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Abstract: Background: Metabolomics is useful in elucidating the progression of diabetes; however,
the follow-up changes in metabolomics among health, diabetes mellitus, and diabetic kidney disease
(DKD) have not been reported. This study was aimed to reveal metabolomic signatures in diabetes
development and progression. Methods: In this cross-sectional study, we compared healthy (n = 30),
type 2 diabetes mellitus (T2DM) (n = 30), and DKD (n = 30) subjects with the goal of identifying
gradual altering metabolites. Then, a prospective study was performed in T2DM patients to evaluate
these altered metabolites in the onset of DKD. Logistic regression was conducted to predict rapid
eGFR decline in T2DM subjects using altered metabolites. The prospective association of metabolites
with the risk of developing DKD was examined using logistic regression and restricted cubic spline
regression models. Results: In this cross-sectional study, impaired amino acid metabolism was the
main metabolic signature in the onset and development of diabetes, which was characterized by
increased N-acetylaspartic acid, L-valine, isoleucine, asparagine, betaine, and L-methionine levels in
both the T2DM and DKD groups. These candidate metabolites could distinguish the DKD group
from the T2DM group. In the follow-up study, higher baseline levels of L-valine and isoleucine
were significantly associated with an increased risk of rapid eGFR decline in T2DM patients. Of
these, L-valine and isoleucine were independent risk factors for the development of DKD. Notably,
nonlinear associations were also observed for higher baseline levels of L-valine and isoleucine,
with an increased risk of DKD among patients with T2DM. Conclusion: Amino acid metabolism
was disturbed in diabetes, and N-acetylaspartic acid, L-valine, isoleucine, asparagine, betaine, and
L-methionine could be biomarkers for the onset and progression of diabetes. Furthermore, high
levels of L-valine and isoleucine may be risk factors for DKD development.

Keywords: type 2 diabetes mellitus; diabetic kidney disease; metabolomics; amino acid metabolism;
DNA methylation

1. Introduction

Diabetes mellitus (DM) is one of the fastest growing diseases, carrying persistent
increases in the worldwide disease burden. Metabolic dysregulations have emerged as
important signatures in the process of diabetes [1,2]. The application of high-throughput
metabolomics has revealed a series of plasma metabolites prospectively associated with
the biochemical process of diabetes. Studies have shown higher levels of branched-chain
amino acids and aromatic amino acids in prediabetic and diabetic patients compared
with normal subjects, and the underlying mechanism is that circulating amino acids may
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modulate insulin secretion and promote insulin resistance to promote pancreatic β-cell
exhaustion [2,3]. Additionally, studies have shown that disorders of carbohydrate (fructose
and glucose) metabolites or lipid (glycerophospholipids, sphingomyelins, and triglycerides)
metabolites may prospectively correlate with diabetes risk [4,5].

Further, metabolomics has shown that dysregulated lipid and amino acid metabolism
are associated with diabetic kidney disease (DKD) progression [6–8]. Recent studies
revealed several candidate metabolites discriminating DKD from diabetes, showing that
valine, xanthosine and 7-methyluric acid could be used to predict the development of
renal injury in T2DM patients [9,10]. However, studies exploring the step-wise changes of
metabolomics from healthy status to diabetes and then to DKD are limited, and researchers
have commonly analyzed the metabolomic changes among DKD, DM and healthy controls
at a single time point without following up DM patients to observe the onset of DKD. In
this study, we compared untargeted metabolomic profiles between type 2 DM (T2DM) and
healthy controls and between DKD and T2DM patients to identify altered metabolites with
the same trend. Then, we followed up T2DM patients to observe whether they developed
renal injury and analyzed the correlation between these altered metabolites with the onset
of renal injury in order to find the potentially altered metabolites from healthy status to
diabetes and then to DKD, as well as to evaluate the significance of these metabolites in
predicting the development of DKD.

2. Materials and Methods
2.1. Human Subjects

A total of 90 participants—30 T2DM patients (T2DM group), 30 DKD patients (DKD
group), and 30 healthy volunteers as the control group (Health group)—were enrolled from
the First Affiliated Hospital of Zhejiang University School of Medicine (Figure 1A). The T2DM
patients were in line with the ADA criteria [11]. Their eGFR was ≥60 mL/min/1.73 m2, and
their albuminuria (urine albumin–creatinine ratio, UACR) was ≤30 mg/g. The DKD patients
met the American Diabetes Association (ADA) criteria, and their renal injury was proven
by renal biopsy [11]. We excluded non-DKD patients; patients complicated with non-DKD
such as IgA nephropathy, membranous nephropathy, interstitial kidney disease; patients
with acute kidney injury; and patients with diseases that may affect albuminuria, such as
urinary tract infection, urinary tumors, and cardiac insufficiency. Then, we followed up
the patients in the T2DM group to observe whether they developed renal injury. The renal
injury was defined as a rapid eGFR decline (an annual eGFR decline ≥3 mL/min/1.73 m2)
or a diagnosis of DKD defined as eGFR declining to <60 mL/min/1.73 m2 or a persistently
elevated urinary albumin level (UACR ≥30 mg/g). The eGFR slopes were calculated by
the difference of eGFR values between baseline and the last follow-up time divided by
the number of years. The current study was reviewed and approved by the institutional
ethics committee of the First Affiliated Hospital of Zhejiang University, and all participants
provided informed consent.

2.2. Measurement and Sample Collection

Data on age, gender, diabetic duration, and blood pressure were collected from medical
records. The levels of fasting blood glucose, albumin, serum lipids, serum creatinine, and
serum blood urea nitrogen were measured in a routine clinical laboratory. We used 24 h
urine collection to assess the 24 h excretion of urinary albumin. The urinary albumin
and creatinine levels were collected to calculate the albumin-to-creatinine ratio (ACR).
eGFR was estimated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) equation [12]. Patients with DKD were categorically divided by ACR into those with
normal ACR (<30 mg/g Cr), microalbuminuria (30 to 300 mg/g Cr), and macroalbuminuria
(>300 mg/g Cr).
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Figure 1. Overview of metabolic alterations in T2DM and DKD. (A) A Study design overview. 
Plasma metabolomics was collected for all study participants, and metabolic alterations were com-
pared in both positive and negative ion modes. (B–D) Pathway enrichment analysis of significantly 
elevated metabolites in T2DM and DKD patients according to the KEGG pathway. (E) Differentially 
abundant metabolites in the onset and development of diabetes, stratified by KEGG pathways. 
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Figure 1. Overview of metabolic alterations in T2DM and DKD. (A) A Study design overview. Plasma
metabolomics was collected for all study participants, and metabolic alterations were compared in
both positive and negative ion modes. (B–D) Pathway enrichment analysis of significantly elevated
metabolites in T2DM and DKD patients according to the KEGG pathway. (E) Differentially abundant
metabolites in the onset and development of diabetes, stratified by KEGG pathways.

Blood samples for metabolomics analysis were collected from each participant after
overnight fasting, and then serum was isolated after centrifugation at 3000× g at 4 ◦C
for 15 min. Serum samples were stored at −80 ◦C before further sample preparation and
LC–MS analysis. Quality control (QC) samples were obtained by combining the serum
sample from the different groups, and the measurements and analyses were repeated with
the same LC–MS method.



Nutrients 2022, 14, 3345 4 of 14

2.3. Liquid Chromatography–Mass Spectrometry (LC–MS)

All serum samples were subjected to LC–MS metabolomics analysis on an ultra-high
performance liquid chromatography (UHPLC) system (Thermo Fisher Scientific, Waltham,
MA, USA) coupled with the TSQ Endura Triple Quadrupole Mass Spectrometer (Thermo
Fisher Scientific, San Jose, CA, USA), according to previously described methods [13].

2.4. Metabolites Analysis

Raw data files were converted into the mzXML format using ProteoWizard software
(version 3.0, Nashville, TN, USA) and processed by R package XCMS (version 3.2, La Jolla,
CA, USA) for peak detection and normalization. The resulting three-dimensional data
involving the peak number, sample name, and normalized peak area were fed to SIMCA
software (version 14.1, MKS Data Analytics Solutions, Umea, Sweden) for principal compo-
nent analysis (PCA) and orthogonal projections to latent structures-discriminant analysis
(OPLS-DA). The metabolites were identified using the HMDB, PubChem, and ChEBI
databases. The variable importance in projection (VIP) was used to identify differential
metabolites in the DKD group relative to the T2DM group or the Health group. Metabolites
with statistical significance (VIP > 1.0 and p < 0.05) were considered to be potential markers
capable of differentiating DKD from T2DM or the control group. In addition, pathway
enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database.

2.5. Statistical Analysis

All statistical analyses were performed using SPSS (version 25, Chicago, IL, USA), R
(version 3.6.3, R Foundation for Statistical Computing, Vienna, Austria), and python (ver-
sion 3.7, Python Software Foundation, Amsterdam, The Netherlands). Data were presented
as the mean ± standard deviation for normal distribution and as median (interquartile
range) for non-normal distribution. Data of normal distribution were compared using
the independent sample t-test and the one-way analysis of variance, while the indepen-
dent sample Kruskal–Wallis test was used for comparisons of non-normally distributed
data. Pearson’s correlation was used to assess the association between metabolites and
kidney function indicators. Moreover, receiver operating characteristic (ROC) analysis
was performed to evaluate the diagnostic capability of identified potential metabolites. In
the follow-up study, a logistic regression model was used to test associations of metabo-
lites with rapid eGFR decline, and multivariate Cox analysis was performed to determine
independent risk factors of diabetes prognosis. Restricted cubic spline (RCS) analysis
was used to examine the nonlinear association of metabolites levels with DKD risk. Non-
linearity was tested using the likelihood ratio test. p-value < 0.05 was considered to be
statistically significant.

3. Results
3.1. Metabolic Features in All Participants

The clinical characteristics of the Health, T2DM, and DKD groups were summarized in
Table 1. There were no significant differences in age, sex, and duration of diabetes between
the T2DM and DKD groups. Metabolomics showed positive and negative ion modes to
detect all samples, and a total of 2433 serum metabolites were identified. To determine
whether metabolites differed among the three groups, we performed principal components
analysis (PCA) (Supplementary Figure S1). Moreover, an optimal orthogonal partial least
squares-discriminant analysis (OPLS-DA) model was obtained using total area normal-
ization to conduct the data analysis of metabolite profiling (Supplementary Figure S2). A
permutation test was used to estimate the OPLS-DA model, while Q2Y and R2Y values
close to 1 indicated that there was no overfitting. Supplementary Figure S3 indicates that
the OPLS-DA model obtained high predictive features in the Health, T2DM, and DKD
groups. According to the screening criteria (p-value < 0.05 and VIP values > 1), the statis-
tical significance of metabolites was estimated to determine whether they were potential
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biomarkers between two groups in volcano plots (Supplementary Figure S4). Surprisingly,
KEGG pathways showed the same paths of increased metabolite intensities among the
progression of T2DM and DKD, with particular pathway focus on amino acid metabolisms,
including arginine and proline metabolism, glutathione metabolism, and glycine, serine,
and threonine metabolism (Figure 1B–D).

Table 1. Clinical and biochemical parameters in Health, T2DM, and DKD groups.

Health (n = 30) T2DM (n = 30) DKD (n = 30) p a p b

Age, years 39.20 ± 10.68 53.30 ± 17.00 50.70 ± 10.36 <0.001 0.478
Male sex 18 (60.00) 15 (50.00) 11 (36.70) 0.436 0.297
Duration of diabetes, years / 6.24 ± 5.70 7.08 ± 4.69 / 0.535
Systolic blood pressure, mmHg 119.40 ± 11.62 119.47 ± 21.38 142.87 ± 21.60 0.988 <0.001
Diastolic blood pressure,
mmHg 76.50 ± 6.12 75.53 ± 9.07 87.53 ± 11.82 0.630 <0.001

Total cholesterol, mmol/L 4.32 (3.73, 4.96) 3.83 (3.40, 4.55) 5.06 (3.26, 6.41) 0.017 0.012
Triacylglycerol, mmol/L 1.10 (0.81, 1.62) 1.03 (0.72, 2.04) 1.52 (1.06, 2.23) 0.784 0.025
HDL-cholesterol, mmol/L 1.13 ± 0.36 0.93 (0.82, 1.31) 1.24 ± 0.35 0.693 0.098
LDL-cholesterol, mmol/L 2.43 ± 0.60 1.95 (1.66, 2.68) 2.90 ± 1.35 0.145 0.012
Fasting glucose, mmol/L 4.70 ± 0.37 8.29 ± 3.35 6.77 ± 3.15 <0.001 0.081
HbA1c, % / 10.81 ± 2.39 7.67 ± 2.35 / <0.001
Creatinine, µmol/L 66.00 (59.00, 80.25) 59.00 (53.50, 83.00) 107.00 (84.50, 146.75) 0.325 <0.001
eGFR, ml/min/1.73 m2 104.01 ± 13.22 98.12 ± 21.77 63.23 ± 24.84 0.211 <0.001
Urea nitrogen, mmol/L 4.72 (4.15, 6.20) 5.20 (4.30, 6.40) 7.25 (6.23, 10.08) 0.520 <0.001
Uric acid, µmol/L 327.83 ± 119.46 280.07 ± 82.59 390.23 ± 113.53 0.077 <0.001
Albumin, g/L 47.95 (44.73, 50.15) 42.10 (40.00, 44.60) 30.75 (24.13, 40.03) <0.001 <0.001
24 h urine protein, g / 0.06 (0.04, 0.09) 3.22 (1.11, 5.14) / <0.001

a p-value for comparing Health group with T2DM group. b p-value for comparing T2DM group with DKD group.

To identify potential biomarkers in the progression of DM and DKD, we screened
out metabolites that were elevated or gradually reduced from the Health group to the T2DM
and DKD groups in the same direction with the PCA models (Supplementary Figure S1C,D).
The metabolite-associated pathways were enriched among the progression of DM and
DKD, where the majority were encoded in amino acid metabolism (Figure 1E), as described
above. A total of 18 metabolites were identified (Supplementary Table S1), and six metabo-
lites could be mapped into biochemical pathways. Compared with the Health group, the
T2DM group had higher levels of N-acetylaspartic acid (NAA), L-valine, betaine, isoleucine,
asparagine and L-methionine. The same trend was found between the T2DM and DKD
groups (Figure 2A–F). Almost all metabolites were shown to be involved in amino acid
metabolism, implying that amino acid metabolism may play an important role in the
progression of DM and DKD. Moreover, the changing trend of other metabolites in the
Health, T2DM, and DKD groups are shown in Supplementary Figure S5.

3.2. Correlation between Metabolites and Clinical Parameters

As shown in Figure 2G and Table 2, the metabolites of amino acids showed a broad
range of correlations with clinical parameters. Serum albumin and eGFR were negatively
correlated with levels of NAA, L-valine, betaine, isoleucine, asparagine and L-methionine.
In contrast, serum creatinine and albuminuria were positively correlated with levels of
L-valine, betaine, isoleucine, asparagine and L-methionine, and serum creatinine was also
positively correlated with NAA. Based on the significant correlation of metabolites with
renal function and proteinuria, we further analyzed the levels of metabolites in different
subgroups of CKD stages and proteinuria. There were no significant differences in NAA,
L-valine, betaine, isoleucine, asparagine, or L-methionine between the DKD patient groups
with different CKD stages (Supplementary Figure S6). In different subgroups of degree of
proteinuria, L-valine and betaine levels successively increased in the macroalbuminuria
group compared with the normal albuminuria group (Supplementary Figure S7).
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Figure 2. Metabolic differences across the Health–T2DM–DKD gradient. (A–F) Differential metabo-
lites among Health, T2DM, and DKD groups, including the relative intensities of the six up-regulated
overlapping metabolites from Health to T2DM and towards DKD. (G) The correlations between
differential metabolites and clinical parameters. Significant p-value < 0.05. * p < 0.05.

Table 2. Correlation analysis between clinical parameters and metabolites.

eGFR Serum Creatinine Albuminuria Serum Albumin

Metabolites Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value

N-acetylaspartic
acid −0.339 0.001 0.316 0.002 0.235 0.104 −0.423 <0.001

L-valine −0.537 <0.001 0.419 <0.001 0.593 <0.001 −0.617 <0.001
Betaine −0.488 <0.001 0.391 <0.001 0.498 <0.001 −0.585 <0.001
Isoleucine −0.584 <0.001 0.482 <0.001 0.698 <0.001 −0.727 <0.001
Asparagine −0.423 <0.001 0.383 <0.001 0.389 0.006 −0.599 <0.001
L-methionine −0.427 <0.001 0.348 0.001 0.422 0.003 −0.497 <0.001

3.3. Validation of the Potential Biomarkers

To better understand the possible role of metabolites in distinguishing between the
Health and T2DM groups or between the T2DM and DKD groups, ROC analysis was
performed (Figure 3 and Table 3). Serum metabolite levels of NAA, L-valine, betaine,
asparagine and L-methionine demonstrated accuracy and power in discriminating the DKD
group from the T2DM group, as well as the T2DM group from the Health group, suggesting
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that metabolite differences may provide a way for identifying potential candidates for
diabetes and DKD.
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Table 3. The diagnostic power of different metabolite biomarkers in differentiating T2DM from
Health controls or DKD from T2DM.

Metabolites Pathway and Sub-Pathway
AUC (95% CI)

Health vs. T2DM T2DM vs. DKD

N-acetylaspartic acid Alanine, aspartate and glutamate metabolism 0.777 (0.655, 0.898) 0.739 (0.612, 0.866)
L-valine Valine, leucine and isoleucine degradation 0.943 (0.889, 0.997) 0.834 (0.733, 0.936)
Betaine Glycine, serine and threonine metabolism 0.863 (0.766, 0.960) 0.834 (0.732, 0.937)
Isoleucine Valine, leucine and isoleucine degradation 0.951 (0.905, 0.997) 0.932 (0.869, 0.995)
Asparagine Alanine, aspartate and glutamate metabolism 0.942 (0.889, 0.995) 0.809 (0.698, 0.920)
L-methionine Cysteine and methionine metabolism 0.852 (0.754, 0.950) 0.753 (0.628, 0.878)

3.4. Correlation of Metabolites with Diabetes Progression

For patients in the T2DM group, after a median follow up of 69.00 (46.00, 71.00) months,
14 T2DM patients showed an annual eGFR decline ≥3 mL/min/1.73 m2 and 12 T2DM
patients met the diagnosis criterion of DKD. In the logistic regression models, the con-
centrations of both L-valine and isoleucine were significantly associated with rapid eGFR
decline (respectively, OR = 3.292, 95% CI = 1.293–8.378; OR = 1.419, 95% CI = 1.052–1.915)
(Figure 4A). Univariable Cox regression analysis showed that high levels of L-valine
and isoleucine were risk factors for DKD. After adjustment for the parameters of base-
line age, sex, blood pressure, diabetes duration, eGFR, and albuminuria, the upregu-
lated L-valine (HR = 2.583, 95% CI = 1.006–6.629, p = 0.048) and isoleucine (HR = 1.670,
95% CI = 1.206–2.312, p = 0.002) remained independent risk factors for the development of
DKD in multivariate Cox regression (Figure 4B).

Nutrients 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

T2DM patients met the diagnosis criterion of DKD. In the logistic regression models, the 
concentrations of both L-valine and isoleucine were significantly associated with rapid 
eGFR decline (respectively, OR = 3.292, 95% CI = 1.293–8.378; OR = 1.419, 95% CI = 1.052–
1.915) (Figure 4A). Univariable Cox regression analysis showed that high levels of L-va-
line and isoleucine were risk factors for DKD. After adjustment for the parameters of base-
line age, sex, blood pressure, diabetes duration, eGFR, and albuminuria, the upregulated 
L-valine (HR = 2.583, 95% CI = 1.006–6.629, p = 0.048) and isoleucine (HR = 1.670, 95% CI = 
1.206–2.312, p = 0.002) remained independent risk factors for the development of DKD in 
multivariate Cox regression (Figure 4B). 

 
Figure 4. Association of metabolites with diabetes progression. (A) The associations of metabolic 
alterations (per one-point increment) with rapid eGFR decline. (B) The association between meta-
bolic alterations (per one-point increment) and risk of new-onset diabetic kidney disease. Adjusteda, 
without stratification, for age, sex, blood pressure, duration of diabetes, baseline eGFR, and albumi-
nuria. 

Moreover, restricted cubic spline analysis indicated a significant dose–response rela-
tionship between the risk of DKD and metabolites (Figure 5). A nonlinear association was 
observed between new-onset DKD and L-valine, isoleucine, and asparagine levels (p for 
nonlinearity < 0.05). That is, when levels of L-valine and isoleucine were relatively low, 
there was a negative correlation between L-valine and isoleucine levels and DKD risk; 
however, when L-valine and isoleucine exceeded certain thresholds (L-valine > 0.0097 
peak intensities and isoleucine > 0.0205 peak intensities), the risks of new-onset DKD in-
creased. 

Figure 4. Association of metabolites with diabetes progression. (A) The associations of metabolic
alterations (per one-point increment) with rapid eGFR decline. (B) The association between metabolic
alterations (per one-point increment) and risk of new-onset diabetic kidney disease. Adjusted a, with-
out stratification, for age, sex, blood pressure, duration of diabetes, baseline eGFR, and albuminuria.

Moreover, restricted cubic spline analysis indicated a significant dose–response re-
lationship between the risk of DKD and metabolites (Figure 5). A nonlinear association
was observed between new-onset DKD and L-valine, isoleucine, and asparagine levels
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(p for nonlinearity < 0.05). That is, when levels of L-valine and isoleucine were relatively
low, there was a negative correlation between L-valine and isoleucine levels and DKD risk;
however, when L-valine and isoleucine exceeded certain thresholds (L-valine > 0.0097 peak
intensities and isoleucine > 0.0205 peak intensities), the risks of new-onset DKD increased.
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4. Discussion

Through untargeted metabolomics profiling, the present study focused on the continu-
ously changing metabolites from healthy status to diabetes and then to DKD. Unique to the
present research, we performed a prospective study to search for circulating metabolites
associated with progressive eGFR decline and progression to DKD among T2DM patients.
In this cross-sectional study, we found that upregulated amino acid metabolites levels were
the main metabolic signatures in the occurrence and development of diabetes, which was
characterized by increased NAA, L-valine, isoleucine, asparagine, and L-methionine levels.
We also provided evidence that these candidate metabolites could distinguish the Health
group and the DKD group from the T2DM group. Given this background, metabolites may
offer insights into diabetes progression, so we evaluated associations of these previously
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identified metabolites with kidney function decline in a follow-up study. A key finding
was that L-valine and isoleucine showed a strong independent effect on progressive renal
decline in T2DM patients. Furthermore, the fact that higher baseline levels of L-valine and
isoleucine were associated with an increased risk of DKD provides strong evidence that
these metabolites are causally involved in diabetes development and progression. Next,
we will discuss the biology of these metabolites and possible mechanisms through which
they may contribute to the occurrence of diabetes and the progression of renal injury.

Amino acids are building blocks for all life forms, for which absorption and trans-
portation are found in the small intestine, colon, liver, kidneys, and other tissues, therefore
allowing amino acids to affect the growth and health of humans [14,15]. Branched chain
amino acids (BCAAs)—referring to valine, leucine, and isoleucine—serve as important
signaling molecules regulating the metabolism of proteins, glucose, and lipids, which
play critical roles in energy homeostasis. Alterations in BCAA catabolism were found in
diabetes decades ago, and BCAA metabolism is altered before the development of diabetes
and is associated with the onset of it [16–18]. These high circulating levels of BCAAs are
associated with an increased risk of type 2 diabetes, which has been verified in multiple
cohorts [19–21]. Several mechanisms have been implicated in raising BCAA levels in in-
sulin resistance (Supplementary Figure S8A). In the current study, we found that valine
and isoleucine were gradually upregulated in T2DM and DKD patients. Consistent with
our expectations, the different circulating concentrations of valine and isoleucine could
distinguish healthy subjects and DKD patients from T2DM patients. These results are in
agreement with the findings of previous studies, which confirmed the role of altered BCAA
metabolism in the pathophysiology of diabetes [22,23]. A possible reason for these findings
is that a defective BCAA catabolism regulates rapamycin (mTOR) pathway activation and
insulin receptor substrate protein phosphorylation, which lead to insulin resistance and the
accumulation of cytotoxic metabolites. Another noteworthy observation is that we found
that high circulating levels of valine and isoleucine were correlated with decreased eGFR
levels and increased albuminuria levels. Given these results and prior findings showing
associations of amino acids with vascular complications in diabetes, we further explored
whether amino acid levels were associated with adverse renal outcomes in T2DM patients.
In a follow-up study of individuals with type 2 diabetes, we found that higher levels of
both valine and isoleucine were associated with an increased risk of incident DKD. These
findings supported the idea that BCAA metabolism potentially participates in the onset of
diabetic kidney disease, and the pathophysiology underlying these associations is worthy
of further investigation.

In addition to BCAAs, we also identified four other amino-acid-correlated metabolites
that were significantly associated with diabetes and diabetic kidney diseases. The results
of this study demonstrated the step-wise upregulation of circulating asparagine, NAA,
L-methionine, and betaine in T2DM and DKD patients, which was significantly associated
with renal function, serum albumin, and albuminuria. Our results also showed that these
increased amino-acid-related metabolites could distinguish healthy subjects and DKD
patients from T2DM patients, so they could be potential biomarkers for diabetes and DKD.
Asparagine and aspartate can be converted to each other with metabolism fluctuation, and
the roles of asparagine and aspartate homeostasis regulation have been highlighted in
metabolic disorders. Previous research showed that an increasing asparagine-to-aspartate
ratio was a risk for the incident of diabetes [24], which is consistent with the results
obtained in our study. These findings could be explained by the idea that high levels of
asparagine upregulate the mTORC1 pathway [25], which contributes to the development of
insulin resistance [26]. However, other studies have shown that asparagine has an inverse
association with diabetes risk [27], which was contrary to the results of our study. To
date, the association of circulating asparagine levels and diabetes is still controversial in
clinical settings. The alteration of asparagine metabolism has not been demonstrated in
the pathogenesis of diabetes, so further studies investigating the underlying changes of
asparagine in diabetes patients are still warranted. Moreover, NAA is involved in neuronal
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metabolism and downregulated in the brain of diabetes patients, which have been reported
to be the key metabolites in the cognitive dysfunction of diabetes [28,29]. A previous study
showed that lower levels of NAA in the brains of patients with diabetes indicate partial
neuronal loss [30]. Despite these findings, circulating NAA levels in T2DM and DKD
patients have received little attention, and our study demonstrated increased NAA levels
in the blood of these patients. Although our findings have broadened insights into NAA
metabolism in the progression of diabetes, the homeostasis of NAA in the circulation and
cerebrum is worthy of further exploration.

DNA methylation could be involved in glucose metabolism, insulin resistance, and
other conditions, leading to the pathogenesis of diabetes that continues to be an area of
active research [31,32]. Several studies have shown that alterations of the DNA methyla-
tion in human tissues are of importance for the epigenome and may thereby affect gene
expression and the pathogenesis of diabetes mellitus (Supplementary Figure S8B). Indeed,
DNA methylation changes in diabetes may eventually contribute to vascular complica-
tions, including diabetic kidney disease. Methionine and betaine are vital methyl donors
in DNA methylation, serving as cofactors for affecting methylation. Methionine is con-
verted into S-adenosyl-l-methionine (SAM) and S-adenosyl-homocysteine (SAH), and the
SAM/SAH ratio is known as a methylation regulation index. In line with the results of
our study, the upregulation of circulating methionine and its catabolites has been observed
in diabetes patients, and circulating methionine abundance could predict the risk of de-
veloping diabetes [33]. Methionine restriction attenuates glucose homeostasis, insulin
sensitivity, oxidative stress, inflammation in diabetes, and this evidence highlights the idea
that methionine is a potential contributor to the pathogenesis of diabetes [34]. Furthermore,
methionine restriction has also been proven to activate renoprotective genes and improve
kidney function decline associated with metabolic dysfunction [35,36], which is consistent
with our findings. In addition, betaine is also involved in diabetes metabolic alterations
through the control of the SAM/SAH ratio of DNA methylation. Betaine is upregulated
in the blood of diabetes models and patients, so it is also considered a poor predictor
for incident diabetes [37,38]. Nevertheless, a high circulating betaine concentration could
contribute to diabetes complications, including diabetic kidney disease [39,40]. Therefore,
more systematic studies are warranted to identify whether betaine is a potential target in
diabetes conditions.

There were few limitations in the current study. First, a single untargeted metabolomics
platform was used with relatively small-scale samples, and integration between metabolomics
and proteomics should be utilized for systems biology information in the future. Second,
despite the strong design of the study with a cross-sectional and follow-up cohort, an inde-
pendent validation cohort is needed to confirm the presented findings because the number
of current samples was insufficient to support correction for multiple comparisons. Finally,
the molecular mechanisms of the studied metabolites are still uncertain, and mechanistic
studies in diabetic models will be indispensable to understanding the roles of metabolites
in future works.

5. Conclusions

We performed a cross-sectional study to identify consistently altered metabolites in di-
abetes and diabetic kidney diseases, and metabolomic changes in T2DM and DKD subjects
were characterized by upregulated L-valine, isoleucine, asparagine, NAA, L-methionine,
and betaine levels. The findings in a follow-up cohort suggested that L-valine and isoleucine
were associated with an increased risk of incident DKD. This study highlights the idea that
BCAA metabolism is disturbed in diabetes, which could be considered a biomarker for the
prediction of DKD.
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