also in animal experiments. The
giardicidal effects of the latter were associated with changes
in the flagella and the ventral discs of G. duodenalis tro-
phozoites [133].

Milk and milk components

In the 1980s, a giardiacidal effect of non-heated human but
not of non-heated cow’s or goat’s milk on G. duodenalis tro-
phozoites has been observed, most likely mediated by the heat-
sensitive fatty acid esterase bile salt-stimulated lipase (BSL)
[134]. However, a clinical application has never been suc-
cessfully implemented. Further, it is believed that both human
and bovine lactoferrin, particularly the N-terminal peptides,
may be of relevance as a nonimmune component of host
mucosal defence against G. duodenalis due to its giardicidal
activity. However, the presence of Fe3þ ions can protect G.
duodenalis trophozoites from this effect in vitro [135].

Others

G. duodenalis’ glycolytic enzyme triosephosphate isomerase
(GlTIM), next to other glycolysis-specific enzymes of the
parasite, have been proposed as potential drug targets. For
GlTIM, thiol-reactive compounds are under investigation as
potential therapeutic drugs [136]. The giardial glycolytic
enzyme triosephosphate isomerase is dose-dependently
inhibited by the proton pump inhibitor omeprazole, leading
to cell death of G. duodenalis in vitro [137]. The chemically
modified proton pump inhibitors BHO2 and BHO3 showed
even stronger inhibition of triosephosphate isomerase and
associated giardicidal effects, which are mediated by chem-
ical modification of Cys222 and associated structural
changes of the enzyme as well as by adducts linked to
cysteine residues [138]. Also, disulfiram shows giardicidal
effects in vitro mediated by Cys222-modifications of the
triosephosphate isomerase of G. duodenalis, thus deterio-
rating its stability [139]. Giardia carbamate kinases (glCK),
which have no equivalent in human cells, are affected by
disulfiram and are targets of interest for drug development
[139, 140]. KH-TFMDI, a 3-arylideneindolin-2-one-type
sirtuin inhibitor, shows in vitro giarcidal effects by inhibiting
sirtuins, which are class III NADþ-dependent histone

deacetylases, in the parasite. Associated micromorphological
changes comprise multinucleated cell clusters suggesting
compromised cytokinesis in treated trophozoites, cell
rounding, concomitantly with the folding of the ventro-
lateral flange and flagella internalization, and finally cell
death associated with DNA/nuclear damage, formation of
multi-lamellar bodies and annexin V binding on the parasite
surface [141]. Also, the five long-chain fatty acyl-CoA syn-
thetases (GiACS1 to GiACS5) of G. duodenalis have been
identified as potential drug targets, since the acyl-CoA
synthetase inhibitor triacsin C was shown to inhibit giardial
growth in vitro [142]. Giardicidal effects in animal models
were recently also demonstrated for selected Hsp90 (heat
shock protein 90) inhibitors [143]. Deconjugated bile salts as
produced by bacterial bile-salt-hydrolases of the probiotic
bacterial strain Lactobacillus johnsonii La1 show giardicidal
effects as well, suggesting potential protective effects of
probiotic applications [144]. Isoflavones like daidzein and
formononetin inhibit G. duodenalis growth [74]. Amino-
guanidine compounds like robenidine are associated with in
vitro giardicidal effects, inhibiting in vitro adherence of the
parasite and damages to the parasite’s plasma membrane
[145]. New therapeutic substances under investigation
comprise so-called “bumped” kinase inhibitors (BKIs). BKIs
target protein kinases of G. duodenalis, which have an
expanded active site pocket. The latter results from an
atypically small gatekeeper residue. Inhibition of those
small-gatekeeper kinases is a completely new mode of ac-
tion, which does not overlap with modes of action exerted by
current giardicidal drugs [146]. Even therapeutic effects of
the beta receptor blocker propranolol on metronidazole-
resistant giardiasis have been assessed [147]. Salinomycin, an
ionophore therapeutic drug, shows adherence reduction of
Giardia trophozoites in vitro but the development of natural
in vivo resistance limits its suitability for the control of
giardiasis [148]. The giardicidal effects of triazolyl-quino-
lone-based chalcone derivatives depends on the presence or
absence of oxygen [149]. Also, giardicidal effects of sub-
stances like allicin, propolis, tenatoprazole, fabomotizole,
tenatoprazole and ipriflavone have been suggested [150,
151]. Some giardicidal substances have been newly identified
from collections of bio-active compounds like the malaria
venture’s pathogen box. Components of such collections
have been specifically chosen to stimulate infectious disease
drug discovery. Various drugs of interest with potential
giardicidal effects are only coded so far, like, e.g.,
MMV676358 and MMV028694 [152].

CONCLUSIONS

Several conclusions can be drawn from the available data on
antimicrobial resistance in G. duodenalis. The recorded
multiple realizability of resistance, which can be mediated by
various factors influencing the expression of multiple
effector proteins without specific target gene mutations [62],
is most likely due to epigenetic or posttranslational modi-
fications [44, 46, 48, 52, 70] and does not require
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unambiguously identifiable patterns in proteomic assays
[55]. Based on these findings including the results of
comparative proteomics [55], it is highly unlikely to assume
that rapid and easy-to-perform molecular assays for the
detection of antimicrobial resistance will be available in the
near future. Hence, testing of antimicrobial resistance in
human G. duodenalis strains in order to allow resistance-
based treatments will remain challenging. Although animal
models for the assessment of G. duodenalis resistance against
metronidazole and albendazole have been introduced to
replace even more laborious culture procedures [153],
resistance testing applying mouse models will nevertheless
be poorly suitable for the diagnostic routine situation under
the most circumstances. Standardization of resistance testing
for G. duodenalis in microtiter plates about 3 days has been
attempted as well [154]. For example, the trophozoite
adherence inhibition method can be applied after in vitro
excystation and axenical cultivation in TYI-S-33 modified
medium as described [155]. But again, broad diagnostic
implementation never succeeded. As recently shown, results
of culture-based resistance testing also depend on whether
the test is performed under anaerobic or microaerophilic
conditions [149] and are affected by cysteine concentrations
in the growth medium [156]. Further, phenotypic resistance
testing is challenged by subpopulations of differing resis-
tance levels even within the same G. duodenalis strain [35].
Thus standardization of both methodology and interpreta-
tion will be crucial if implementation in the routine labo-
ratory diagnostic setting shall succeed.

Because culture of clinical G. duodenalis isolates is quite
challenging and poorly compatible with diagnostic routine
procedures so far, whole genome sequencing of parasite
genomes has been proposed as a screening option for
resistance determinants. In order to do so, purification of
G. duodenalis from stool samples based on immuno-
magnetic separation after sucrose gradient flotation has been
introduced [157]. However, as long as resistance de-
terminants are poorly characterized, phenotypic resistance
shows lacking stability [31] and epigenetic or post-trans-
lational modifications are often more relevant than DNA
sequence changes [44, 46, 48, 52, 70], a practical value of
solely sequence-based resistance testing for the diagnostic
routine as guidance for antimicrobial therapy of giardiasis
remains doubtful.

Without reliable in vitro diagnostic assays indicating
antimicrobial resistance or susceptibility, however, therapy
of chronic therapy-refractory giardiasis remains a consid-
erable challenge. Accordingly, a whole bundle of manage-
ment efforts has been suggested, comprising the recognition
of the known modifiable causes of this health condition, the
assessment of symptoms and potential complications as well
as – if necessary - their treatment utilizing a multidisci-
plinary therapeutic team and an ongoing monitoring of the
effects of therapy [158]. However, also multidisciplinary
therapeutic teams will have to rely on evidence, but evidence
for the treatment of therapy-refractory giardiasis is scarce.

In order to provide such evidence, sufficiently powered,
randomized controlled trials should be conducted as

suggested previously [16, 102, 103]. In order to include suf-
ficient numbers of patients with therapy-refractory giardiasis,
multicentric studies will be preferable. Although a lot of
potentially promising therapeutic approaches have been
introduced above, focus on already available drugs will most
likely be the best strategy to provide evidence in the near
future. Next to the choice of optimal substances or substance
combinations, optimal dosages for the treatment of G. duo-
denalis should be addressed in future studies, as suboptimal
dosing regimens are likely to contribute to the resistance
problem [1, 159]. Further, a study focus should be on pre-
disposing factors of therapy failure [17]. For example, studies
on the effects of therapy adherence on therapy failure and
resistance development might provide beneficial insights.

Next to sufficient numbers of included patients, adequate
case definitions [160], precise knowledge of diagnostic
characteristics of applied diagnostic tests [161] and appro-
priate surrogate parameters of the outcome [162] are critical
in order to achieve meaningful study results by applying
accuracy-adjusted estimators [163, 164]. If, as shown before
[13], reliability of microscopy-based parasite diagnostics is
limited, molecular assays should be considered [11, 12],
although molecular diagnostic tests for parasitic disease are
still scarcely applied [165]. Thereby, PCR-based therapy
control has to consider that DNA clearance from stool,
either by excretion or nucleases, is a stochastic process. In
literature, contradicting reports of DNA persistence after
cleared infections between few days and several weeks within
the complex stool matrix exist [166, 167]. Based on the
experience at the German National Reference Centre for
Tropical Pathogens Bernhard Nocht Insititute for Tropical
Medicine Hamburg, G. duodenalis DNA should be cleared
from stool at least 14 days after the end of a successful
therapy. However, spontaneous cure of giardiasis has to be
considered as well when estimating the patient numbers to
be included [4]. Suggestions to overcome obstacles for the
study design are included in Table 1. A major challenge for

Table 1. Suggestions to circumvent obstacles for therapeutic studies
on optimal treatment of therapy-refractory giardiasis

Obstacle Circumvention strategy

Low numbers of patients with
therapy-refractory giardiasis

Multi-centric trials and focusing
on limited numbers of

treatment arms with drugs,
dosages and drug combinations

Lacking standardized
diagnostics for antimicrobial
resistance in G. duodenalis

Combination of culture-based,
sequence-based and

comparative proteomics
approaches as well as clinical
and diagnostic case definitions

Lacking reliability of
microscopy for the outcome
assessment

Use of more sensitive real-time
PCR approaches in

combination with clinical case
definitions

Imperfect accuracy of case
definitions

Assessment of sensitivities and
specificities in pilot studies, then
application of accuracy adjusted

estimators
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studies on the optimal treatment of giardiasis is the under-
lying economics, as it is considered as a neglected disease
with low funding priority and limited commercial interest
[159, 168]. Accordingly, the topic will most likely have to
remain in the scope of not-for-profit research activities.

Last not least, next to the development and implementa-
tion of new therapeutic strategies, infection prevention should
not be neglected. Therefore, studies on successful enforce-
ment of adequate hygiene standards to reduce both the
transmission of G. duodenalis and the infectious burden
will remain an issue of relevance [169]. Further, due to the
difficult-to-control resistance conditions including the risk
of multidrug resistance in G. duodenalis [170], also vaccine
development remains an ongoing issue for the control of
giardiasis [171].
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