
RESEARCH PAPER

A nine-hub-gene signature of metabolic syndrome identified using machine 
learning algorithms and integrated bioinformatics
Guanzhi Liua, Sen Luoa, Yutian Leia, Jianhua Wub, Zhuo Huanga, Kunzheng Wanga, Pei Yanga, and Xin Huangb

aBone and Joint Surgery Center, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China; bDepartment of Cardiovascular 
Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

ABSTRACT
Early risk assessments and interventions for metabolic syndrome (MetS) are limited because of 
a lack of effective biomarkers. In the present study, several candidate genes were selected as 
a blood-based transcriptomic signature for MetS. We collected so far the largest MetS-associated 
peripheral blood high-throughput transcriptomics data and put forward a novel feature selection 
strategy by combining weighted gene co-expression network analysis, protein-protein interaction 
network analysis, LASSO regression and random forest approaches. Two gene modules and 51 
hub genes as well as a 9-hub-gene signature associated with metabolic syndrome were identified. 
Then, based on this 9-hub-gene signature, we performed logistic analysis and subsequently 
established a web nomogram calculator for metabolic syndrome risk (https://xjtulgz.shinyapps. 
io/DynNomapp/). This 9-hub-gene signature showed excellent classification and calibration per-
formance (AUC = 0.968 in training set, AUC = 0.883 in internal validation set, AUC = 0.861 in 
external validation set) as well as ideal potential clinical benefit.
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1. Introduction

Metabolic syndrome (MetS) is a complex 
abnormality with several components, such as 
insulin resistance, diabetes, obesity, hyperten-
sion, and hyperlipidemia [1,2]. The occurrence 
and development of MetS and its components 
are always associated with poor cardiovascular 
outcomes, especially for individuals with obe-
sity and insulin resistance, which are the core 
pathophysiological features of MetS [3–5]. The 
lack of effective risk assessment biomarkers 
makes early intervention for MetS and MetS- 
related diseases difficult [6,7]. Studies have 
reported potential biomarkers of MetS; how-
ever, there is still a lack of definitive clinical 
risk assessment biomarkers [8,9]. Research on 
MetS biomarkers is limited to genomics, and 
the association between MetS and single 
nucleotide polymorphisms (SNPs) [10,11]. Few 
studies have focused on MetS-specific biomar-
kers from a transcriptomics perspective [12].

In high-throughput transcriptomics, microar-
rays and next-generation sequencing (NGS) have 
been widely used to measure RNA expression 
levels [13–15]. In addition, advanced bioinfor-
matics approaches, such as weighted gene co- 
expression network analysis (WGCNA), can play 
an important role in the identification of disease 
biomarkers, as they have high sensitivity, specifi-
city, and efficiency, based on high-throughput 
transcriptomic data [16,17]. Compared to tradi-
tional bioinformatics methods, such as differen-
tially expressed gene (DEG) analysis, network- 
focused algorithm WGCNA can establish 
a weighted scale-free co-expression network, and 
then identify key gene modules and hub genes 
[18]. Machine learning (ML), as a key aspect of 
artificial intelligence, has been increasingly applied 
in many biomedical fields, such as biomarker 
identification, diagnosis signature development, 
and drug target discovery [19,20]. Moreover, 
some ML methods, such as least absolute shrink-
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age and selection operator (LASSO) regression and 
random forest (RF), can significantly improve bio-
marker development for multifactorial and com-
plicated diseases [21,22].

In this study, an integrated bioinformatic 
approach using WGCNA was performed on the 
largest MetS-associated peripheral blood high- 
throughput transcriptomic data set. Several hub 
genes were identified via protein–protein interac-
tion (PPI) network analysis, and further hub gene 
feature selection was conducted by combining 
LASSO regression and RF algorithms. Finally, 
a logistic regression and a web nomogram calcu-
lator for MetS risk (https://xjtulgz.shinyapps.io/ 
DynNomapp/) was established based on the train-
ing set, and the diagnostic value of selected hub 
gene features was measured using internal and 
external validation data. To further detect the dif-
ferences in hub gene expression in peripheral 
blood and plasma, NGS was carried out in plasma 
samples of MetS patients and a control group 
(healthy patients). The current study aimed to 
identify gene parameters with high diagnostic 
value and clinical implications for MetS, using 
comprehensive bioinformatics and ML feature 
selection methods. This study provides a novel 
strategy for more effective and reliable biomarker 
development.

2. Materials and methods

2.1. Data collection and preprocessing

MetS causes highly specific gene expression 
changes in peripheral blood. Public gene expres-
sion datasets based on peripheral blood samples 
containing MetS-associated clinical diagnosis 
information were collected from the Gene 
Expression Omnibus database (GEO database; 
http://www.ncbi.nlm.nih.gov/geo/). The training 
set consisted of 70% of samples randomly selected 
from the GSE152073 (n = 90) and GSE98895 
(n = 40) combined datasets (gene expression 
microarray data of peripheral blood), and the 
remaining 30% was used as internal validation 
data [23,24]. GSE124534 (n = 17, gene expression 
microarray data of peripheral blood) was used for 
external validation [25]. Subjects diagnosed with 
other metabolic diseases or acute trauma, such as 

osteoporosis or femoral neck fracture, which may 
cause gene expression changes, were excluded. 
Detailed information on these datasets is listed in 
Supplementary Table 1. After removing the out-
liers and probes that were duplicate or could not 
be annotated, gene expression data were normal-
ized and batch effects removed using the ‘limma’ 
package in R. Missing data was imputed using the 
R software package ‘impute.’

2.2. WGCNA

WGCNA was performed based on GSE98895 data-
sets using the R package ‘WGCNA’ [26]. First, the 
Pearson’s correlation was calculated for all pairs of 
genes to establish a similarity matrix. Second, an 
appropriate soft-thresholding power of two was 
selected to meet the scale-free topology (scale-free 
R2 > 0.9) criterion using the function 
‘pickSoftThreshold.’ Third, a topological overlap 
matrix and corresponding dissimilarity matrix were 
constructed. Then, the ‘blockwiseModules’ function 
was run with the following major parameters: 
maxBlockSize = 5000, minModuleSize = 30, and 
mergeCutHeight = 0.25. Several gene modules were 
identified through hierarchical clustering with 
a dynamic tree-cutting algorithm. Finally, the corre-
lation between gene modules and clinical pheno-
types was calculated to identify clinically significant 
modules.

2.3. Enrichment analysis of modules

To explore the function and signaling pathways 
associated with these modules, Gene Ontology 
(GO) function enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis were performed, as 
well as Gene Set Enrichment Analysis (GSEA) 
using the ‘clusterProfiler,’ ‘enrichplot,’ ‘DOSE,’ 
and ‘ggplot2’ packages in R software [27]. 
A P value of <0.05 was set as the threshold.

2.4. PPI network construction and hub gene 
identification

A protein–protein interaction (PPI) network was 
constructed based on the STRING database 
(Search Tool for the Retrieval of Interacting 
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Genes, version 11.0, combined score >0.4). 
Connectivity degrees in the network were then 
calculated, and the top 5% of genes with the high-
est connectivity degree were identified as hub 
genes for further analysis. Visualization of hub 
genes in the PPI network was achieved using 
Cytoscape software (version 3.7.0).

2.5. Clinical plasma sample collection

Peripheral blood samples were obtained from 
five patients with MetS and five healthy volun-
teers from the First Affiliated Hospital of Xi’an 
Jiaotong University, defined using the World 
Health Organization’s MetS definition. MetS 
diagnosis can be made based on the presence of 
impaired fasting glucose, impaired glucose toler-
ance, type 2 diabetes mellitus (T2DM) or insulin 
resistance, and two or more of the following [1]: 
waist-to-hip ratio > 0.90 in men; waist-to-hip 
ratio > 0.85 in women, and/or body mass index 
> 30 kg/m2 [2]; serum triglyceride level ≥ 
1.7 mmol/L [3]; HDL cholesterol < 0.9 mmol/L 
in men, < 1.0 mmol/L in women, or treatment 
for dyslipidaemia [4]; blood pressure ≥ 140/ 
90 mm Hg; and [5] microalbuminuria [28]. 
This study was approved by the Ethics 
Committee of the First Affiliated Hospital of 
Xi’an Jiaotong University (Ethical Approval 
number: XJTU1AF2019LSL-014). All participants 
provided written informed consent in advance.

2.6. RNA extraction and high-throughput 
sequencing

Total RNA was extracted from plasma samples 
using TRIzol LS Reagent (Invitrogen), according 
to the manufacturer’s instructions. Sequencing 
libraries were generated using the NEBNext 
Poly(A) mRNA Magnetic Isolation Module (New 
England Biolabs), RiboZero Magnetic Gold Kit 
(Epicenter, Illumina Company), and KAPA 
Stranded RNA-Seq Library Prep Kit (Illumina). 
An Agilent Bioanalyzer 2100 system (Agilent) 
was used to qualify the sequencing libraries. 
Finally, high-throughput NGS was carried out 
using the TruSeq SR Cluster Kit (Illumina), based 
on the Illumina HiSeq 4000 sequencing platform 
(Illumina). The sequencing data has been 

uploaded to ArrayExpress database (E-MTAB- 
10494) .

2.7. Plasma mRNA differential expression 
analysis

Trimmed reads were identified after raw sequen-
cing data quality control and filtering using the 
Solexa pipeline program (version 1.8) and 
Cutadapt software. Subsequently, human reference 
genome indexing (hg38) was obtained using 
Bowtie (http://bowtie-bio.sourceforge.net/index. 
shtml). Sequence alignment was performed using 
the Hisat2 program. The R package ‘edgeR’ was 
used to detect DEGs [29]. The threshold for DEGs 
was set as |log2FC|≥ 1 and P value < 0.05.

2.8. Hub gene feature selection strategy

ML algorithms are more powerful than traditional 
methods for complex classification, like medical 
diagnosis and treatment. In this study, two ML 
approaches: LASSO regression and RF using 
R packages ‘glmnet’ and ‘randomForest’ were 
combined to achieve feature selection [30]. The 
feature selection was cross-checked, and several 
hub genes were selected according to the classifi-
cation accuracy. Hub genes from LASSO regres-
sion and RF feature selection were further used to 
establish a diagnosis classifier.

2.9. Web nomogram calculator construction and 
validation of a nine-hub-gene signature

The R package ‘rms’ was used to establish a logistic 
regression model, based on expression data in the 
training set. A corresponding web nomogram cal-
culator for MetS risk was constructed to visualize 
the diagnostic effect of the selected hub gene sig-
nature. Internal and external validations were then 
performed to determine the web nomogram cal-
culator performance. The area under curve (AUC) 
value of the receiver operating characteristic 
(ROC) curve was calculated using the ‘pROC’ 
package in R, which can depict the classification 
ability [31]. The Hosmer–Lemeshow goodness-of- 
fit test and a calibration curve analysis were con-
ducted to indicate the calibration. In addition, 
a decision curve analysis was carried out using 
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the ‘rmda’ package to evaluate the clinical applica-
tion value and net benefit of the nomogram.

3. Results

In this study, through combined integrated bioinfor-
matic approaches and machine learning algorithms, 
we identified a nine-hub-gene signature with high 
diagnostic value and clinical implications for MetS. 
Besides, current work provides a novel strategy for 
more effective and reliable biomarker development.

3.1. WGCNA construction and identification of 
key modules

The workflow of this study is shown in Figure 1. 
The most comprehensive sets of MetS-associated 
high-throughput transcriptomic data from the 
GEO database were combined (Supplementary 
Table 1). Gene expression profiles from 
GSE98895 were used to perform WGCNA. After 
preprocessing and batch effect removal, 25,148 
gene expression data were identified from 

peripheral blood samples from 20 MetS and 20 
control patients. Sample-clustering analysis, based 
on Pearson’s correlation and average linkage 
approaches, showed no outliers (Figure 2a). To 
achieve scale-free topology (scale-free R2 > 0.9), 
a soft-thresholding power β = 2 was selected 
(Figure 2b). Subsequent WGCNA network con-
struction and average linkage hierarchical cluster-
ing detected 14 gene modules. Detailed 
hierarchical clustering information is shown in 
Figure 2c,d. The correlation analysis between 
these modules and MetS showed that the red 
module (618 genes) and black module (546 
genes) were highly associated with MetS 
(Figure 2e). Hence, these two modules were iden-
tified as the key modules of MetS for further 
analysis. Scatter diagrams containing key module 
GS and MM information are shown in Figure 2f,g.

3.2. GO and pathway enrichment analysis

The GO functional enrichment analysis showed 
that the MetS-associated genes in red and black 

Figure 1. Flow chart of data processing and analysis.
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modules were mainly enriched in biological pro-
cesses (BP), such as the receptor guanylyl cyclase 
signaling pathway, central nervous system neuron 
differentiation, response to calcium ion, and plate-
let activation. In addition, these genes were asso-
ciated with molecular functions (MF), such as 
tumor necrosis factor receptor and lipid transpor-
ter activity. Cellular components (CC), such as 
cellular junctions and guanyl-nucleotide exchange 
factor complexes, may correlate with the develop-
ment of MetS. The KEGG signaling pathway 
enrichment analysis indicated that these genes 
were significantly enriched in signaling pathways, 
such as cell adhesion molecules, leukocyte trans-
endothelial migration, and the calcium signaling 
pathway (Figure 3a,b). In addition, GSEA further 
revealed the function and signaling pathways of 
these genes, and showed a similar result to CC 
GO and KEGG pathway enrichment analysis. BP 
GSEA and MF GSEA suggested that BP, such as 
regulation of lymphocyte activation, drug meta-
bolic processes, and MF, such as lyase activity, 

hydrolase activity, molecular transducer activity, 
and G-protein coupled receptor activity, might be 
involved in the development of MetS (Figure 3c-f).

3.3. PPI network construction and hub gene 
identification

PPI networks were established using the STRING 
database, based on genes in the red and black 
modules. The degree of connectivity was calcu-
lated, and the top 5% of genes (51 genes) with 
the highest connectivity were selected as hub 
genes associated with MetS. Hub genes with 
a high degree of connectivity, such as MYC, 
UBE2E2, MIB2, ANAPC1, TCEB1, CTLA4, and 
SPI1, might play important roles in the develop-
ment of MetS, and could serve as potential bio-
markers and therapeutic targets. The visualization 
of the hub gene PPI network is shown in Figure 4. 
These 51 hub genes (Supplementary Table 2) 
were used for further feature reduction analysis 
and model construction.

Figure 2. Weight gene correlation network analysis (WGCNA). (a) Sample clustering dendrogram and outliers detection. (b) Selection 
of the soft threshold. Scale-free topology fitting index R2 analysis (left) and mean connectivity for various soft threshold powers 
(right). The red line in the left panel means R2 = 0.9. (c) Clustering diagram of gene modules represented by different colors. (d) 
Clustering tree of gene modules and the correlation heatmap of the module eigengenes. (e) Heatmap of the relationship between 
modules and MetS: red for positive correlation and blue for negative correlation. (f,g) Scatter diagrams of genes in red module and 
black module. X-axis represents gene significance and y-axis represents module membership.
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Figure 3. (a) Enrichment analysis of Gene Ontology (GO) function. (b) Enrichment analysis of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) signaling pathway. The color represents the P value and X-axis represents gene number. (c) Gene Set Enrichment 
Analysis (GSEA) of KEGG signaling pathway. (d) Gene set enrichment analysis of biology process (BP). (e) Gene set enrichment 
analysis of molecular function (MF). (f) Gene set enrichment analysis of cellular component (CC).

Figure 4. Protein-protein interaction (PPI) network. The gradual color and spot size represents the connectivity degree.
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3.4. Hub gene expression level in plasma

12,954 genes were identified in plasma samples 
from five patients in the MetS group and five 
patients in the control group, and 45 upregu-
lated and 186 downregulated DEGs were identi-
fied in the MetS group compared to the control 
(Supplementary Table 3). The plasma expres-
sion of the 51 hub genes did not differ signifi-
cantly between MetS patients and healthy 
controls (Supplementary Table 4). These results 
indicate that the potential function and diagnos-
tic value of these 51 hub genes in peripheral 
blood should be determined, instead of in 
plasma components. This outcome defines the 
sampling type for further noninvasive MetS 
screening or diagnostic tools.

3.5. Novel hub gene feature selection strategy

In this study, LASSO regression analysis and RF 
were used for feature selection. The expression 
data of the 51 hub genes were entered into 
LASSO regression models, and a 10-fold cross- 

validation was performed to detect the optimal 
classification accuracy (Figure 5a,b). Hence, 15 
hub gene features were obtained based on 
LASSO regression analysis, including ADRA2A, 
CXCR5, FZD1, HLA.DPA1, HSPA5, KCTD7, 
KLHL9, P2RY14, P2RY2, PRKACG, PSMD1, 
PTTG1, REEP4, SPTAN1, and TSPAN14. In 
addition, an RF model was constructed using 
the expression profiles of the 51 hub genes, and 
the classification importance of hub gene fea-
tures was measured by the decrease in the Gini 
coefficient (MeanDecreaseGini). Fifteen hub 
gene features were chosen using an RF 
approach, comprising SPTAN1, KCTD7, 
IL2RG, ITPR3, PSMD1, ITGB7, FZD1, DCTN4, 
KLHL9, PTTG1, TSPAN14, RNF19B, XCR1, 
P2RY2, and CXCR5 (Figure 5c). Finally, the 
results of these two gene feature selection meth-
ods were combined by taking the intersection, 
and nine-hub-gene features (SPTAN1, KCTD7, 
PSMD1, FZD1, KLHL9, PTTG1, TSPAN14, 
P2RY2, and CXCR5) were selected for further 
analysis. Based on Human Protein Atlas 

Figure 5. (a) The mean-squared error of LASSO regression. Y-axis represents mean-squared error. X-axis represents the ideal gene 
feature amount on various of lambda value. Left dotted line means the minimum of mean-squared error and the right dotted line 
means one standard deviation above minimum of mean-squared error. (b) Coefficients distribution trend of LASSO regression. (c) 
The importance of hub gene features based on random forest algorithm and the ideal gene feature amount.
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database, the mRNA blood cell type distribu-
tion and protein concentration in plasma of 
these nine hug genes were showed in 
Supplementary Table 5.

3.6. Web nomogram calculator construction and 
validation of nine-hub-gene signature

The expression profiles of the nine selected gene 
features were entered into a logistic regression, 
and then, to validate the diagnostic value of this 
nine-hub-gene signature, a web nomogram calcu-
lator for MetS risk was established based on the 
training set  (https://xjtulgz.shinyapps.io/  
DynNomapp/). The ROC curve analysis 
(Figure 6a) showed that this MetS diagnostic 
nomogram had excellent classification ability 
(AUC = 0.968 in training set, AUC = 0.883 in 

internal validation set, AUC = 0.861 in external 
validation set). The ROC curves of every hub gene 
are shown in Supplementary Figure 1. In addition, 
a calibration curve analysis was performed, and 
the Hosmer–Lemeshow goodness-of-fit test 
(P= 0.915) showed good calibration of this nomo-
gram (Figure 6b). Furthermore, the decision curve 
plotted the standardized net benefit of the MetS 
diagnostic nomogram for different decision 
thresholds (Figure 6c). These results indicate that 
the application of this MetS diagnostic nomogram 
can lead to ideal diagnostic outcomes.

4. Discussion

Recently, considerable amount of research has 
been conducted on MetS; however, early diag-
nosis and intervention remains difficult because 
of a lack of effective biomarkers and targeted 

Figure 6. (a) Receiver operating characteristic curves of the web nomogram calculator based on the 9-hub-gene signature. (b) 
Calibration curve analysis and Hosmer-Lemeshow good of fit test of the web nomogram calculator based on the 9-hub-gene 
signature. (c) Decision curve analysis of every single gene feature and the web nomogram calculator based on the 9-hub-gene 
signature.

5734 G. LIU ET AL.

https://xjtulgz.shinyapps.io/DynNomapp/
https://xjtulgz.shinyapps.io/DynNomapp/


treatment [32]. To the best of our knowledge, 
this is the first study to identify a key gene 
module and 51 MetS-associated hub genes by 
combining a WGCNA bioinformatics approach 
and PPI network analysis. Genes in this key 
module were mainly enriched in signaling path-
ways, such as cell adhesion, leukocyte transen-
dothelial migration signaling, nuclear factor 
kappa B (NF-κB), and functions such as lym-
phocyte activation. These 51 hub genes may 
play important roles in the development of 
MetS. Cheung et al. suggested that MYC 
(MYC proto-oncogene) can serve as an impor-
tant mediator of impaired insulin secretion and 
β-cell apoptosis [33]. Some studies have indi-
cated that the SNPs in UBE2E2 (ubiquitin con-
jugating enzyme E2) are associated with the 
development of T2DM [34,35]. Additionally, 
mindbomb E3 ubiquitin protein ligase 2 
(MIB2), anaphase promoting complex subunit 
1 (ANAPC1), and ELOC, Elongin C (TCEB1), 
are also involved in ubiquitination, which can 
affect the development of insulin resistance and 
MetS [36,37]. Cytotoxic T-lymphocyte asso-
ciated protein 4 (CTLA4) is involved in T-cell 
immune responses, and thus, it regulates the 
pathogenesis of insulin resistance and insulin- 
dependent diabetes mellitus [38,39]. Moreover, 
the upregulation of Spi-1 proto-oncogene (SPI1, 
or PU.1) in adipocytes can cause insulin resis-
tance by stimulating reactive oxygen species 
production and inflammatory cytokine gene 
expression [40,41]. These hub genes could 
serve as biomarkers for MetS and many of 
their contributing components.

Through ML feature selection methods, a nine- 
hub-gene signature with high diagnostic value and 
clinical implications for MetS was obtained. Dhana 
et al. found that the proteasome 26S subunit, non- 
ATPase (PSMB1) gene was associated with both 
body mass index and waist circumference, and 
could serve as a biomarker for obesity-related dis-
eases [42]. Some studies have shown that frizzled 
class receptor 1 (FZD1) is related to insulin resis-
tance [43,44]. In addition, Kelch-like family mem-
ber 9 (KLHL9) can induce insulin resistance by 
regulating insulin receptor substrate-1 (IRS1) 
degradation [45]. Pituitary tumor-transforming 

gene 1 (PTTG1) is a crucial factor in the develop-
ment and physiological responses of pancreatic 
beta-cells, and its dysregulation can result in dia-
betes [46]. Tetraspanin 14 (TSPAN14) can interact 
with ADAM metallopeptidase domain 10 
(ADAM10) and then regulate leukocyte develop-
ment and inflammatory immunity function [47]. 
Previous studies have demonstrated that puriner-
gic receptor (P2Y2) contributes to the develop-
ment of chronic high-fat diet-induced metabolic 
dysfunction and insulin resistance [48,49]. 
Furthermore, P2RY2 is involved in the process of 
immune cell infiltration in MetS [50]. Follicular 
helper T-cells (Tfh) of diabetic patients express 
elevated levels of C-X-C motif chemokine receptor 
5 (CXCR5), and there is a dysregulation of circu-
lating CD4+ CXCR5 + T-cells in diabetes patients 
[51,52]. These results indicated nine-hub-gene sig-
nature is highly associated with MetS.

Finally, the classification ability, calibration, 
and potential clinical benefit of the blood- 
based, nine-hub-gene signature was verified in 
internal and external validation sets. Previous 
studies have not investigated the diagnostic 
value of these nine hub genes for MetS; an 
early screening or diagnostic tool for MetS has 
not been developed [53]. However, in this study, 
the blood-based, nine-hub-gene signature com-
bined with logistic regression and visualized as 
a nomogram produced an excellent classification 
and calibration performance. The AUC of the 
ROC curves reached 0.883 in the internal vali-
dation set and 0.861 in the external validation 
set. The Hosmer–Lemeshow goodness-of-fit test 
(P = 0.915) showed good calibration. A further 
decision curve analysis showed that this nomo-
gram has a better net benefit than any single 
gene signature in almost all decision threshold 
ranges. Overall, these results indicate that this 
nine-hub-gene signature is useful for MetS- 
associated, blood-based risk assessments in clin-
ical applications.

In this study, the largest MetS-associated per-
ipheral blood high-throughput transcriptomics 
dataset was collected. However, further large, 
independent patient cohort validation studies 
are still needed to establish a diagnostic model 
for clinical applications.
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5. Conclusion

Because of its excellent classification ability, calibra-
tion, and potential clinical benefits, the nine-hub-gene 
signature identified in the present study can be used to 
accurately assess MetS risk. In addition, a novel risk 
assessment biomarker selection method is proposed 
by combining WGCNA approaches, PPI network 
analysis, LASSO regression, and RF feature selection 
algorithms. In addition, high-throughput sequencing 
was performed to detect the plasma cell-free mRNA 
expression level in MetS patients compared with 
healthy controls, which can provide a reliable basis 
for sampling type in MetS risk assessment.

Research highlights

(1) Combining bioinformatics analysis and 
machine learning algorithms

(2) Providing a novel strategy for biomarker 
identification

(3) A nine-hub-gene signature with high diag-
nostic value for MetS
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