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Neutrophils recognize particulate substrates of microbial or endogenous origin and 
react by sequestering the cargo via phagocytosis or by releasing neutrophil extracellular 
traps (NETs) outside the cell, thus modifying and alerting the environment and bystander 
leukocytes. The signals that determine the choice between phagocytosis and the gener
ation of NETs are still poorly characterized. Neutrophils that had phagocytosed bulky 
particulate substrates, such as apoptotic cells and activated platelets, appear to be 
“poised” in an unresponsive state. Environmental conditions, the metabolic, adhesive 
and activation state of the phagocyte, and the size of and signals associated with the 
tethered phagocytic cargo influence the choice of the neutrophils, prompting either 
phagocytic clearance or the generation of NETs. The choice is dichotomic and apparently 
irreversible. Defects in phagocytosis may foster the intravascular generation of NETs, 
thus promoting vascular inflammation and morbidities associated with diseases char
acterized by defective phagocytic clearance, such as systemic lupus erythematosus. 
There is a strong potential for novel treatments based on new knowledge of the events 
determining the inflammatory and prothrombotic function of inflammatory leukocytes.
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NeUTROPHiLS ReCOGNiZiNG PARTiCULATe SUBSTRATeS

Neutrophils activate stereotyped programs when the environment changes. As most professional 
phagocytes, they react when challenged with bulky preys. Neutrophils kill microbes via phagocytosis, 
generation of oxidant species, and activation of the cell proteolytic machinery, processes that have 
been extensively studied in the last decades. The release of neutrophil extracellular traps (NETs) 
vicariates frustrated or ineffective phagocytosis. It enhances the efficacy of the innate response coping 
with invading microbes. Moreover, NETs counterbalance microbial strategies to evade the immune 
response. NETs are large macromolecular structures that comprise neutrophil DNA, citrullinated 
histones, and an array of active proteases (1, 2). Because of the adhesive properties of nucleic acids 
and of the action in the extracellular environment of histones and of neutrophil enzymes, NETs 
contribute to the host defense against various microbial species (3). They form a three-dimensional 
template absorbing and retaining players of the humoral innate immune response, the prototypic 
long pentraxin, pentraxin 3, and complement (4–8).

Excellent recent reviews detail the mechanisms involved in the generation of NETs and we 
remand to them interested readers (3, 9–13). Of importance, NET formation and extrusion implies 
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a dramatic rearrangement of the neutrophil intracellular archi-
tecture. Chromatin decondensation is a prerequisite for NET 
assembly and depends on the citrullination of histones driven 
by the PAD4 enzyme (14, 15), by the action of DEK, a nuclear 
chromatin protein involved in epigenetic and transcriptional 
regulation (16), and by the concerted action of enzymes, which 
are partially complexed in the azurophilic primary granules, 
myeloperoxidase, and elastase. Elastase action is responsible of 
the partial proteolytic processing necessary to disrupt chromatin 
packaging (17–19). von Willebrand factor adsorbed to NETs, 
citrullinated histones, and nucleic acid negative charges concur 
to the recruitment and the activation of platelets, thus impacting 
on hemostasis and eventually favoring thrombosis. Thrombosis 
initiated by the innate immunity, also referred to as “immuno-
thrombosis,” plays an increasingly recognized role in vessel pro-
tection, limiting the intravascular growth and the hematogenic 
spread of infectious agents (5, 20–23). Conversely, endogenous 
mechanisms involving DNase1 and DNase1-like 3 control the 
thrombogenic potential of NETs in vivo, under conditions where 
microbial and sterile stimuli are responsible for the activation of 
neutrophils (24).

In this essay, we focus on neutrophils that face non-microbial 
“unconventional” particulate substrates, apoptotic cells, and 
activated platelets in particular. Non-infectious particulates do 
not usually pose a direct challenge to the integrity of the organ-
ism. However, they cause neutrophil responses surprisingly 
similar to those caused by microbes, including most notably 
phagocytosis and generation of NETs. Neutrophils avidly 
phagocytose apoptotic cells and are the prominent scavengers 
of cell remnants in biological fluids, the blood in particular, 
where they represent the counterpart of scavenger macrophages 
in solid tissues. Neutrophils that had internalized extracellular 
nuclei are referred to as “LE cells,” and they represent a virtually 
unique feature of the prototypical systemic autoimmune disease, 
systemic lupus erythematosus (SLE) (25, 26). Initially, the LE 
phenomenon was thought to reflect the lysis of a neutrophil 
lobe. In contrast, the intracellular vesicles contain entire nuclei 
that had actually been phagocytosed, transferred into the 
phagolysomes, and partially digested. Phagocytosis has been 
confirmed by flow cytometry (27, 28) and depends on factors in 
the biological fluids of patients with SLE, in particular autoan-
tibodies recognizing nuclear antigens, histones and DNA, 
and complement (25). LE cells have been originally identified 
in the bone marrow of lupus patients. They have been found 
in the blood, synovial and cerebrospinal liquids, and serosal 
effusion (25, 26). The LE phenomenon can be induced in vitro 
and, besides highlighting the importance of opsonizing signals, 
reveals that whole nuclei are frequently present in biological 
fluids. This might depend on pyroptosis, an inflammatory form 
of cell death, in which entire nuclei surrounded by the nuclear 
membrane are released together with inflammatory cytokines in 
the microenvironment (29).

Indeed cytokines and other signals important in phagocyte 
biology, including the growth factor, GM-CSF, are known to 
enhance the ability of neutrophils in the fluid phase to recognize 
and to internalize apoptotic cells (30–32). Conversely, the deple-
tion of phagocytes before sterile acute tissue injuries causes the 

accumulation of cell debris, influencing the outcome of the repair 
and the associated immune response (33, 34). Thus, neutrophils 
emerge as key players in the maintenance of tissue homeostasis 
in physiological conditions (35).

Neutrophils and platelets frequently and extensively interact 
in the peripheral blood and at sites of inflammation. Their 
cross-talk is important in the maintenance of the homeostasis. 
Platelets scan the vascular surface and collect deposited bacteria, 
boosting neutrophil activities such as NET generation (36), 
while the deregulated neutrophil–platelets interaction plays a 
role in the pathogenesis of rheumatic diseases (21, 37, 38) and 
severe sepsis (39). Platelets and neutrophils adhere and form 
heterotypic aggregates, which are found not only in the blood of 
patients with inflammatory or autoimmune diseases but also in 
the blood of patients with cancer and acute coronary syndromes 
(40). Heterotypic aggregates sustain and amplify the activation of 
platelets and neutrophils, fostering their inflammatory, antibacte-
rial, hemostatic, and pro-thrombotic actions (11). The ability to 
release cytokines, chemokines, and vasoactive molecules and 
the enhanced ability of leukocytes to extravasate and to reach 
inflamed tissues reflect the reciprocal activation of platelets and 
neutrophils (36, 41–44).

Neutrophil–platelet initial interaction depends in  vitro and 
in vivo on platelet P-selectin interaction with the PSGL1 receptor 
on leukocytes (45–49). Because of the initial tethering event, 
neutrophils redistribute their vesicular content and expose on 
the plasma membrane biologically active molecules, such as 
myeloperoxidase and tissue factor, which are normally contained 
in the granules or in the cytoplasm. Moreover, they upregulate 
the expression of phagocyte β2 integrins that are transactivated, 
acquiring a higher affinity for the fibrinogen presented by platelet 
α integrins. The latter interaction stabilizes the adhesion between 
the phagocyte and the platelet (50–52) (Table 1).

Depending on environmental conditions, the phagocyte 
metabolism, activation and interaction with the extracellular 
matrix, and still poorly identified signals expressed/released by 
the tethered platelets, three outcomes can be envisaged. First, at 
the end of the sustained interaction, leukocytes dissociate from 
platelets—possibly because of active proteolysis of ligands by 
neutrophil enzymes—and reach the inflammatory sites where 
they exert their effector function (41–43, 55, 67).

Second, active engulfment takes place, which is exquisitely 
dependent on the recognition of a common feature of activated 
platelets, i.e., the exposure of anionic phospholipids, such as 
phosphatidylserine (PS). The direct or indirect recognition of 
PS on the prey can result in the rearrangement of actin-based 
cytoskeleton and the internalization of the tethered platelet by 
professional and non-professional phagocytes, such as endothe-
lial cells (51, 55, 68, 69). Under physiological conditions, rec-
ognition and phagocytic clearance of activated platelets purge 
the bloodstream of procoagulant stimuli while quenching the 
neutrophil sensitivity to inflammatory stimuli (see below) (70). 
The phagocytic removal of activated platelets conforms to the 
“tether and tickle” model originally proposed for the removal of 
apoptotic dying cells by Fadok, Henson, and collaborators (71, 
72). This is a two-step model in which (i) the dying cell is ini-
tially tethered to the phagocyte and (ii) other interactions based 
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TABLe 1 | Some defined platelet/neutrophil molecular interactions.

Platelet/
platelet-derived 
microparticles

Bridging moiety Neutrophil Possible outcome Main relevant 
references

Pselectin None described PSGL1 Neutrophil β2 integrin upregulation/transactivation (50, 53, 54)

Neutrophil degranulation (51, 55–57)

ROS generation (58, 59)

PS Gas-6? MERTK? Platelets clearance via phagocytosis (51)

Protein S? AXL?

MFG-8 RAGE? Phagocyte hyporesponsiveness to further inflammatory stimuli (51)
Others?

HMGB1 None described RAGE Neutrophil β2 integrin upregulation/transactivation (58, 60, 61)

Pericellular distribution of myeloperoxidase and elastase from primary granules (58, 60, 61)

Mitochondrial ROS formation (23, 62, 63)

Autophagy (58, 61)

Inflammatorymediated tissue damage (60, 64, 65)

NETs generation and thrombosis (58, 65)

Glycoprotein Ib Activated Mac1 Adhesion of resting platelets to activated neutrophils (63)

αIIβ3 Fibrinogen Activated Mac1 Adhesion of resting platelets to activated neutrophils (66)

MFG-E8, milk fat globule-EGF factor 8; NET, neutrophil extracellular trap; ROS, reactive oxygen species.
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on the direct or indirect recognition of PS transduce signals 
that initiate cell internalization (73, 74). In the case of activated 
platelets, the initial tethering depends on P-selectin recognition 
and immediately downstream events, while the availability of 
PS appears crucial for actual internalization of the phagocytic 
substrate (51, 55, 68, 69).

Third, the firm interaction between neutrophils and tethered 
PS-expressing phagocytic substrates is a potent inducer of NETs 
(see below). Indeed, regulation of the overall charge of the phago-
cytic substrate, like it occurs during apoptosis when glycosylated 
epitopes undergo caspase-dependent desialylation, influences the 
interaction between phagocyte and prey and the efficacy of the 
clearance (75).

PS AND CeLL CLeARANCe PROGRAMS

Phospholipid translocases, scramblases, and flippases, maintain 
the asymmetry of the plasma membrane phospholipids. Upon 
platelet activation triggered by various agonists, the intracellular 
Ca2+ concentration sharply increases, interfering with the trans-
locase action and causing the rapid, patchy, potentially transient 
exposure of PS (76). The pathway involves the disruption of the 
platelet inner mitochondrial membrane, an event underlying PS 
exposure by activated, apoptotic and senescent platelets (77). 
Activated cells often expose PS without being phagocytosed. 
This points out to the existence of “do not eat me” signals. The 
dynamics of exposure of PS represents another variable (78). PS 
recognition leads to phagocytosis only when PS aggregation by 
tethering receptors causes firm and lasting interactions between 
the phagocyte and the prey. Such tethering receptors comprise 
Tim4 for apoptotic cells and possibly PSGL1 for activated plate-
lets (78, 79). Finally, cells dying because of caspase-mediated 
programmed cell death might expose modified PS residues, 
thus providing a better substrate for recognition from at least 

some PS receptors (see below) and tagging cells for phagocytic 
clearance (80, 81).

In support, hindrance with the recognition of oxidized lipids 
interferes with the interaction between phagocyte and prey 
and the ensuing clearance of apoptotic cells (82). Moreover 
internalized oxidized phospholipids and oxysterols cause the 
activation of PPAR-delta receptors (83) and the LXR nuclear 
receptor in macrophages (84) in turn inducing the expression in 
macrophages of signals that further enhance the process such as 
the Mer receptor (84).

Oxidation-specific epitopes in general are recognized by vari-
ous pattern recognition receptors and components of the humoral 
innate immune systems, tagging for removal damaged cells and 
low-density lipoproteins. Of interest, natural IgM antibodies 
specifically and effectively bind to oxidized epitopes on blood 
microparticles, quenching their ability to trigger the production 
of inflammatory signals, IL-8 in particular from macrophages 
(85). Conversely, the accumulation of oxidized moieties per  se 
cause unrelenting inflammation and contribute to various human 
vascular disease, including atherosclerosis (85–87).

Diverse receptors recognize PS, either directly or through 
the moieties that PS binds on the outer leaflet of the plasma 
membrane. Receptors include Tim4, the tyrosine kinase recep-
tors Tyro3, Axl, and Mer (78, 88, 89). “Bridging” molecules 
comprise structurally and functionally heterogeneous soluble 
ligands such as Protein S, Gas-6, and milk fat globule-EGF factor 
8 (MFG-E8). Microparticles released from activated platelets 
bind via PS to Protein S and Gas-6 (90). Gas-6 stabilizes the 
interaction among activated platelets, endothelial cells, and 
leukocytes facilitating heterotypic cell aggregation in the blood 
(91), while the interaction among PS, GAS-6, and the Axl recep-
tor mediates microparticle clearance (90). MFG-E8 has been as 
well implicated in the formation of heterotypic aggregated and 
in PS-mediated clearance of platelets in in vivo models of sepsis 
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(69). Human neutrophils constitutively express the Mer receptor 
and upregulate its expression in septic conditions (92) (Table 1). 
Other molecules related to the humoral innate immune responses 
such as the beta2-glycoprotein 1, pentraxins, and complement 
fractions bind to apoptotic cells and activated platelets influenc-
ing their immunogenicity either because they provide a template 
for autoantibody binding or because they facilitate the local 
generation of adjuvant signals (8, 93–100).

Direct or indirect PS recognition is required on the one hand 
for the efficacy of phagocytosis. It also causes the selective produc-
tion of cytokines such as IL-10 and TGF-β and specialized classes 
of pro-resolving lipidic mediators such as resolvins (101–106) 
that prompt the active termination of the inflammatory response. 
In concert with the cytokines, IL-4 and IL-13, PS recognition 
links tissue damage to tissue repair by the reprogramming of local 
macrophages (107), which in turn guide the activation, the prolif-
eration, and the survival of stem and progenitor cells (108–111).

Tampering with the recognition of PS or PS-associated 
moieties thus leads to the accumulation of apoptotic debris, to 
persisting unrelenting inflammation, and to the failure in the 
ability of injured or damaged tissues to heal. Moreover, it is 
closely associated with the development of autoimmunity, often 
with serological and clinical features of the prototypic systemic 
autoimmune disease, SLE (86, 112–116). Autoimmunity follows 
the cross-presentation of apoptotic cell antigens to autoreactive 
T  cells in genetically susceptible backgrounds (114, 117–125). 
Autoimmunity, unrelenting inflammation, and accumulation of 
cell remnants associate in human SLE and in most SLE experi-
mental models with alteration of blood neutrophils (126). 
Exogenous MFG-E8 corrected in  vivo most alterations (see 
above), highlighting the link of systemic autoimmunity, defective 
neutrophil function, and the recognition of PS (127).

wHeN THe GAMe iS TOUGH, 
NeUTROPHiLS LOOK FOR COMPANY

As discussed above, the interaction with particulate substrates 
can trigger the production of NETs (128). The seminal work of 
Clark and collaborators has revealed that in experimental models 
of sepsis, bacterial LPS primarily activate the TLR4 of platelets. 
In turn, TLR4-activated platelets interact with neutrophils and 
commit them to the generation of NETs NETs (39, 129). Besides 
microbial constituents, sterile stimuli leading to platelet activation 
cause the generation of signals that trigger neutrophil activation 
and favor the production of NETs (58). HMGB1 is a prototypic 
endogenous inflammatory signal, which is expressed by platelets, 
is released upon activation, and represents a master regulator 
of leukocyte inflammatory activation and thromboinflamma-
tion (60–62, 130–135). Indeed the presentation of bioactive 
HMGB1—either soluble or associated with the plasma membrane 
of tethered platelets or of platelet-derived microparticles (58, 
60–62, 64, 65, 130)—to neutrophils represents a non-redundant 
signal, by which platelets instruct neutrophils to release NETs, 
via a pathway that involves the HMGB1 receptor expressed by 
neutrophils, RAGE (13). Platelets represent a “barometer” used 
by neutrophils to decide whether they should undergo activation. 

NETs generation occurs when inflammatory stimuli of microbial 
or endogenous origin exceed a threshold acceptable for platelets 
only (11, 39, 49).

NeUTROPHiLS THAT HAve 
PHAGOCYTOSeD KeeP CALM

The platelet barometer works not only by soliciting neutrophil 
responses but also by switching them off. Neutrophils that had 
phagocytosed bulky particulate substrates, such as apoptotic cells 
and activated platelets, appear to be “poised” in an unresponsive 
state, since they become unable to respond to further inflamma-
tory stimuli and fail to release their granular content or to gener-
ate NETs (51, 68, 128, 136). The “calming touch” associated with 
the phagocytosis of large PS-exposing particulate substrate (137) 
(Figure 1) might limit the collateral damages to inflamed vessels 
and tissues by the unrestrained activation of neutrophils (138).

THe CHOiCe OF NeUTROPHiLS iN 
FRONT OF CRYSTALS AND 
MiCROPARTiCLeS

Monosodium urate crystals, whose precipitation is the key event 
in the pathogenesis of gout (139), are potent NET inducers. 
Recent elegant studies have shed light on the clinical pattern of 
early gouty arthritis. This stage of the disease is characterized 
by acute and transient inflammatory responses to crystals that 
cannot be eliminated through phagocytosis and persist in the tis-
sues of patients for long periods (140). Early phases after crystal 
precipitation are characterized by the production of inflamma-
tory cytokines, IL-8 and IL-1β in particular (139, 141), and by the 
noxious effects of isolated, pro-inflammatory NETs (142). Later 
neutrophils accumulate within the tissue. The concentration of 
locally produced NETs increases, favoring NET aggregation. 
Aggregated NETs provide a proteolytic template, which traps 
cytokines and chemokines that undergo degradation by the 
neutrophil proteases associated with the NET DNA backbone. 
Inactivation of the chemokines and cytokines leads the swift 
termination of the inflammatory response despite persistence of 
precipitated crystals (140, 143), while aggregated NETs contrib-
ute to tissue damage and remodeling in late phases of the disease, 
referred to as tophaceous gout (142).

Environmental signals and intracellular events shape the 
transient response elicited by the crystals. They include (i) still 
uncharacterized signals activating the P2Y6 purinergic recep-
tor/store-operated calcium entry/IL-8 axis (144) and (ii) the 
presence of IL-1β, combined with the ability of neutrophils to 
activate the autophagic machinery (145). IL-1β and autophagy-
dependent NET generation also play a critical role in Familial 
Mediterranean fever, possibly the best characterized autoinflam-
matory disease, whose clinical manifestations comprise transient 
self-limiting inflammatory phases with fever, polyserositis, 
and acute phase responses (146). Neutrophil ability to activate 
autophagy is selectively downregulated during remitting phases 
of Familial Mediterranean fever via upregulation of the stress-
related protein REDD1 (regulated in development and DNA 
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FiGURe 1 | Neutrophils that had phagocytosed apoptotic cells or activated platelets fail to be activated when challenged with further inflammatory stimuli. 
Neutrophil extracellular traps (NETs) formation was monitored by confocal microscopy. Cathepsin G was revealed by immunofluorescence (Alexa Fluor 541, red), 
and DNA was counterstained with Hoechst and apoptotic cells preloaded with CFSE (equivalent to Alexa 488, green). (A) Unstimulated neutrophils; (B) neutrophils 
challenged with apoptotic cells; (C) neutrophils that had phagocytosed apoptotic cells and then were after adherence further stimulated with recombinant IL8. (D) 
β2 integrins were determined by flow cytometry in resting neutrophils (basal value), neutrophils with adherent tethered PS + cargos (platelets or apoptotic LCL cells), 
or neutrophils with intracellular PS + cargos (platelets or apoptotic LCL cells) after further stimulation with fMLP or IL8. Results (mean ± SEM) are expressed as the 
percentage of basal value. Adapted from Ref. (51, 128).
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damage responses 1) signal, suggesting that remission might be 
associated with a block of the ability to activate autophagy and 
to release inflammatory NETs (147).

IL-1β generated via macrophage inflammasomes plays a criti-
cal role in atherosclerosis, and cholesterol crystals prompt in vivo 
NET generation. Macrophages exposed to NETs respond by 
activating the TH17 cell-dependent pathway that amplifies and 
sustains the recruitment of neutrophils within the atherosclerotic 
plaque (148). Similar self-sustaining positive feedback forward 
loops might be involved in the establishment and growth of 
lesions and in the atherothrombotic complications associated 
with diseases in which neutrophil activation is involved (38, 44, 
56, 58, 149–154).

Relatively small (less than 1  μ) urate aggregates are a nor-
mal finding in the fluids of patients with hyperuricemia and 
only a fraction of these subjects develops acute gouty arthritis. 
Microaggregate clearance by blood neutrophils and monocytes 
prevents the actual precipitation of crystals, their frustrated 
phagocytosis, and the generation of NETs (155). Phagocytosis is 
assisted by fractions of the complement cascade and by the nega-
tive acute phase protein, fetuin (155). Therefore, even in the case of 
crystal recognition, phagocytosis and NET generation represent 
alternative outcomes of neutrophil activation, which may eventu-
ally adjust negatively to each other, as it has been demonstrated 
extensively for microbial structures [e.g., see Ref. (156)].

Microparticles also trigger NETs generation, playing a role 
in the pathogenesis of diseases characterized by extensive vas-
cular damage, such as lupus nephritis, systemic sclerosis, and 
preeclampsia (60, 157–160). Microparticles share signals with 
activated platelets and apoptotic cells, from which they often 
originate. Microparticle recognition involves a similar group of 
receptor/ligand pairs, including the direct or indirect recognition 
of PS and PS-associated moieties (90). However, the content of 
microparticles does not appear to be degraded in the phagolyso-
some. Microparticle constituents are often integrated within the 
phagocyte machinery and influences the cell function, differen-
tiation, and activation state (161–168), indicating that internal-
ized material is not routed to a conventional phagocytic route. 
Even synthetic particles induce NETs, and this effect is strictly 
dependent on their size (169). To the best of our knowledge, little 
is known on the possible action of microparticles on the ability of 
neutrophils to phagocytose particulate substrates.

MeCHANiSMS OF THe CHOiCe

The size of the particulate dramatically influences the outcome of 
its interaction with neutrophils (170, 171). Neutrophils efficiently 
phagocytose several microorganisms. After internalization, neu-
trophil granules are rapidly mobilized via mechanisms dependent 
on small GTPases and on interacting proteins. Primary azuro-
philic granules, which contain preformed microbicidal moieties 
including myeloperoxidase and neutrophil elastase, eventually 
fuse with phagosomes (172). The phagocyte NADPH oxidase 
NOX2 complex assembles within the resulting phagolysosome, 
and electrons are transferred to molecular oxygen, with massive 
production of reactive oxygen species (ROS) into the lumen 
(173, 174). The presence of ROS combined with the neutrophil 

enzymes guarantees the killing of internalized microbes and the 
further degradation of the internalized particulate.

Myeloperoxidase, elastase, and ROS are in parallel key signals 
in the generation of NETs. In this case, signals that activate neu-
trophils lead to an oxidative burst and to the generation of ROS 
in the absence of a competent phagolysome. Thus, ROS cannot 
promote the focused release of neutrophil enzyme within the 
vesicle, contributing to dismantle the internalized cargo. ROS 
promote the release of the azurosome complex, which contains 
among other components myeloperoxidase and elastase, from the 
membrane of azurophilic granules into the cytosol. The complex 
then binds to and degrades the actin-based cytoskeleton. This 
event is a critical checkpoint.

 (i) The degradation of the cytoskeleton is required to allow 
proteases to enter the nucleus (13, 18). Elastase and myelo-
peroxidase in particular concur to favor the decondensation 
of the chromatin via a pathway dependent on the ability of 
elastase to cleave histones but independent of the enzymatic 
activity of myeloperoxidase (17). Interference with the activity 
of elastase or complete absence of myeloperoxidase prevents 
the formation of NETs. When neutrophils have been previ-
ously engaged in phagocytosis, elastase and myeloperoxidase 
are sequestered within the phagolysome. They cannot reach 
the cytosol and eventually the nucleus and are not available 
for chromatin decondensation making it impossible for the 
phagocyte to generate NETs (18, 170).

 (ii) Conversely, the integrity of the cytoskeleton is required to 
phagocytose particulate substrates. Neutrophils dismantle 
to generate NETs, the actin-based cytoskeleton, and are not 
competent anymore to phagocytose particulates. Small Rac 
GTPases, components of the NADPH oxidase NOX2 com-
plex and required for the generation of NETs, regulate the 
cytoskeleton dynamics and adhesion (175, 176), providing 
a molecular link between the cytoskeleton remodeling and 
the requirement of neutrophil adhesion to solid substrates 
in vitro and in vivo for NETs generation (128).

NADPH oxidase activity is optimal at an intracellular pH of 
7.5. An acute, transient drop in intracellular pH, dependent on H+ 
ions generated as a consequence of the NADPH oxidase activity, 
ensues the phagocytosis of opsonized bulky particulates (177) and 
acidic environments impair NET formation (178). Increased pH 
in contrast favors NET generation, possibly influencing the natu-
ral history of pancreatitis, where aggregated NETs occlude ducts 
and cause tissue injury (178, 179). Further studies are necessary 
to verify the effect of variation of the tightly regulated intracellular 
pH on the fate of neutrophils challenged with particulates.

Pathways leading to NET generation differ in terms of 
dependence on oxygen species, of kinetics of the process, and 
of the fate of the involved neutrophils, which can either die or 
survive after NET generation conserving at least some of their 
biological function (13, 180–182). Specifically MAPKs such as 
ERK and p38 regulate NOX2-dependent generation of NETs 
(183–185). The extent of activation of JNK/SAPK determines the 
response to synthetic and microbial stimuli, regulating the overall 
efficiency of ROS production and the ensuing NET generation 
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the prey to phagocytose further particulate substrates (206). A 
similar energetic constrain might restrict other potentially energy-
consuming activities of the cell, such as initiation of the oxygen 
burst or the complete redistribution of the intracellular nuclear 
and granular content, which is a prerequisite of the release of NETs 
in the extracellular environment. Figure  2 depicts a schematic 

FiGURe 2 | Integration of multiple signals leads to the final decision of the 
neutrophils challenged with a bulky particulate substrates, whether to 
phagocytose it or to generate neutrophil extracellular traps (NETs). 
Phagocytosed blood platelets were revealed by transmission electron 
microscopy in blood neutrophils of patients with polycythemia vera (A). 
Neutrophils of healthy donors challenged with autologous activated platelets 
acquire a typical appearance at electron microscopy (B). Several factors 
regulate phagocytosis and NET generation differentially, prompting one event 
to negatively regulate the other (C). Internalization of red fluorescent platelets 
by neutrophils (D) and generation of extracellular threads of DNA (blue) 
decorated with myeloperoxidase (green color) was detected by confocal 
microscopy. (A,D) had originally been published in Ref. (68), (B) in Ref. (60), 
and (e) in Ref. (58).

(186). NET generation elicited by calcium ionophores relies on 
mitochondrial ROS and the calcium-activated small conductance 
potassium SK3 channel but is relatively independent of ERK 
activation (185, 187, 188). The existence of independent pathways 
leading to the generation of NETs endowed with potent biological 
action in the microenvironment that might compensate one for 
the other (13, 19, 182) supports the evolutionary importance of 
neutrophil activation. A ROS-independent, fast and vital pathway 
is apparently the first to be activated in neutrophils challenged 
with activated platelets and apoptotic cells. Depending on the 
environmental conditions, other outcomes can be envisaged.

The nucleus is not a passive target of the action of granular and 
cytosolic enzymes. At least two signals normally involved in chro-
matin architecture and function, DEK and HMGB1, actively regu-
late NET generation. Both molecules have a “double life.” Besides 
their action in the nucleus, they can be extruded or actively released 
in the extracellular environment where they regulate the inflamma-
tory response. DEK, a highly conserved phosphoprotein involved 
in the control of genomic stability, is both an autoantigen and a 
chemoattractant signal whose role has been so far only partially 
characterized (189). Neutrophils release DEK into the extracellular 
space, and its presence is necessary for NETs generation, possibly 
because it stabilizes NET architecture in the extracellular space 
(16). To the best of our knowledge, little is known on the possible 
action of DEK in regulating neutrophil phagocytosis.

HMGB1 is as well a non-histone protein with an architec-
tural function in the living cells [see above and (135, 190–192)]. 
Released in the extracellular environment, it represents the 
prototypic and so far the best characterized DAMP/alarmin 
signal (193–195). HMGB1 is a potent inducer of autophagy 
(196) and NETs generation (58, 131). HMGB1 released by 
activated platelets, activated leukocytes, and necrotic cells 
influences leukocyte functions, favoring neoangiogenesis (197), 
a tumor-permissive environment in experimental models  
(198, 199) and—possibly via NET induction—favoring a 
prothrombotic state in tumor-bearing patients (135). HMGB1 
is also an effective inhibitor of phagocytosis (200–203). It 
is tempting to hypothesize that cytosolic, extracellular and 
nuclear HMGB1 can act in a coordinated manner, facilitating 
the survival and the adoption of the most effective response of 
a neutrophil challenged with a phagocytic substrate. Further 
studies are needed to test this hypothesis.

A MeTABOLiC SwiTCH?

Other mechanisms probably concur to explain the dichotomic 
nature of the neutrophil choice between phagocytosis and NET 
generation. Phagocytosis implies the sudden increase of the cell 
actual content depending on the ingestion of the phagocytic cargo 
with its own lipids, nucleic acids, proteins, etc. The metabolic 
pathways that allow the phagocyte to handle the further burden 
of internalized material have been only partially elucidated (204, 
205). The fine regulation of the mitochondrial function appears of 
crucial importance, with the total mitochondrial membrane poten-
tial that directly impacts on the efficacy of the clearance in vivo, 
eventually leading to the termination of the apoptotic meal, i.e., 
to the failure of phagocytes that have internalized/are processing 
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