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marker to facilitate a robust
transition to the verification and
validation platforms.
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Feature Selection Methods for Protein
Biomarker Discovery from Proteomics or
Multiomics Data
Zhiao Shi1,2, Bo Wen1,2, Qiang Gao3, and Bing Zhang1,2,*
Untargeted mass spectrometry (MS)-based proteomics
provides a powerful platform for protein biomarker dis-
covery, but clinical translation depends on the selection
of a small number of proteins for downstream verification
and validation. Due to the small sample size of typical
discovery studies, protein markers identified from dis-
covery data may not be generalizable to independent
datasets. In addition, a good protein marker identified
using a discovery platform may be difficult to implement
in verification and validation platforms. Moreover,
although multiomics characterization is being increas-
ingly used in discovery cohort studies, there is no exist-
ing method for multiomics-facilitated protein biomarker
selection. Here, we present ProMS, a computational
algorithm for protein marker selection. The algorithm is
based on the hypothesis that a phenotype is character-
ized by a few underlying biological functions, each
manifested by a group of coexpressed proteins. A
weighted k-medoids clustering algorithm is applied to all
univariately informative proteins to identify both coex-
pressed protein clusters and a representative protein for
each cluster as markers. In two clinically important
classification problems, ProMS shows superior perfor-
mance compared with existing feature selection
methods. ProMS can be extended to the multiomics
setting (ProMS_mo) through a constrained weighted
k-medoids clustering algorithm, and the protein panels
selected by ProMS_mo show improved performance on
independent test data compared with ProMS. In addition
to superior performance, ProMS and ProMS_mo also
have two unique strengths. First, the feature clusters
enable functional interpretation of the selected protein
markers. Second, the feature clusters provide an op-
portunity to select replacement protein markers, facili-
tating a robust transition to the verification and validation
platforms. In summary, this study provides a unified and
effective computational framework for selecting protein
biomarkers using proteomics or multiomics data. The
software implementation is publicly available at https://
github.com/bzhanglab/proms.
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According to the definition from the Food and Drug
Administration–National Institutes of Health (FDA-NIH)
Biomarker Working Group, a biomarker is “a defined charac-
teristic that is measured as an indicator of normal biological
processes, pathogenic processes or responses to an expo-
sure or intervention” (1). Being the functional molecules of the
cell, proteins have long been recognized as an important
source of putative biomarkers for disease diagnosis, prog-
nosis, and response to therapeutic intervention. Since the
approval of human hemoglobin as a fecal test for the detection
of colorectal cancer in 1976, more than 20 tumor protein
markers have been approved by the FDA and are currently
used in clinical practice (2). Protein biomarker development
typically includes three phases: discovery, verification, and
validation (3, 4). The discovery phase is now powered by the
mass spectrometry (MS)-based untargeted proteomics tech-
nology, which enables the identification and quantification of
more than 10,000 proteins in clinical specimens (5). This
provides an excellent opportunity to identify new protein
biomarker candidates in an unbiased manner. Moreover, it is
well recognized that a combination of biomarkers, rather than
an individual protein, is needed to distinguish biological
states. By quantifying all proteins simultaneously, MS prote-
omics provides an ideal platform for identifying biomarker
combinations. Despite the immense promise of MS prote-
omics in protein biomarker discovery, few new biomarkers
have been introduced into clinical practice during the past
decade.
One of the rate-limiting steps in protein biomarker devel-

opment is the identification of a small number of promising
candidates from thousands of proteins quantified by untar-
geted MS proteomics for downstream verification and vali-
dation using targeted assays. Although MS-based discovery
platforms provide measurements for a large number of pro-
teins (i.e., features), they are often carried out using a limited
number of samples, leading to the “large p, small n” problem
(6). This challenge is typical in all omics-based association
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studies and is commonly addressed by dimension reduction
techniques such as principal component analysis (PCA) and
its supervised alternatives (7). The goal of PCA is to rotate the
data into a new axis system where the greatest amount of
variance is captured in a few dimensions. Transformed data
are represented by a set of principal components (PCs) or-
dered by the amount of variance they capture. Usually, a small
number of PCs capture most of the variance of a dataset,
leading to dimension reduction. However, because each PC is
a linear combination of all original features, predictive models
constructed based on the PCs require genome-wide mea-
surements as inputs and cannot be implemented as targeted
clinical assays.
Feature selection algorithms can be used to select

biomarker combinations from high-dimensional data for pre-
dictive model construction. Throughout the paper, we use the
terms “feature” and “marker” interchangeably. Feature selec-
tion algorithms can be categorized into filter methods,
wrapper methods, and embedded methods. Filter methods
evaluate the importance of features according to some uni-
variate or multivariate evaluation criteria (8, 9). A naïve filter
method ranks proteins according to their univariate associa-
tion with the phenotype label of samples and then picks the
top-ranking proteins. Due to the functional connection and
coregulation relationships among proteins, top ranking pro-
teins are usually highly redundant, leading to poor perfor-
mance of this method. The Minimum Redundancy and
Maximum Relevance (MRMR) algorithm addresses this issue
by selecting features that have the highest relevance with the
phenotype label and are also minimally redundant, i.e., they
are dissimilar to each other as much as possible (10). Wrapper
methods assess the quality of feature subsets based on the
performance of a learning algorithm (11–13). The feature
subset with the highest performance is returned as the
selected features. Due to the exponential number of subset
combinations, these methods are rarely used in biomarker
selection where the number of original features typically are in
the thousands. Embedded methods employ an integrated
process to select features during the model construction (14,
15). One commonly used strategy is through the mechanism
of regularization. For example, the least absolute shrinkage
and selection operator (LASSO) method regularizes parame-
ters of a linear regression model by reducing some co-
efficients to zero, allowing the selection of features with
nonzero coefficients (16).
All feature selection algorithms are prone to overfitting to

small training data, albeit at different degrees. Thus, protein
markers selected based on a discovery cohort may not be
generalizable to new test cohorts. This represents a major
computational challenge in the protein biomarker develop-
ment pipeline. In addition, because different platforms are
used in the discovery and validation phases, a good protein
marker identified in the discovery platform may be difficult to
implement in the validation platform. In particular, although
2 Mol Cell Proteomics (2021) 20 100083
MS-based targeted proteomics has been increasingly used in
biomarker verification and validation (17), antibody-based
assays remain the most common assays used in the clinics.
Many proteins do not have high-quality antibodies, limiting
their utility in antibody-based clinical assays.
In this paper, we present a new protein marker selection

algorithm to address these challenges. Similar to MRMR, our
algorithm also seeks to identify a predefined number of k
features with the highest relevance with the phenotype label
and is also minimally redundant. However, our algorithm is
based on the reasoning that there are typically a number of
informative features for a given phenotype, that these features
are often associated with a much smaller number of biological
functions underlying the phenotype, and that coexpressed
proteins tend to share similar biological functions (18).
Accordingly, our algorithm first identifies all informative fea-
tures through univariate association analysis, then groups
them into k clusters based on their coexpression patterns, and
finally selects one most representative feature from each
cluster to create a set of k markers. We hypothesize that
anchoring protein markers on biological functions defined by
coexpressed proteins could improve generalizability of the
markers. Moreover, when there is difficulty implementing a
selected protein marker on the verification and validation
platform, our algorithm provides alternative solutions by
replacing the selected marker with another highly coex-
pressed protein in the same cluster. In addition, unlike the
methods mentioned above, our algorithm is extendable to the
multiomics setting, providing a unique potential to leverage
multiomics data to enhance protein marker selection.
We name our algorithm and its multiomics extension as
PROtein Marker Selection (ProMS) and ProMS_Multi-Omics
(ProMS_mo), respectively. We demonstrate these algorithms
using published proteomics and multiomics data from two
colon and rectal cancer (CRC) studies (19, 20) and two he-
patocellular carcinoma (HCC) studies (21, 22). For CRC, we
select protein markers to predict the tumor's microsatellite
instability (MSI) status, which has both prognostic and thera-
peutic implications (23, 24). For HCC, we select protein
markers to predict patient prognosis.
EXPERIMENTAL PROCEDURES

Datasets

For MSI status prediction in CRC, label-free proteomic data and
RNA-seq data were obtained from a published study (19) for protein
marker selection and model training. Label-free proteomic data ob-
tained from another study (20) was used for independent testing
(supplemental Table S1). Protein quantification for both cohorts was
based on spectral counting (20). mRNA quantification was based on
Fragments Per Kilobase of transcript per Million mapped reads
(FPKM). For both proteomic and RNA-seq data, genes with missing
values were removed. Data were then subjected to log2-
transformation followed by feature-wise standardization within each
cohort. Samples with MSI-Low or microsatellite stable (MSS) status
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FIG. 1. Overview of protein biomarker selection framework. A, ProMS. Uninformative features in a proteomics data matrix are first filtered
out based on univariate analysis. A weighted k-medoids clustering step is performed in sample space. The identified medoids are output as the
selected markers. B, ProMS_mo. Data matrices from each omics platform are filtered separately through univariate analysis. Resulting matrices
are then combined. Features are partitioned into groups with constrained weighted k-medoids clustering, in which only protein markers can be
selected as medoids.
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were labeled as class 0 and those with MSI-High as class 1. The
training data had 70 class 0 and 15 class 1 samples, whereas the test
data had 75 class 0 and 21 class 1 samples.

For patient prognosis prediction in HCC, tandem mass tag (TMT)-
based proteomic and phosphoproteomic data and RNA-seq data
were obtained from a published study (22) for marker selection and
model training. Proteomic and phosphoproteomic data were normal-
ized using the median centering method so that log2 TMT ratio values
are centered at zero. Proteins and phosphorylation sites having more
than 50% missing data were excluded before k-nearest neighbor
(kNN) imputation was applied to the remaining data. mRNA quantifi-
cation was computed using RNA-Seq by Expectation Maximization
(RSEM) followed by upper quartile normalization and log2 trans-
formation. Label-free proteomic data obtained from another study (21)
was used for independent testing. Protein quantification was
computed using the intensity-based absolute quantification (iBAQ)
method implemented in MaxQuant (25). The MaxQuant quantification
data was downloaded from PRIDE (26) with accession number
PXD006512. The expression matrix was quantile normalized and then
log2 transformed. Features with missing values were removed and all
remaining features were standardized. To formulate prognosis pre-
diction as a binary classification problem, samples were dichotomized
into two groups according to their overall survival time. Patients with
overall survival longer than 24 months were labeled as good prognosis
(class 0) and those survived less than 24 months were labeled as poor
prognosis (class 1). The training data had 117 class 0 and 42 class 1
samples, whereas the test data had 75 class 0 and 9 class 1 samples.

Protein Marker Selection With Proteomics Data Alone

Data matrix D of size n × p is employed to depict the protein
expression where rows correspond to samples (s1,…,sn) and columns
correspond to proteins (f1,…,fp) (Fig. 1A.1). We aim to identify k protein
markers that can be used collectively to predict the binary phenotype
label accurately. The algorithm ProMS works as follows. As a first step
to remove uninformative features, ProMS examines each feature
individually to determine the strength of the relationship between the
feature and the phenotype label (Fig. 1A.2). A symmetric area under
Mol Cell Proteomics (2021) 20 100083 3
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the receiver operating characteristic curve (AUROC) score AUCsym is
defined to evaluate such strength: AUCsym = 2× |AUC − 0.5|. The
rationale is that AUCs higher or lower than 0.5 typically indicate some
predictive power of the feature although in the latter case the feature
tends to predict the labels of the opposite class. This should not be a
problem in our case since a final classifier can readily detect that trend
and assign the weight of that feature accordingly. Since the feature is
evaluated one at a time, we can simply use the expression data and
phenotype label to compute the AUC. Of note, the range of AUCsym is
the same as that of the original AUC. ProMS only keeps the features
with the top α% highest AUCsym scores. Here ɑ is a hyperparameter
that needs to be tuned jointly with other hyperparameters of the final
classifier. After the filtering step, data matrix D is reduced to D′ of size
n × p′ where p

′
<< p.

To reduce the redundancy among the remaining features, ProMS
groups p′ features into k clusters with k-medoids clustering (27) in
sample space. Here we consider the dataset D′ containing p′ data
points denoted by f1,…,fp in an n-dimensional sample space. The goal
is to determine a partition {C1…Ck} and k representatives g1,…,gk so
that the following objective function:

J= ∑
k

i=1
∑
f∈Ci

Dist(f ,gi) (1)

is minimized. In other words, the sum of the distances of the
different data points to their closest representatives needs to be
minimized. k-medoids clustering is related to k-means clustering
for partitioning a dataset into k clusters. The main difference is
that the representatives, called medoids, are always selected from
the actual data points (i.e., features in this case). Each medoid
corresponds to the most centrally located data point in the con-
taining cluster because the total distance between the medoid
and all other members of the cluster is minimized. These medoids
provide a natural solution to the biomarker selection problem, a
unique strength that does not come with k-means clustering,
where the center of a cluster is the average between the data
points in the cluster instead of an actual data point. The distance
between two data points fi and fj is calculated as: Dist(fi , fj) = 1−
ρij, where ρij represents the Pearson correlation coefficient be-
tween fi and fj. ProMS employs a weighted version of k-medoids
algorithm where each feature is assigned a weight, wf =
AUCsym,f , obtained in the filtering step. Therefore the new
objective function is given as:

J= ∑
k

i=1
∑
f∈Ci

wfDist(f ,gi) (2)

This is based on the argument that features with larger univariate
predictive power should be given higher preference of being selected
as a medoid. The k medoids are selected as the markers for building a
final classifier (Fig. 1A.3)

Protein Marker Selection With Multiomics Data

We have H data sources, D1,…,DH, representing H different types of
omics measurements that jointly depict the same set of samples
s1,…,sn. Di (i = 1,…,H) is a matrix of size n × pi where rows correspond
to samples and columns correspond to features in ith data source.
Without the loss of generality, we use D1 to represent the proteomic
data from which we seek to select a set of informative markers that
can be used to predict the target labels. Our hypothesis is that by
integrating information from other omics, a set of more informative
protein markers can be identified. To test this hypothesis, we adapted
4 Mol Cell Proteomics (2021) 20 100083
ProMS to ProMS_mo as follows. Similar to ProMS, the first step of
ProMS_mo involves filtering out uninformative features from each data
source separately (Fig. 1B.1). Again, we use AUCsym as the scoring
metric. ProMS_mo first applies the univariate filtering to target data
source D1 and keeps only the top α% features with the highest scores.
We denote the minimal score among these remaining features as θ.
For other data source, ProMS_mo only keeps those features with
score larger than θ. Filtered data matrices are combined into a new

matrix D′ of size n × p′ where. p
′ = ∑

H

i=1
p

′
i and p

′
i is the number of

features in the filtered data source i (Fig. 1B.2). Finally, weighted
k-medoids clustering is performed to partition the p′ features into k
clusters in sample spaces (Fig. 1B.3). To guarantee that only protein
markers are selected as medoids, ProMS_mo first initializes the k
medoids to protein markers. During the iterative steps of optimization,
a medoid can only be replaced by another protein marker if such
exchange improves the objective function. This can be formulated as a
constrained optimization problem. After the iterative process con-
verges, k medoids are selected as the final protein markers for con-
structing a classifier.

Other Marker Selection Methods

We compared ProMS with other popular feature selection or
dimension reduction methods, including a filter method MRMR (10), a
model based method LASSO, and a supervised PCA (SPCA) method
(7). MRMR is implemented as a part of an open-source package called
scikit-feature (28). As described in the original work, we used mutual
information as the metric to measure the degree of relevance and
redundancy. LASSO is implemented in scikit-learn (29), and we
required that there should be exactly k features with nonzero co-
efficients in the final model. The amount of penalty added to the model
was therefore adjusted accordingly to meet this requirement. The
SPCA implementation started with a prefiltering step as described in
ProMS. It was followed by applying the standard PCA method on the
remaining data matrix. We then selected the first k components as the
new features. This is indeed not a feature selection method because
each PC is a linear combination of many original features.

Model Training and Testing

We evaluated ProMS and ProMS_mo with the CRC and HCC
datasets. Each cancer type included a training set (Dtrain) and an in-
dependent test set (Dtest). We aimed to select a few different numbers
of markers with k={5,10,15,20}. For each k, we repeated the following
Monte Carlo cross-validation process 100 times: Dtrain is first
randomly split into two sets: one for feature selection and classifier
building (70%, T), one for validation (30%, V). Five feature selection
methods were considered: ProMS, ProMS_mo, MRMR, LASSO, and
SPCA. We trained four classifiers using the selected features: logistic
regression (LR), support vector machine (SVM), random forest (RF),
and gradient boosting machine (GBM). A number of hyperparameters
were tuned using grid search with 3-fold cross-validation within the
training set T. These include one from univariate filtering step (α) and
several others specific to the individual classifier. The trained classi-
fiers were then evaluated with the validation set V (different for each of
the 100 repeats) as well as the independent test set Dtest (same for all
100 repeats). Finally, we used all data in Dtrain to repeat the feature
selection and classifier building process and fit a full model to be
evaluated with the independent test set Dtest.

Gene Ontology and Pathway Analysis

Gene Ontology (GO) analysis was performed using WebGestalt
(30, 31) through overrepresentation analysis. All genes were used as
the reference set. Default parameters were used for the analysis.
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Software Implementation

ProMS and ProMS_mo were implemented in the python package
proms (https://pypi.org/project/proms). The source code, example
data, and user guide are available at https://github.com/bzhanglab/
proms.

RESULTS

Marker Selection Using Proteomics Data

We trained and evaluated four classifiers (LR, SVM, RF, and
GBM) using different numbers of features (k={5,10,15,20})
selected by ProMS, MRMR, LASSO, and SPCA, respectively.
Of note, SPCA uses PCs to construct predictive models where
each PC is a linear combination of all original features.
Therefore, it cannot be used for marker selection. We included
SPCA only as a reference for “optimal” performance. Evalu-
ations were performed on both set-aside cross-validation data
from the same cohort and test data from an independent
cohort. Probably due to the small numbers of selected fea-
tures, LR achieved similar or better performance compared
with other more complicated modeling algorithms in almost all
scenarios. For simplicity, we only present results from LR. For
MSI status prediction in CRC, SPCA performed the best on
both set-aside validation data (Fig. 2A) and independent test
data (Fig. 2B) for all feature numbers. This was expected
because the PC features capture much more information than
the small number of protein features selected by other
methods. MRMR showed consistently lower performance in
all cases. Although both ProMS and MRMR are filter methods,
ProMS substantially outperformed MRMR and achieved
similar or even better performance compared with the model-
based method LASSO (Fig. 2, A and B). MRMR gained
increased performance with increased feature numbers, but
the other three methods showed relatively consistent perfor-
mance across all ks, suggesting that there inherently exists a
small set of protein markers that can predict MSI status
effectively. Comparing performance on the cross-validation
and independent test data, PCA best maintained the perfor-
mance on the test data, while MRMR showed the largest
Mol Cell Proteomics (2021) 20 100083 5
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performance drop on the test data compared with other
methods, indicating a significant degree of overfitting. Per-
formance drop for LASSO was slightly higher than that for
ProMS, but both showed relatively stable performance be-
tween the validation and test data.
For patient prognosis prediction in HCC, the AUROCs were

much lower in general compared with MSI status prediction in
CRC (Fig. 2, C and D). However, most of the patterns
described in the CRC analysis were reproducible in the HCC
analysis. One new observation is that ProMS not only out-
performed MRMR but also outperformed LASSO in this more
challenging clinical prediction problem. LASSO gained
increased performance with increased feature numbers, and it
also suffered notable performance drop in the independent
test data. Thus, the performance difference between ProMS
and LASSO was more obvious in the test data and when a
smaller number of features were selected. The performance of
ProMS matched or approached that of the SPCA in all cases
although the latter uses combinations of many features in the
original dataset. Moreover, both ProMS and SPCA showed
consistent performance between the validation and test data,
suggesting no observable overfitting during training. Together,
these results demonstrate strong performance of the ProMS
algorithm in selecting markers from proteomics data.

Marker Selection Using Multiomics Data

A key aspect of ProMS_mo is the ability to mine multiomics
data but only select protein features. Feature selection with
MRMR, LASSO, and SPCA cannot be readily adapted to
incorporating multiomics data to facilitate protein marker se-
lection. Here we focused on comparing the performance of
models using features selected by ProMS_mo with those
using features selected by ProMS. Again, SPCA was included
only as a reference for comparison. Figure 3 depicts the re-
sults from LR models on MSI status prediction in CRC (A-B)
and patient prognosis prediction in HCC (C-D) across different
feature numbers. In cross-validation, we did not observe sig-
nificant performance difference between models built upon
features selected by ProMS_mo and ProMS. However, when
the cross-validation models were tested on the independent
test data, ProMS_mo outperformed ProMS in all eight cases,
with significant difference observed for six cases. For patient
prognosis prediction in HCC, the performance of ProMS_mo
showed similar or occasionally better performance compared
with SPCA. These results suggest that using information from
multiomics data may enhance the robustness of protein
marker selection, leading to improved performance on inde-
pendent test data.

Performance of the ProMS_mo Full Models and Selected
Markers

After demonstrating performance of the ProMS_mo
approach using cross-validation models, we applied the
approach to the whole training data to identify the final marker
6 Mol Cell Proteomics (2021) 20 100083
panels for full model development. For MSI status prediction
in CRC, all models with protein marker numbers ranging from
5 to 20 achieved excellent performance on the independent
test data (Fig. 4A). In particular, the model with only five pro-
tein markers achieved an AUROC of 0.94. The five markers
selected by ProMS_mo included two proteins with increased
abundance in MSI-H tumors (ATP6V1B2 and STAT1) and
three proteins with decreased abundance (MTCH2, SEPT2,
and PRDX5). All proteins showed distinct expression patterns
between MSI-high and MSI-low/MSS tumors in the training
data (Fig. 4B). The differences were reduced but still obvious
in the test data (Fig. 4C).
Patient prognosis prediction in HCC was more challenging.

The model with five protein markers achieved an AUROC of
0.75, and increasing the number of protein markers did not
lead to increased prediction performance (Fig. 4D). The five
markers selected by ProMS_mo included two proteins with
increased abundance in tumors with poor prognosis (SMC4
and LPCAT1) and three proteins with decreased abundance
(PCK2, GLYATL1, and HAO1). All five proteins showed distinct
expression patterns between tumors with poor and good
prognosis in the training data (Fig. 4E). Although the discrim-
ination power of individual markers in the test data was
reduced (Fig. 4F), the five-marker panel still achieved good
prediction performance (Fig. 4D).
Some of the selected markers have previously reported

roles in the phenotype of interest. For example, signal trans-
ducer and activator of transcription 1 (STAT1) is a key immune
response modulating factor, and MSI-H CRCs are associated
with high immune infiltration (20). Alteration of phospholipid
composition regulated by lysophosphatidylcholine acyl-
transferase 1 (LPCAT1) is related to HCC progression, and it
has been reported as a potent target molecule to inhibit HCC
progression (32). In addition, elevated LPCAT1 expression in
patients with clear cell renal cell carcinoma (33) and lung
adenocarcinoma (34) is reportedly associated with poor clin-
ical outcome. Structural maintenance of chromosome subunit
4 (SMC4) is a core subunit of condensin complexes and is
widely reported to contribute to chromosome condensation
and segregation. Earlier studies show that SMC4 can effec-
tively promote tumor cell growth rate expression in HCC (35),
and it is useful for the early detection and prediction of primary
HCC progression (36). The identification of these previously
reported markers further supports the validity of our biomarker
selection approach.

Functional and Clinical Utilities of the Feature Clusters

A unique advantage of our framework for protein biomarker
selection is that each selected marker is associated with a
cluster of other molecular features, providing biological
context for functional interpretation of the selected markers.
Using patient prognosis prediction in HCC (k = 5) as an
example, the five clusters included 616, 439, 340, 326, and
125 features, respectively, and 247, 234, 160, 91, 44 features
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Computational Methods for Protein Biomarker Selection
in these clusters were protein features. We retrieved a sub-
network with all protein features in the five clusters from the
STRING network (37). The modularity of the subnetwork with
respect to the given cluster membership was 0.281, much
higher (Z-score: 16.37) than the modularity scores derived
from random clusterings with five clusters of same sizes,
which had a mean modularity of 0.015 and standard deviation
of 0.016. This result suggests that proteins in the five clusters
are more likely to be connected to other proteins in the same
cluster as compared with proteins in the other clusters, sup-
porting functional coherence of the clusters.
A wide range of variability was observed for Pearson's
correlation coefficients between features in each cluster and
their corresponding selected protein markers, SMC4, PCK2,
GLYATL1, LPCAT1, and HAO1 (Fig. 5A). Each cluster included
a mixture of features from all three omics platforms. Although
a small fraction of genes were supported by all three plat-
forms, most genes were uniquely contributed by one omics
platform (Fig. 5B). Thus, features from all omics platforms
collectively inform the underlying biological themes of the
clusters, which could be revealed through GO enrichment
analysis. For each cluster, the top enriched GO terms in
Mol Cell Proteomics (2021) 20 100083 7
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Computational Methods for Protein Biomarker Selection
biological process (BP), cellular component (CC), and molec-
ular function (MF), respectively, are listed in Figure 5C. Some
proteins, such as SMC4, have well-defined biological func-
tions. Identifying these known functions in our analysis not
8 Mol Cell Proteomics (2021) 20 100083
only reinforces existing knowledge but also strengthens our
rationale for using feature clusters to enable functional inter-
pretation of other selected biomarkers with limited preexisting
functional information.
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Computational Methods for Protein Biomarker Selection
Another advantage of our framework is that it provides
options for alternative markers in the event that there are
difficulties in implementing the originally selected proteins in a
clinical setting, e.g., unable to find high-quality antibodies for
the development of immunohistochemistry assays. Because
our cluster analysis tends to place proteins with similar
expression patterns and biological functions in the same
cluster, we reasoned that the predictive power remains even if
the originally selected proteins are replaced with other highly
correlated proteins in the same cluster (Fig. 5D). To test this
hypothesis, we used the HCC training data to train five addi-
tional prognosis prediction models where one of the markers
was replaced by the most-correlated protein in its cluster.
Consistent with our expectation, the overall performance of
these models on the independent test data was comparable to
the models trained with the original set of markers (Fig. 6).
Mol Cell Proteomics (2021) 20 100083 9



FIG. 6. Performance comparison when the selected marker is replaced by the most correlated marker in its containing cluster. For
prognosis prediction in HCC, five additional models were constructed using the protein markers identified by ProMS_mo except one of them
was replaced with the most correlated protein marker in each cluster.
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Thus, our framework provides a robust approach to facilitate
clinical implementation.

DISCUSSION

Untargeted MS proteomics provides a powerful platform for
protein biomarker discovery, but an effective transition from
discovery to verification and validation relies on the selection
of a small panel of protein biomarkers from discovery prote-
omics data. We presented ProMS, a new computational al-
gorithm to facilitate protein biomarker selection. ProMS
showed superior performance over MRMR and marginal im-
provements over LASSO for feature selection in the case of
MSI status prediction in CRC, and performance improvements
were more evident with the more challenging prognosis pre-
diction in HCC. In addition to good performance, ProMS also
has a few unique characteristics that are missing in other
feature selection algorithms. First, the feature clusters enable
functional interpretation of the selected protein markers.
Second, the feature clusters provide an opportunity to select
replacement protein markers, facilitating a smooth transition
to the verification and validation platforms. Finally, the
10 Mol Cell Proteomics (2021) 20 100083
algorithm is easily extendable to the multiomics setting, and
ProMS_mo leverages multiomics data to improve protein
biomarker selection.
ProMS is conceptually similar to the widely used MRMR

algorithm. Both algorithms aim to select features that have
high association with the class label, but low association with
each other. MRMR achieves this by maximizing an objective
function that simultaneously maximizes the relevance and
minimizes the redundancy. Guided by the objective function,
the algorithm identifies features one at a time in an iterative
fashion. In contrast to the inductive approach taken by
MRMR, ProMS takes a deductive approach, which is based
on the hypothesis that a phenotype is characterized by a few
underlying biological functions, each manifested by a group of
coregulated and coexpressed proteins. A weighted k-medoids
clustering algorithm is used to identify both protein groups
and a representative protein for each group as markers.
MRMR showed inferior performance in our evaluations, likely
due to its greedy, inductive nature. Aiming to achieve the
same goal, ProMS is driven by biological reasoning rather than
simple mathematical optimization. As a result, it not only
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significantly outperformed MRMR but also achieved better
performance than the model-based feature selection method
LASSO, which typically shows better performance than filter
methods. For patient prognosis prediction in HCC, ProMS
even approached the performance of the SPCA method,
which utilizes information from a lot more proteins. Selection
of the number of k may be guided by clinical feasibility. In
addition, in both the ProMS and ProMS_mo implementations,
users can simultaneously provide multiple k's as input and the
one with the best performance in cross-validation will be
selected for the construction of the final full model. In order to
help users decide whether the selected k is close to optimal,
the software also includes as an option the SPCA method,
which is not an actual feature selection method but can serve
as a reference for “optimal” performance as shown in our
analyses.
Recent works have shown that multiomics characterization

enables a more complete understanding of biological systems
(38–40). However, feature selection from multiomics datasets
poses even bigger challenges due to higher data dimension-
ality and increased data heterogeneity. An important branch of
machine learning, called multiview learning, offers new per-
spectives and approaches to exploit complementary infor-
mation presented in different data sources in order to
construct models with high predictive power (41). For
example, MRMR has been adapted to the multiview case
where the importance of each view is taken into consideration
to guide feature selection (42). A method has also been pro-
posed to perform feature selection with LASSO and low-rank
matrix approximation jointly in the context of multiview
learning (43). However, these methods select features glob-
ally, and features from any view can be included in the final
feature set. While conceptually interesting, clinical translation
of heterogeneous markers is challenging due to the require-
ment of multiple assay platforms. ProMS_mo is conceptually
different from these methods because it only selects proteins
although all multiomics data are used to facilitate protein
marker selection. Theoretically, features with cis- (i.e., mRNA,
phosphosites, and proteins from the same gene) or trans-
(phosphosites phosphorylated by a kinase or mRNAs regu-
lated by a transcription factor) relationships are more likely to
have similar abundance patterns; therefore, these functional
relationships could reinforce true protein–phenotype associ-
ations to enhance protein biomarker selection.
While ProMS achieved better performance than the other

feature selection methods in both the CRC and the HCC
studies, the AUROCs were much lower in the HCC study. This
suggests that prognosis prediction is much more difficult than
MSI status prediction. Although the MSI phenotype is driven
by a more homogeneous mechanism, the survival phenotype
may be driven by much more heterogeneous mechanisms.
Thus, a larger sample size is required when the phenotype of
interest is expected to be associated with heterogeneous
mechanisms. Moreover, for simplicity, survival in the HCC
study was dichotomized as a binary phenotype in our analysis.
One future development is to enable the analysis of nonbinary
phenotype data, such as continuous, ordinal, or censored
data, in ProMS.
ProMS_mo significantly outperformed ProMS when evalu-

ated on the independent data; however, the improvements are
marginal in many cases. Moreover, the two algorithms
performed similarly in cross-validation. One possible expla-
nation is that the omics data used in this study, including
transcriptomics and phosphoproteomics, are closely related
to proteomics data, which may limit the amount of improve-
ment. Notably, ProMS_mo is not limited by gene-based data,
and other types of measurements, such as metabolomics data
or imaging data, can also be incorporated in the analysis.
Therefore, a clear future direction is to test ProMS_mo
with other types of non-gene-based data, which may better
complement proteomics data than transcriptomics and
phosphoproteomics.
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