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Abstract: Gelatin, a denatured form of collagen, is an attractive biomaterial for biotechnology. In
particular, gelatin particles have been noted due to their attractive properties as drug carriers. The
drug release from gelatin particles can be easily controlled by the crosslinking degree of gelatin
molecule, responding to the purpose of the research. The gelatin particles capable of drug release
are effective in wound healing, drug screening models. For example, a sustained release of growth
factors for tissue regeneration at the injured sites can heal a wound. In the case of the drug screening
model, a tissue-like model composed of cells with high activity by the sustained release of drug or
growth factor provides reliable results of drug effects. Gelatin particles are effective in drug delivery
and the culture of spheroids or cell sheets because the particles prevent hypoxia-derived cell death.
This review introduces recent research on gelatin microparticles-based strategies for regenerative
therapy and drug screening models.

Keywords: biotechnology; drug delivery; drug research model; gelatin; regenerative medicine

1. Introduction

As representative biomaterials, chitosan [1,2], alginate [3,4], hyaluronic acid [5,6],
collagen [7,8], gelatin [9,10], polylactic acid [11], polyglycolic acid [12,13], poly (lactic-
co-glycolic acid) [14–16], or polyethylene glycol [17,18] are well known. Among the bio-
materials, gelatin is often used for medical [19,20] or cosmetics [21] because gelatin is
water-soluble [22], low inflammatory [23], and promotes high cell adhesion [24]. Gelatin
formulation, such as a scaffold, has been investigated for cell transplantation [25–27]. More-
over, it has been reported that gelatin fiber supports the culture of cell sheets [28,29]. In
addition to these non-spherical shape types, gelatin particles, especially micro size, have
been investigated in the field of in vivo therapy or in vitro cell culture. This paper is a
short review of recent research on gelatin microparticles-based biotechnology strategies for
regenerative therapy and drug screening.

2. Protocol for the Preparation of Gelatin Microparticles

An aqueous gelatin solution is added to the olive oil by stirring for 10 min at 40 ◦C
to prepare the water-in-oil emulsion. The emulsion temperature is decreased at 4 ◦C for
the natural gelation of gelatin solution to obtain non-crosslinked hydrogel microspheres.
The resulting gelatin microparticles (GMs) are washed a few times with cold acetone to
exclude the residual oil completely. Next, GMs are fractionated by appropriate size using
sieves [30]. Note that it is better to perform this protocol on ice because the non-crosslinked
GMs are easily degraded at room temperature.

3. Crosslinking Methods

Non-crosslinked GMs cannot be used in cell culture or animal experiments because of
the quick degradation. To obtain the formulation with appropriate degradation, chemical
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or dehydrothermal crosslinking processes are needed. The comparison of the two methods
is shown in Table 1.

Table 1. Comparison of features between chemical and dehydrothermal crosslinking methods.

Points Compared Crosslinking Method

Chemical Dehydrothermal

Instrument needed Nothing Oven
Temperature (◦C) 40 140~160

Particle condition under process Liquid solid

Crosslinking reagent added Aldehyde, isocyanates, acyl azides, or
carbodiimide [31–34] Nothing

Stop reagent added Glycine [35] Nothing
Time required (days) 1 2~5

Merit

• Safety condition (room temperature
condition) [36]

• Particular instrument is not
needed [37].

• Easy to handle [38]
• Aggregation is not formed because

of the solid condition.

Demerit • Aggregation is sometimes formed. • Particular instrument is needed [39].

Among the chemical crosslinking reagents, it has been reported that there are some dif-
ferences. For example, when the cells were cultured on the gelatin formulations crosslinked
by genipin, cell seeding efficiency was significantly lower than aldehyde or carbodiimide.
In addition, when the carbodiimide was used for crosslinking reagent, the gelatin for-
mulations presented poor anti-hydrolysis ability [40]. Due to the reports, the aldehyde
is often selected for crosslinking. Recently, dehydrothermal crosslinking has been noted
because of the ease of handling [23]. If the machine for vacuum heating can be obtained,
dehydrothermal crosslinking is the most appropriate choice.

4. Gelatin-Based Drug Delivery Systems

Growth factors are needed to enhance cell activity or function [41–43]. Therefore, the
delivery of growth factors to cells would be a promising strategy for treating diseases.
However, growth factors are quickly degraded, so the carrier for growth factors contained
is essential. Gelatin molecules can interact with growth factors by electronic interaction
because gelatin is a denatured form of collagen, a major extracellular matrix (ECM) com-
ponent [44]. When the collagenase degrades the gelatin particles, the growth factors are
released with gelatin molecule debris (Figure 1) [44,45]. This drug release mechanism is
effective in tissue regeneration. When the gelatin particles containing growth factors are
injected into the damaged tissues, growth factors are rapidly released, leading to tissue
regeneration. This is due to the high secretion level of collagenase (e.g., vascular endothe-
lial growth factor or matrix metalloproteinase) in the damaged tissues. In addition, the
release speed of growth factors can be controlled by changing the crosslinking degree of
gelatin molecules [46,47]. For example, when gelatin particles with the slow release of
growth factors are needed, you should introduce a higher concentration of crosslinking
reagents or a longer time for dehydrothermal crosslinking. Taken together, the mechanism
of matrix-degradation-based drug release characterization is one of the attractive properties
of gelatin [22,44].
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Figure 1. A schematic representation of drug release from gelatin particles (when the isoelectric
point of gelatin is negative.). The gelatin used for sustained drug release can be selected considering
the isoelectric point of the drug (If the drug to be released is basic, gelatin with a negative charge
is preferable.). Drugs and gelatin molecules interact by physicochemical interaction (e.g., ionic or
hydrogen interaction). When the gelatin particles are degraded, the drugs with gelatin molecule
debris are rapidly released with time.

5. Applications of Gelatin Microparticles

In regenerative therapy and drug research models, enhanced cell activity or function
is one of the most important concepts [48]. To achieve regenerative therapy, cells in the
damaged tissue should proliferate by obtaining high cell activity. In the case of drug
screening models, the cell activity or function of models should be close to that of natural
tissues. To assist the enhancement of cell activity or function, GMs are often used. In this
chapter, regenerative therapy and drug research model using GMs are introduced.

5.1. Regenerative Therapy

Table 2 summarizes some recent reports on regenerative therapy using gelatin mi-
croparticles.

Table 2. Examples of regenerative therapy and tissue regeneration strategies using gelatin microparticles.

Ref. Date Tissue
Regenerated

In Vitro (Cell
Type)/In Vivo
(Animal Type)

Growth
Factors

Released
Main Results

[49] 2015 Cardiac

In vitro (human
cardiac cells derived

from iPS cells)/In vivo
(mouse)

-
The survival rate of stacked cell sheets was

improved by incorporating gelatin microparticles
between each cell sheet.

[50] 2017 Blood vessels

In vitro (human
umbilical vein

endothelial cells and
human dermal

fibroblast
cells)/In vivo (mouse)

Platelet-rich
plasm

A(PRP)

Gelatin microparticles containing PRP promoted the
formation of capillaries and microvascular networks.

[51] 2018 Sternal In vivo (rabbit) PRP
PRP-gelatin microparticles injection showed a

significantly higher indicator of sternal healing than
only gelatin microparticles injection.
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Table 2. Cont.

Ref. Date Tissue
Regenerated

In Vitro (Cell
Type)/In Vivo
(Animal Type)

Growth
Factors

Released
Main Results

[52] 2018 Bone

In vitro (mouse
mesenchymal stem

cells and mouse
macrophages)

Bone
morphogenic

protein-2
(BMP-2)

The gelatin microparticles were prepared to be
preferentially degraded by pro-inflammatory

macrophages, leading to the spatiotemporal BMP-2
release. The strategy enabled to achieve the efficient

bone differentiation of stem cells.

[53] 2018 Cardiac In vivo (rat)
Basic fibroblast
growth factor

(bFGF)

Gelatin microparticles capable of bFGF control
release showed the improvement of cell sheets’

viability.

[54] 2019 Cartilage
In vitro (human

periosteum derived
cells)

Transforming
growth

factor-β1
(TGF-β1)

TGF-β1 release from gelatin microparticles
promotes the chondrogenic differentiation of human

periosteum-derived cells.

[55] 2019 Bone
In vitro (rabbit

mesenchymal stem
cells)/In vivo (rabbit)

BMP-2
BMP-2 release system of gelatin microparticles is

effective in bone regeneration of X-ray-radius
defects.

[56] 2021 Cartilage and
disk

In vitro (human stem
cells)/In vivo (rat)

Matrilin3 and
TGF-β3

Chondrogenic differentiation was promoted when
gelatin particles containing Matrilin-3 and TGF-β3
were incorporated into stem cell spheroids while

preventing hypertrophy.

[57] 2021 Masseter
muscle

In vitro
(rat stem cells) bFGF and PRP

The combination of cell transplantation and the
drug release system efficiently differentiated stem

cells towards muscle lineage.

There are two important factors for the achievement of tissue regeneration using mate-
rials transplantation into the damaged tissues. One is the speed of material degradation. To
regenerate the tissue damaged, cells should actively migrate and proliferate in the defective
site. Therefore, the speed of cell migration and material degradation should be linked
and synchronized [22]. As mentioned above, the degradation profile of gelatin particles
can be easily modified by the crosslinking reagent concentration or the dehydrothermal
crosslink period. Therefore, gelatin particles are suitable for tissue regeneration in terms
of degradation control. The second is the disappearance of the material. The remaining
materials are unnecessary after the tissue regeneration is completed. Even though wound
healing and tissue regeneration are achieved, the permanent existence of materials would
induce inflammation [58]. Gelatin particles are materials capable of solving this problem
because they are degraded into harmless amino acids to the body.

5.2. Drug Research Model

Table 3 summarizes the research on the GMs-based spheroids for drug research.

Table 3. In vitro drug research studies using 3D cell/tissue spheroids combined with gelatin microparticles.

Ref. Date Tissue or
Disease Cells Used Growth Factors or

Drugs Released Main Results

[59] 2017 Epithelial Mammary epithelial cells -

β-casein expression of epithelial spheroids
incorporating gelatin microparticles coated

with Matrigel was higher than
microparticles-free spheroids.

[60] 2017 Cancer Cancer-associated
fibroblasts and cancer cells -

Cancer cells and cancer-associated fibroblasts
(CAF) spheroids combined with gelatin

particles showed a stromal matrix rich in
collagen deposition and expressed the

desmoplastic reaction markers.
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Table 3. Cont.

Ref. Date Tissue or
Disease Cells Used Growth Factors or

Drugs Released Main Results

[61] 2017 Epithelial Mammary epithelial cells
and preadipocyte cells -

Epithelial-preadipocytes multicellular
spheroids incorporating gelatin microparticles

showed the enhancement of β-casein
expression compared to spheroids in the

absence of the gelatin microparticles.

[62] 2017 Bone Pre-osteoblast cells Bone morphogenic
proteins-2 (BMP-2)

When spheroids incorporating gelatin
microparticles containing BMP-2 were

prepared, efficient osteogenic differentiation
was observed compared to spheroids
incorporating gelatin microparticles.

[63] 2018 Cancer Cancer-associated
fibroblasts and cancer cells -

Cancer cells and CAF spheroids embedded
gelatin particles enabled the evaluation of the

anti-cancer drug effects efficiently.

[64] 2018 Pancreas Insulinoma cells -
The insulinoma spheroids incorporating

gelatin microparticles prompted the secretion
of insulin.

[65] 2018 Cancer Cancer cells, endothelial
cells, and fibroblasts -

3D tissue model consisting of cancer cells,
endothelial cells, and fibroblasts was prepared.
In this model, aberrant capillary-like structures
were observed, which are important events of

breast cancer progression.

[39] 2019 Cancer Cancer-associated
fibroblasts and cancer cells p53 inhibitor

CAF spheroids incorporating gelatin
microparticles containing a p53 inhibitor were
prepared to activate the CAF function in vitro,

similar to in vivo. The activated CAF
spheroids can promote the invasion ability of

cancer cells.

[66] 2020 Cancer Cancer-associated
fibroblasts and cancer cells

Transforming
growth factor-β

(TGF-β)

CAF spheroids incorporating gelatin
microparticles containing TGF-β enabled

increased invasion rate of cancer cells,
responding to TGF-β concentration.

[67] 2020 Cancer
Cancer-associated

fibroblasts, macrophages,
and cancer cells

Adenosine and
TGF-β

3D tumor-associated macrophages
incorporating gelatin microparticles containing
adenosine and 3D CAF incorporating gelatin

microparticles containing TGF-β were
combined. This system can mimic the tumor

microenvironment, responding to the
tissue region.

Drug discovery is one of the most promising strategies to treat intractable diseases.
Several hard processes should be passed to develop new drugs: drug screening using cells,
preclinical study, and clinical study [68]. However, the drug efficacy of drug screening is
often different from that of a preclinical or clinical study, leading to drug development
failure [69,70]. This is mainly due to the difference in environmental conditions between
in vitro and in vivo [71,72]. Cells are usually cultured by a two-dimensional culture system
of a dish or plate. However, cells in the body environment tend to interact with each other
in a three-dimensional (3D) manner. The interaction leads to an enhanced cell function,
such as proliferation [73,74], differentiation [75,76], or metabolism [77]. Based on the
characteristics, 3D tissue-like models, such as spheroids [78–82], organoids [83–86], or
microfluidics systems [87–89], have been recently demonstrated. However, hypoxia is
induced in the center of spheroids, leading to cell death [90,91]. Due to cell death, it is
difficult to culture the spheroids for a long period to investigate the cell function. GMs
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have been incorporated into the spheroids to tackle the issues because oxygen or nutrients
can be permeated through the water phase of gelatin gels [30]. The function of spheroids
incorporating GMs is higher than that without GMs incorporation [23,30]. For example,
when the insulinoma spheroids are prepared, the insulin secretion is enhanced. The model
is useful as a tool for type 1 diabetes drug research [64].

In addition, the drug delivery system technology of GMs is effective in the drug re-
search model. To enhance the cell function in vitro, similar to in vivo, the release of drugs,
which enhance the cell function or activity, is important. Based on this reason, spheroids
incorporating GMs containing drugs have been demonstrated for the anti-cancer drug
research model [39,66,67]. Under the tumor environment, cancer cells interact with cancer
cells and stromal cells of cancer-associated fibroblasts (CAF) [92,93]. Because CAF are
always activated in vivo, it is important to activate CAF in vitro to mimic the tumor envi-
ronment [94]. Therefore, to enhance and activate the CAF, CAF spheroids incorporating
GMs containing drugs have been prepared. In addition, when the activated CAF spheroids
and cancer cells are co-cultured via model basement membrane, cancer cells are effec-
tively migrated with the penetration through the membrane. This CAF spheroids/cancer
cells co-culture model is a promising tool to evaluate the invasion ability of cancer cells
in vitro; therefore, the effect of candidate anti-invasion drugs can be investigated using the
model [39,66].

6. Future Perspective and Conclusions

Biomaterial usage for in vivo therapy or in vitro research has been noted because the
biomaterial enables the enhancement of cell potentials, such as proliferation, differentiation,
or metabolism. For further development of the field, it is essential to use material of low
inflammatory induction. Because gelatin is a denatured form of collagen, a major com-
ponent of proteins, gelatin is a suitable material for patient-friendly therapy. In addition,
gelatin can support cell viability by providing collagen proteins to the cells. However,
ECM components consist not only of collagen but also polysaccharides [95]. Based on
this cell characteristic, polysaccharides-based biomaterials, such as alginate, chitosan, or
hyaluronic acid, are also essential to enhance cell activity or function. Therefore, the combi-
nation of polysaccharides-based biomaterials and gelatin materials would further develop
regenerative therapy or drug research models.

In this review, regenerative therapy and drug research models using gelatin micropar-
ticles (GMs) are introduced. In both two applications, collagenase-triggered drug release
is the common keyword. In the case of regenerative therapy, the higher secretion of col-
lagenase in the injured site is utilized. Because the drug is released from GMs only on
injured sites, it is possible to enhance the drug effects or reduce the side effects. When the
GMs are incorporated into the spheroids for drug research models, collagenase secretion
by the 3D cell-cell interaction can enhance the drug release. This on-off drug release would
also be effective in other applications in the future, such as vaccines. The allergen must be
administered to antigen-presenting cells (APC), such as dendritic cells. When the allergen
is diffused, severe anaphylaxis will occur. Therefore, to achieve efficient vaccines, allergen
should be intensively administered to APC. To tackle this issue, GMs-based allergen release
would be promising. Because the sites of allergen administration are healthy, the allergen
is not leaked from gelatin microparticles after the injection. After the GMs are selectively
up taken into the APC by the APC-specific ligand coating, the allergen is released from
GMs “inside” the APC. This is because the collagenase exists as the intracellular enzyme.
Therefore, GMs are attractive drug carriers for many applications.

Funding: This research was funded by JPSP KAKENHI Grant-in-Aid for Young Scientists (Start-up),
grant number 21K20517.
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