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a b s t r a c t

Hepatocellular carcinoma (HCC) remains a common and lethal cancer. Cancer stem cells, or tumor-in-
itiating cells (TICs), are thought to contribute to the pathogenesis of HCC, but remain to be fully char-
acterized. Unbiased screens of primary human HCC cells for the identification of novel HCC TIC markers
have not been reported. We conducted high-throughput flow cytometry (HT-FC) profiling to characterize
the expression of 375 CD antigens on tumor cells from 10 different human HCC samples. We selected 91
of these for further analysis based on HT-FC data that showed consistent expression in discrete, rare,
sortable populations of HCC cells. Nine of these CD antigens demonstrated significantly increased ex-
pression in the EpCAMþ stem/progenitor fraction of a human HCC cell line and were further evaluated in
primary human HCC tissues from 30 different patients. Of the nine tested, only CD146 demonstrated
significantly increased expression in HCC tumor tissue as compared with matched adjacent non-tumor
liver tissue. CD146þCD31�CD45� cells purified from HCC tumors and cell lines demonstrated a unique
phenotype distinct from mesenchymal stem cells. As compared with other tumor cell fractions,
CD146þCD31�CD45� cells showed significantly increased colony-forming capacity in vitro, consistent
with TICs. This study demonstrates that HT-FC screening can be successfully applied to primary human
HCC and reveals CD146 to be a novel TIC marker in this disease.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hepatocellular carcinoma (HCC)1 is the 5th most common
cancer worldwide and the 3rd most common cause of cancer
death [1]. Although curative surgery is possible for patients with
early-stage HCC, patients with advanced disease have a median
survival of less than one year [2]. The development of more ef-
fective clinical strategies requires an improved understanding of
HCC pathobiology.

The cell of origin from which HCC arises remains controversial.
The cancer stem cell model suggests that tumors are hierarchically
organized and sustained by a distinct population of tumor-in-
itiating cells (TICs) that self-renew while generating the full
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repertoire of tumorigenic and non-tumorigenic cells in a tumor
[3]. Several lines of evidence support the existence of TICs in hu-
man HCC. Clinically defined subgroups of HCC are associated with
transcriptional profiles that mimic embryonic liver and liver pro-
genitor cells [4,5]. Targeted analyses of human HCC cell lines and
patient samples for cell populations expressing a variety of surface
markers previously shown to identify TICs in other solid tumors
have revealed analogous populations in HCC that are capable of
anchorage-independent growth and colony formation in vitro as
well as tumor initiation in vivo in immunodeficient mice [6–14].
However, unbiased screens of primary human HCC cells conducted
for the purpose of identifying novel HCC TIC populations have not
been reported. Novel HCC TIC markers are needed because the
cellular populations identified by the existing repertoire of HCC
TIC markers are relevant in only a small fraction of clinical HCC
samples, failing to account for the biology of tumorigenesis in the
full spectrum of clinical HCC samples that demonstrate significant
genetic diversity and heterogeneity [15]. Identification of novel TIC
markers may reveal novel mechanisms of tumorigenesis in HCC
and expose targets for innovative new therapeutic strategies.

In this report, we describe the use of a high-throughput flow
cytometry (HT-FC) screening platform [16] to interrogate the ex-
pression of a large number of cluster of differentiation (CD)
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antigens on patient-derived human HCC cells in an unbiased
fashion in order to identify candidate molecules for further char-
acterization as novel TIC markers. We further demonstrate how
application of this strategy in combination with secondary
screening methods reveals CD146 to be a novel TIC marker in
human HCC.
2. Materials and methods

2.1. Cell cultures

Human HCC cell lines PLC/PRF/5 (ATCC) and Huh7 (gift from Dr.
Paolo Parini, Karolinska Institute, Sweden) were cultured in Dul-
becco's Modified Eagle Medium (DMEM) (Gibco) containing
4500 mg/L D-glucose, 10% fetal bovine serum (FBS) and 1� MEM
non-essential amino acids (Gibco). Human liver-derived me-
senchymal stem cells (HMSC-he) and mesenchymal stem cell
medium (MSCM) were purchased from ScienCell Research La-
boratories (Carlsbad, CA, USA) and maintained according to the
manufacturer's instructions. Primary human HCC tissue collection
and tumor cell isolation were conducted as previously described
[17], under an institutionally approved protocol and with patient
consent. Irradiated mouse embryonic fibroblast (MEF) feeder cells
(gift from Dr. Gordon Keller, University Health Network, Toronto,
Canada) were maintained in Iscove's Modified Dulbecco's Medium
(IMDM) (Gibco) containing 10% FBS. Culture medium was changed
every 3 days.

2.2. Antibodies and reagents

374 fluorochrome-conjugated antibodies against cell surface
CD antigens (except CD133) in four 96-well HT-FC plates, prepared
as previously described [16], were obtained from the laboratory of
Dr. Laurie Ailles, University Health Network, Toronto, Canada. Anti-
human CD133/1-APC (AC133) antibody (Miltenyi Biotec) was ad-
ded separately. Anti-human EpCAM-PE (9C4), CD19-PE (5E10),
CD31-APC (WM59), CD44-APC (BJ18), CD45-PE-Cy7 (HI30), CD90-
PE (5E10), CD105-APC (43A3), CD146-AF488 (SHM-57), CD166-PE
(3A6), Stro-1-AF647 antibodies and PE/Cy5 Streptavidin were
purchased from BioLegend. CD31-Biotin (9G11) was obtained from
R&D Systems Inc. LIVE/DEADs Fixable Violet Dead Cell Stain Kit
(405 nm excitation) and SYTOXs Blue Dead Cell Stain dye were
obtained from Life Technologies. CompBead Plus Anti-Mouse Ig, κ
beads were obtained from BD Biosciences. Human FcR Blocking
Reagent (Miltenyi Biotec) was used to block nonspecific binding.

2.3. Flow cytometry

Immunostaining and flow cytometry analyses were performed
according to standard procedures. Cultured PLC/PRF/5, Huh7 or
HMSC-he cells were dissociated into single cell suspensions by
using StemPros Accutases Cell Dissociation Reagent (Life Tech-
nologies). Subsequent analysis or sorting were conducted on BD
LSR II flow cytometer or BD FACS Aria II cell sorter (Becton-Dick-
inson). Fluorescence-minus-one controls were generated for each
antibody used and compensations were set using BD Plus Comp-
Beads and FACS Diva software.

2.4. High throughput flow cytometry (HT-FC)

Immunostaining was performed as previously described [16]
with some modifications. 40 million primary HCC cells were
blocked in human FcR Blocking Reagent, incubated with CD45 PE-
Cy7 antibody, then diluted in 20 ml staining buffer and aliquoted
into four HT-FC plates (50 ul, 0.1 million cells per well). After HT-
FC staining, cells were incubated with LIVE/DEADs Fixable Violet
dye followed by 4% paraformaldehyde fixation, then resuspended
with 1XPBS (250 μL /well) for further analysis. Data collection was
performed on a BD LSR II flow cytometer with an attached high
throughput sampler. Plates were read under the standard
throughput mode with loader settings as follows: 3.0 μL/sec
sample flow rate, 200 μL sample volume, 75 μL mixing volume,
200 μL/sec mixing speed, 4 mixes, 400 μL wash volume. 80,000
events were collected per well. The HT-FC workflow and flow
cytometer gating strategy is illustrated in Supplementary Fig. S1.
Target events were collected and analyzed within the CD45� cell
population.

2.5. PLC/PRF/5 cell sorting and quantitative real-time PCR screening

EpCAMþ and EpCAM� PLC/PRF/5 cell subsets were sorted se-
parately into 96 well plates with 1 cell per well and cultured for 14
days. Colonies were amplified to 12 well and 6 well plates fol-
lowed by T25 flasks, and EpCAM status confirmed by flow cyto-
metry. Total RNA was prepared using PureLink RNA Mini Kit (Life
Technologies) from PLC/PRF/5 EpCAMþ /- colonies and 30 human
HCC tumor/adjacent paired tissues. MVP™ Human Liver Total RNA
pool (Agilent Technologies) was introduced as a normalization
zero control. cDNA was synthesized using SuperScripts III Reverse
Transcriptase (Life Technologies). Real-time PCR and relative
quantitative analysis was carried out as previously described [18].
Primer sequences are provided in Supplementary Table S1.

2.6. Colony-forming assay

CD146þ and CD146� Huh7 cells were sorted into 6 well plates
at a density of 1000 cells per well and cultured for 14 days. Cells
were fed with new culture medium every 3 days. Colonies were
fixed with glutaraldehyde (6.0% w/v), stained with crystal violet
(0.5% w/v) and counted using a stereomicroscope. Irradiated MEF
feeder cells were seeded in 96 well plates at 90% confluency and
cultured with IMDM/FBS medium for 24 h then maintained in
KnockOut™ DMEM medium plus 20% KnockOut™ Serum Re-
placement. CD146�CD45�CD31� , CD146þCD45�CD31þ and
CD146þCD45�CD31� HCC cells were sorted into 96 well MEF
feeder cell plates with different density and limiting dilution
analysis (LDA) was conducted after 21 days as previously described
[19].

2.7. Data analysis

FCS 3.0 files were exported to FlowJo v9.3. In all cases, dead
cells and doublets were excluded prior to analyzing marker ex-
pression. Gates were set using fluorescence-minus-one controls,
and percent-positive values were exported to Excel file for use in
further statistical analysis and generation of heat maps. p values
were calculated using GraphPad Prism software. Heat maps were
generated using MultiExperiment Viewer software [20].
3. Results

3.1. HT-FC profiling of human HCC samples

We performed HT-FC analysis of primary HCC cells isolated
from the tumors of 10 different patients. Demographic and clinical
information pertaining to these patients is shown in Supplemen-
tary Table S2. In this cohort of patients, the mean age was
59.179.1 years, 7 of 10 were male, most suffered from chronic
viral hepatitis, and all of the HCC tumors were moderately
differentiated.



Fig. 1. HT-FC profiling was carried out to characterize the expression of 375 unique CD antigens on tumor cells from 10 unique human HCC samples. A) Heatmap generated
from the complete dataset with each column corresponding to a different HCC sample and each row corresponding to a different CD antigen. B) Heatmap and dot-plot
representation of 125 CD antigens expressed by a mean of at least 1% of HCC cells across the 10 samples, ordered from most commonly to least commonly expressed exactly
as organized in Supplementary Table S3.
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The fraction of cells expressing each CD antigen in each patient
sample is illustrated in a heatmap in Fig. 1A, demonstrating similar
patterns of CD antigen expression across the various patient
samples. Interestingly, the proportion of HCC cells from primary
patient tumor samples expressing HCC TICs identified in previous
studies varied considerably. For example, CD13 was expressed on
76.1078.72% of cells, CD24 on 7.7975.33%, CD90 on 5.2970.84%,
CD44 on 0.04170.019%, EpCAM on 0.5070.46%, and CD133 on
0.005170.0034% [6–12]. As illustrated in Fig. 1B, we stratified 125
antigens with consistent expression in the majority of patients
into groups based on the mean proportion of cells demonstrating
antigen expression as follows: High -430%, Medium �10–30%,
Fig. 2. A) Flow cytometry plot demonstrating discrete, sortable populations of EpCAMþ

HCC cell line PLC/PRF/5. B) Quantitative RT-PCR analysis demonstrating mRNA levels of
Notch2, CTNNB1) (light red bars ordered from top down), and 91 candidate TIC markers
in EpCAMþ PLC/PRF/5 cells; red asterisks denote 9 genes with most highly increased exp
analysis of mRNA levels of the 9 genes identified in panel B in 30 human HCC tumor tissu
expression in MVP™ human liver control mRNA. Horizontal lines represent the mean, an
the references to color in this figure legend, the reader is referred to the web version o
Low �1–10%, Rare -o1%. The raw data for these 125 antigens is
provided in Supplementary Table S3.

3.2. Secondary screening of HT-FC data

In order to identify novel candidate HCC TIC markers from the
HT-FC data, we developed a secondary screening strategy working
from the widely accepted principle that TICs are discrete, relatively
rare populations of cells within tumors [3].

We first manually reviewed the HT-FC plots and identified 91
CD antigens from the low/rare expression groups that marked
discrete, sortable populations of cells from the HCC samples.
stem/progenitor subpopulation (blue) and EpCAM� control cells (red) in the human
EpCAM (top dark red bar), 7 stemness genes (CD133, Oct 3/4, Nanog, SOX2, Bmi1,
(blue bars ordered from top down exactly as organized in Supplementary Table S1)
ression; error bars represent7SEM. C) Dot plots demonstrating quantitative RT-PCR
es (purple) and matched adjacent non-tumor liver tissue (green) normalized against
d error bars represent7SEM. NS, non-significant,*** po0.001. (For interpretation of
f this article.)



Fig. 3. A) Flow cytometry plots demonstrating CD146 and CD31 expression in tumor cells isolated from four unique primary human HCC samples. All events were analyzed
in the CD45� fraction. B) Representative flow cytometry plots and expression summary table of CD146þCD31�CD45� human HCC cells (red) from two tumor samples (HCC1
and HCC2) demonstrating that this population lacks expression of CD105 and Stro-1 and thus has a phenotype distinct from the consensus MSC marker profile,
CD146þCD31þCD45� HCC cells (blue), and HMSC-he cells (staining shown in Supplementary Fig. S2). Isotype controls are depicted in grey. C) Photographic image of 6-well
plates demonstrating that CD146þ cells isolated by flow cytometry from the human HCC cell line Huh7 demonstrate a greater colony-forming capacity than the CD146�

fraction, quantified in the bar graph. D) Representative plot demonstrating three subpopulations (CD146þCD31� , CD146þCD31þ , CD146�CD31�) purified by flow cyto-
metry from the CD45� fraction of primary human HCC tumor samples and cultured at limiting dilution on MEFs to assess colony-forming capacity (phase contrast mi-
croscope image of representative colony shown). Using the principles of serial limiting dilution analysis [19], varying numbers of cells from each population were separately
plated and the number of colonies that were generated in each sample well were subsequently counted. The number of input cells per well that did not generate a colony (i.e.
total number of input cells – total number of colonies generated) was then plotted against the total number of input cells to reveal an estimate for the TIC frequency as a
proportion of the input cell number for each purified cellular population, using the widely utilized principles of limiting dilution analysis [19]. Estimated values of 1/stem cell
frequency for the three subpopulations reveal that CD146þCD31� cells are the most highly enriched for TICs. The TIC frequency within the CD146þCD31� population was
estimated to be 1/324, six times more common than in the CD146þCD31þ population and 11 times more common than in the CD146� CD31� population. (For interpretation
of the references to color in this figure legend,the reader is referred to the web version of this article.)
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To determine which of these CD antigens might reflect TICs, we
analyzed their expression in the EpCAMþ fraction of HCC cells,
which are known to demonstrate tumor-initiating capacity and
stem/progenitor cell features [10]. Discrete populations of
EpCAMþ and EpCAM� PLC/PRF/5 cells (Fig. 2A) were purified by
fluorescence activated cell sorting (FACS). As shown in Fig. 2B, the
EpCAMþ fraction demonstrated an increased expression of stem-
ness genes (CD133, Oct3/4, Nanog, SOX2, Bmi1, Notch2 and
CTNNB1) as compared with the EpCAM� fraction, supporting their
TIC phenotype. Fig. 2B also demonstrates the expression of the 91
candidate CD antigens in EpCAMþ cells as compared with
EpCAM� cells. As compared with EpCAM� cells, EpCAMþ cells
demonstrated greater than 16-fold increased expression of the
following 9 CD antigens: CD61, CD102, CD118, CD146, CD191,
CD194, CD223, CD243, and CD252.

To validate the predicted relevance of these antigens, we stu-
died their expression in 30 primary human HCC samples as
compared with matched adjacent non-tumor liver tissue. As
shown in Fig. 2C, the expression of seven of these antigens was
similar in tumor and non-tumor liver tissue. Only CD146 expres-
sion was significantly higher in HCC tissue as compared with non-
tumor liver tissue, while CD223 expression was significantly lower.

3.3. Characterization of CD146þ HCC cells

We utilized flow cytometry to analyze the expression of CD146
in HCC cells. As CD146 is known to be expressed on cells of the
endothelial lineage [21,22], we incorporated the endothelial cell
marker CD31 as well as the leukocyte marker CD45 into our
staining protocols and gating/analysis strategies. As shown in
Fig. 3A, CD146þCD31� cells consisted of discrete, sortable popu-
lations in the CD45� fraction of tumor cells isolated from four
unique fresh human HCC specimens. As CD146 is also recognized
to be a marker of mesenchymal stem cells (MSCs)[23], we utilized
flow cytometry to determine the expression of MSC markers on
CD146þ HCC cells from human tumor tissue. As shown in Fig. 3B,
CD146þCD31�CD45� cells isolated from fresh human HCC sam-
ples have a unique phenotype distinct from MSCs, lacking ex-
pression of CD105 and Stro-1 (control staining of MSCs is shown in
Supplementary Fig. S2).

To investigate the functional properties of CD146þCD31�CD45�

HCC cells, we evaluated colony-forming capacity in vitro to measure
the capability of single HCC cells to give rise to discrete colonies of
HCC cells, as a surrogate for tumor-initiating capacity. As shown in
Fig. 3C, CD146þ cells from the human HCC cell line Huh7 demon-
strated a higher colony-forming capacity than CD146� cells. Finally,
we assayed the colony-forming capacity of CD146þCD31� cells
purified from the CD45� fraction of primary human HCC samples,
as compared with CD146�CD31�and CD146þCD31þ cells. Using
the principle of serial limiting dilution analysis [19], varying num-
bers of cells from each population were separately plated and the
number of colonies that were generated in each sample well were
subsequently counted. The number of input cells per well that did
not generate a colony (i.e. total number of input cells – total number
of colonies generated) was then plotted against the total number of
input cells to reveal an estimate for the TIC frequency as a pro-
portion of the input cell number for each purified cellular popula-
tion, using the widely utilized method of limiting dilution analysis
[19]. As shown in Fig. 3D, a significantly greater proportion of
CD146þCD31� formed colonies as compared with the other po-
pulations studied. The tumor-initiating cell frequency within the
CD146þCD31� population was estimated to be 1/324, six times
more common than in the CD146þCD31þ population and 11 times
more common than in the CD146�CD31� population.
4. Discussion

In this report, we have demonstrated that HT-FC profiling can
be successfully applied to primary human HCC cells. By utilizing a
secondary screening step to filter the large initial expression da-
taset against an HCC cell line with a well defined stem/progenitor
cell phenotype, we were able to generate a relatively short list of
nine CD antigens that could be further studied as potential TIC
markers in primary human HCC samples. This strategy has re-
vealed CD146 to be a novel TIC marker in human HCC, with
CD146þCD31�CD45� HCC cells demonstrating significant en-
richment in colony-forming capacity in vitro as compared with
other populations of HCC cells.

While prior reports of TIC markers in HCC have largely focused on
evaluating the relevance of TIC markers identified in other cancers on
HCC cell lines, the novel aspects of this study are that (i) the
screening strategy was unbiased, and (ii) the analysis was focused on
primary human HCC tissues obtained from fresh resection speci-
mens. Furthermore, this is the first report demonstrating that CD146
identifies a unique population of cells in primary human HCC sam-
ples with functional tumor-initiating capacity, distinct from en-
dothelial cells and MSCs. Although the CD146þCD31� population
identified in our study continues to express some markers seen on
MSCs, we believe that the absence of Stro-1 and CD105 (expression
of which constitutes “minimal defining criteria” for MSCs [24]) de-
monstrates that we have isolated a unique population of cells with a
distinct phenotype that deserves further characterization. Interest-
ingly, other markers seen on MSC have also been characterized as
HCC TIC markers in prior studies, including CD90 and CD44 [8,25].
Although CD105 is known to be expressed on cells of the endothelial
lineage, it is expressed on MSCs in the absence of CD31; thus, the
absence of CD105 from the CD31� population further supports our
hypothesis that the CD146þ/CD31� population of interest in our
study is distinct from MSCs.

CD146, also known as melanoma cell adhesion molecule
(MCAM) or cell surface glycoprotein MUC18, is a 113 kDa cell ad-
hesion molecule which has been reported to be a marker for en-
dothelial lineage cells (EPCs)[21] or for mesenchymal stem cells
(MSCs) isolated from multiple adult and fetal organs . Recently, a
variety of studies have suggested that CD146 plays a role in many
cancers, including breast cancer [26,27], sarcoma [28], lung cancer
[29], pancreatic cancer [30], cervical and endometrial cancer [31],
esophageal cancer [32] and malignant melanoma [33]. Two recent
studies found that CD146 expression was upregulated in HCC tis-
sues and cell lines, was an adverse clinical prognostic factor, and
promoted a variety of oncogenic cellular functions such as mi-
gration, invasion, and transcriptional/translational activation
[34,35]. However, neither one of these studies specifically isolated
or investigated the functional properties of CD146þ cell popula-
tions purified from human HCC tissues. Interestingly, a recent
study describing HT-FC screening of primary human sarcoma also
identified CD146 as a novel TIC marker in this cancer [28], un-
derscoring the relevance of our observations in HCC.

While we have demonstrated the in vitro colony-forming ca-
pacity of CD146þCD31�CD45� HCC cells as a surrogate for tumor-
initiating capacity, we have not yet been able to directly assay
in vivo tumor formation by these cells in immunodeficient mice
due to the very small number of cells that can be isolated from
primary HCC samples, which are of sufficient quantity to perform
in vitro assays alone. Secondly, while we have demonstrated that
the TIC frequency in the CD146þCD31�CD45� population is 1/
324, we hope to find additional cell surface markers or other cel-
lular properties within this population of cells that allow for the
purification of subpopulations of cells that demonstrate even fur-
ther enrichment of tumor-initiating capacity as compared with
other tumor cells.
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In conclusion, we have shown that the application of HT-FC for
the unbiased cell surface marker profiling of primary human HCC
tissues reveals CD146 as a novel TIC marker in this disease. In
combination with the relevance of CD146 to cancer pathobiology
demonstrated by other studies, our report provides further ratio-
nale for additional work to explore CD146 as a novel target for
innovative therapeutics. By increasing the number of patient
samples analyzed in this way and by combining with other sec-
ondary screening strategies, HT-FC is a viable novel platform for
the discovery of important pathobiological aspects of human HCC.
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