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Effective separation of signal from noise (including physiological processes and head
motion) is one of the chief challenges for improving the sensitivity and specificity of
resting-state fMRI (rs-fMRI) measurements and has a profound impact when these
noise sources vary between populations. Independent component analysis (ICA) is an
approach for addressing these challenges. Conventionally, due to the lower amount
of temporal than spatial information in rs-fMRI data, spatial ICA (sICA) is the method
of choice. However, with recent developments in accelerated fMRI acquisitions, the
temporal information is becoming enriched to the point that the temporal ICA (tICA)
has become more feasible. This is particularly relevant as physiological processes and
motion exhibit very different spatial and temporal characteristics when it comes to rs-
fMRI applications, leading us to conduct a comparison of the performance of sICA
and tICA in addressing these types of noise. In this study, we embrace the novel
practice of using theory (simulations) to guide our interpretation of empirical data. We
find empirically that sICA can identify more noise-related signal components than tICA.
However, on the merit of functional-connectivity results, we find that while sICA is more
adept at reducing whole-brain motion effects, tICA performs better in dealing with
physiological effects. These interpretations are corroborated by our simulation results.
The overall message of this study is that if ICA denoising is to be used for rs-fMRI, there
is merit in considering a hybrid approach in which physiological and motion-related noise
are each corrected for using their respective best-suited ICA approach.

Keywords: fMRI, resting-state, temporal ICA, spatial ICA, head motion, physiological noise

INTRODUCTION

Functional MRI (fMRI) is a powerful tool to non-invasively investigate brain function and
organization. However, several confounding noise sources typically affect the sensitivity and
specificity of associated results, chiefly coming from physiological processes and bulk head motion.
These nuisance effects typically need to be removed to reduce false positive and false negative
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results, particularly in resting-state fMRI (rs-fMRI). Desirable
clean-up methods should selectively remove noise while
preserving signals of interest generated by presumed neural
activity (Murphy et al., 2013; Caballero-Gaudes and Reynolds,
2017). Identifying and removing physiological noise such as those
induced by temporal variability in respiratory volume and heart
rate (Birn et al., 2006; Chang et al., 2009; Golestani et al., 2015), as
well as by head motion (Power et al., 2012, 2015; Yan et al., 2013;
Maknojia et al., 2019) are particularly challenging. While the
higher-frequency respiration and cardiac cycles have been better
characterized and found easier to correct (Glover et al., 2000),
the low-frequency physiological effects have characteristics that
vary among different subjects and populations. Moreover, subtle
head motion, which is likely connected to such physiological
effects in no small part, is notoriously hard to identify and remove
(Van Dijk et al., 2012).

Several studies have used independent component analysis
(ICA) to remove the effects of physiological signals from fMRI
(Salimi-Khorshidi et al., 2014; Pruim et al., 2015). ICA is a
data-driven method that can be used to identify physiological
components of the fMRI signal without a priori knowledge
about their dynamics or additional equipment to record the
physiological signals. Since fMRI data typically has more voxels
than time-points, so far it has been more feasible to perform
spatial ICA (sICA) on fMRI data (Smith et al., 2012). Indeed
most of the available ICA-based data-cleaning tools are based on
sICA (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014; Pruim
et al., 2015). To generate N components from an ICA, typically
kN2 data points are required, where k is the number of data
points per component, and k > 2. For e.g., if we seek to generate
20 components in a tICA, then we may need 800 time points,
which is unavailable in most rs-fMRI scans. Conversely, as fMRI
has larger spatial dimension (voxels) than temporal dimensions
(time-points), sICA is conventionally more common in fMRI
and generates more reproducible results than tICA. Therefore,
sICA generates more accurate and reproducible results. However,
recent developments in multiband data acquisition enable
acquiring fMRI with higher temporal resolutions, which makes
temporal ICA (tICA) more feasible (Calhoun et al., 2001; Stone
et al., 2002; Chen et al., 2006; Penney and Koles, 2006; Wang
et al., 2006; Lukic et al., 2007; van de Ven et al., 2009; Alkan et al.,
2011; Gao et al., 2011; Boubela et al., 2013; Miller et al., 2014;
Hald et al., 2017; Shi and Zeng, 2018; Amemiya et al., 2019; Baker
et al., 2019). tICA has begun to be used in noise identification
in rs-fMRI (Beall and Lowe, 2007; Glasser et al., 2018, 2019;
Power, 2019). Regardless, sICA is still the method of choice for
rs-fMRI noise removal.

Previous studies indicate inherent differences in denoising
performance by tICA and sICA. Although sICA can successfully
identify spatially localized fluctuations, it likely fails to separate
spatially global components (Glasser et al., 2018) with spatially
overlapping sources (Smith et al., 2012; Boubela et al., 2013).
Specifically Calhoun et al., (Calhoun et al., 2001) have shown
that sICA and tICA fail in separating underlying components
if the components are spatially and temporally inter-dependent,
respectively. The deficiency of sICA in fMRI clean-up has been
demonstrated (Burgess et al., 2016; Siegel et al., 2017), and

tICA has shown promising results in identifying physiological
noise in the fMRI data. Boubela et al. (2013) were able to
identify physiological signals such as cardiac pulsation using
tICA. Moreover, Glasser et al. (2018) used tICA as a replacement
for the controversial global signal regression and showed tICA
can identify and remove global fluctuations in the fMRI data
(which presumably is due to physiological nuisance) while
preserving neural signals. However, in both studies, the data
from multiple subjects were concatenated and a group-wise
tICA on the concatenated data was performed. Therefore, it is
not clear how tICA performs in terms of a single-subject ICA.
This poses a major limitation, as for the fMRI to be clinically
useful, it should ideally be an individualized metric. Moreover,
the study by Glasser et al. (2018) mainly focused on identifying
a component associated with the global signal and did not
investigate how tICA performed in identifying and removing
specific physiological noise effects.

Intuitively, tICA can better distinguish between temporally
independent but spatially correlated components (Calhoun et al.,
2001; Boubela et al., 2013; Glasser et al., 2018) compared to sICA.
These include effects of low-frequency physiological fluctuations,
which could encompass the well-known effects of respiratory
variability (RVT), heart-rate variability (HRV), and end-tidal
carbon dioxide (PETCO2), potentially overlapping with each
other spatially and temporally (Tong et al., 2019; Bright et al.,
2020). Some of these physiological signals are also temporally
related to one another (Chang and Glover, 2009; Glasser et al.,
2018; Power et al., 2019b). On the other hand, some noise sources
are spatially less restricted and overlap with the spatial pattern
of other noises as well as with several resting-state networks
(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014; Golestani
et al., 2015). It is unclear if ICA (either temporal or spatial) can
identify and separate all of these sources of noise.

In this study, we compare the performance of sICA and
tICA in identifying and removing physiological noises
on a single-session (non-concatenated) basis. The first
objective of this study is to investigate if sICA and tICA
can identify different noise components in different ICs.
Since different noises have spatial or temporal dependencies,
we hypothesize that tICA and sICA perform differently
in identifying different physiological components of
the resting-state fMRI (rs-fMRI) signal. The second
objective of this study is to compare tICA and sICA
performance in removing noise from the fMRI data while
preserving the information about brain function. It is not
immediately obvious which would excel in the preservation of
neuronal information.

THEORY

ICA
Independent component analysis is a method for decomposing
multivariate linearly combined signals into its components,
assuming the components are statistically independent and non-
Gaussian. Assuming we observe m signals X = (x1, . . .,xm)T ,
which are a linear mixture of n hidden components S = (s1, . . .,
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sn)T . The mixture can be written as a matrix multiplication as
follow:

X = M × S (1)

where M is an m × n mixing matrix. Assuming the components
in S are statistically independent, ICA tries to estimate a
separating matrix W so that

W = M−1 (2)

Using W, we can estimate the original components:

Ŝ = W × X (3)

Spatial ICA
To implement spatial ICA (Beckmann et al., 2005) on fMRI data,
the data is first reordered into a 2-dimensional matrix of time x
space. Assuming we have n voxels with t time samples, the fMRI
data can be modeled as:

Datas
t×n = Ms

t×c × Ss
c×n, (4)

where Ss is a c× n matrix of c spatially independent components
and Ms is a mixing matrix that consists of temporal signatures of
the spatial components. Note that in this case we assume that the
data consists of c spatially independent components. Using sICA
we estimate the separating matrix as

Ws
= (Ms

t×c)
−1 (5)

Using the separating matrix, we estimate the spatial
components Ŝs

c × n:

Ŝs
c×n = Ws

c×t × Datas
t×n (6)

Time courses of the components can be estimated by
calculating the pseudo-inverse of the separating matrix Ws.

Temporal Independent Component
Analysis
To perform temporal ICA (Smith et al., 2012; Boubela et al., 2013;
Salimi-Khorshidi et al., 2014; Glasser et al., 2018), the fMRI data
is transposed into a n × t matrix. Therefore, the data can be
modeled as:

Datat
n×t = Mt

n×c × St
c×t (7)

The three matrices of Datat , Mt and St are the transpose of
Datas, Ms and Ss for the spatial ICA case. We assume that the
components time series in St are independent and we try to
estimate the separating matrix

Wt
= (Mt

n×c)
−1 (8)

Then we can estimate the components time courses Ŝt
c × t :

Ŝt
c×t = Wt

c×n × Datat
n×t (9)

The spatial maps can be estimated by calculating the pseudo-
inverse of the separating matrix Wt .

MATERIALS AND METHODS

Simulations
To guide the formation of our hypothesis regarding the
effectiveness of sICA and tICA in identifying noise ICs,
simulations were first performed, in which the fMRI data is
simulated as a mixture of known components (ground truth).
The same methodology has been used previously to simulate
task-based fMRI (Calhoun et al., 2001). Each of the simulated
datasets consists of five components of interest with known
spatial and temporal patterns, as shown in Figure 1. Signals
of the five components of interest are taken from an in vivo
fMRI dataset used in this work (acquisition details to follow).
The in vivo fMRI dataset is decomposed into 50 ICs using
the spatial ICA algorithm implemented in MELODIC, and for
computational simplicity, only the initial 500 time points of
each component are used. The spatial map of the simulated
data consists of 500 voxels in a 2-dimensional matrix with
10 × 50 voxels (which can be conveniently divided into 5 sub-
regions, each with a dimensionality of 10 × 10). In addition,
one component with random spatial and temporal patterns is
added to represent noise. Therefore, the mixing matrix M has
dimensions of 500 × 6 (500 time samples and 6 components,
i.e., 5 temporal components of interest and 1 noise component),
and the components matrix S is a 6 × 500 matrix (500 voxels
and 6 spatial components, i.e., 5 spatial components of interest
and 1 random “noise” spatial patterns). Thus, the final resultant
dataset has a dimensionality of 500 × 500. These components
were used to produce four datasets to represent four different
scenarios (Figure 1).

1. Spatially and temporally uncorrelated components;
emulates random noise such as from thermal sources; We
predict that tICA and sICA are agnostic in identifying
these components.

2. Spatially correlated components with low temporal
correlation; emulates spatially correlated but temporally
asynchronous processes, such as visual activity and
respiration in the occipital cortex (Birn et al., 2006;
Golestani et al., 2015). We hypothesize tICA performs
better in identifying these components.

3. Temporally correlated components with minimal spatial
correlation; emulates spatially localized but temporally
synchronous events, such as different nodes of a
brain network or head motion is a specific direction;
sICA assumes to be more successful in identifying
such components.

4. Spatially and temporally correlated components: this is
the most interesting and challenging case, in which we
presume neuronal and vascular signal sources coincide
both temporally and spatially (Bright et al., 2020). The
performance of tICA and sICA in identifying these
components is unclear.

Regarding the component signals, for Scenarios 1 and 2,
five signals are randomly selected from a set of 10 signals
with the lowest mutual temporal correlation (the average
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FIGURE 1 | Simulated test cases. Examples of spatial (A,C) and temporal (B,D) components used for the simulation. Examples of the spatial maps of the five
components are presented on the left. Each component has dimensions of 10 × 50. Examples of temporal signals of the five components are presented on the
right. Each component has 500 time samples (time points). Panels (A,B) show the cases that the components have low correlation, whereas the panels (C,D)
represent the cases where the components are highly correlated.

absolute correlation among the 10 components = 0.0325), which
reflects high independence among the temporal components.
To model high temporal dependence for scenarios 3 and 4,
five signals are randomly selected from a pool of 10 highly
mutually correlated signals (average absolute correlation among
the 10 signals = 0.2701). Regarding the spatial components, for
scenarios 1 and 3 (low spatial correlation), each signal is added
to only one of the five sub-regions, whereas for scenarios 2 and
4 (high spatial correlation), each signal is added to all five sub-
regions with different weightings. Examples of the components’
time-courses with low and high temporal correlation are shown
in Figures 1B,D. To the best of our knowledge, this is a
novel framework for determining the effectiveness of ICA-based
methods for separating rs-fMRI-relevant signals contributions.

Datasets are generated by multiplying the spatial (M)
and temporal (S) matrices. 100 datasets are generated for
each scenario by varying the random noise, voxel values
of the spatial patterns, and randomly selecting 5 out of
10 time-courses. Each dataset is then decomposed into its
components using both sICA and tICA. The performance of
the ICA algorithms is measured by comparing the spatial
and temporal correlation between the 5 original and the 5
ICA-identified components. In each simulation, the correlation

between the five identified components and the five original
signals is calculated and then the five correlation values are
averaged to estimate an overall correlation between the original
signals and the identified component. We realize that the
assumption of temporally and spatially randomness for the noise
component is an over-simplification in fMRI, but the goal of
these simulations is to demonstrate the differential effects of
tICA and sICA on temporally or spatially correlated signal
components. The hypothesis is that while tICA should be better
at separating temporally dissociated but spatially correlated signal
components, the converse should be true for sICA.

Data Acquisitions
Nineteen healthy subjects (age = 26.5 ± 6.5 years) were scanned
using a Siemens TIM Trio 3T MRI scanner with a 32-channel
head coil. rs-fMRI scans were collected using simultaneous multi-
slice GE-EPI BOLD (TR/TE = 380/30 ms, flip angle = 40◦,
20.5-mm slices, 64 × 64 matrix, 4 mm × 4 mm × 5 mm
voxels, multiband factor = 3, 1,950 volumes). During each
scan, end-tidal CO2 pressure (PETCO2) fluctuations were
passively monitored using a RespirActTM system (Thornhill
Research, Toronto, Canada). In addition, cardiac pulsation was
recorded using the Siemens scanner pulse oximeter (sampling
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rate = 50 Hz), whereas the respiratory signal was recorded using
a pressure-sensitive belt connected to the BiopacTM (Biopac
Systems Inc., CA, United States) at a sampling rate of 200 Hz.
A T1-weighted anatomical image was also collected (MPRAGE,
TR = 2,400 ms, TE = 2.43 ms, FOV = 256 mm, voxel
size = 1 mm× 1 mm× 1 mm).

Preprocessing and ICA
The rs-fMRI processing pipeline includes: motion correction,
spatial smoothing (Gaussian kernel with 5 mm FWHM), and
high-pass filtering (>0.01 Hz). We chose to estimate 30 ICs, as
this is a typical number of components used in the literature
that provides a good trade-off between providing a good
representative of the fMRI data structure and making the analysis
and interpretation more manageable (Wang and Li, 2015; Vergun
et al., 2016). For sICA, fast ICA (Hyvärinen, 1999) is used to
divide fMRI data into 30 spatial components. For tICA, as is
typical, the data dimension is first reduced to 100 components
using sICA, and then tICA (Smith et al., 2012; Glasser et al.,
2018) is performed on the 100 time-series to generate 30 temporal
components. To assess the generalizability of our findings, we
also obtained results when the signal was decomposed into 50 ICs
(Supplementary Material).

Markers of Noise: Physiological
Variations and Motion
We address the signal contribution by different noise types,
categorized as:

• Global physiological fluctuations, including PETCO2, RVT,
and HRV, which have network structure and are spatially
selective, but have temporal signatures that are distinct
from those of neuronally driven BOLD signals. Heart-
rate variation (HRV) is calculated as the average heart
rate over a 4-s window (Chang et al., 2009). Respiratory-
volume variability (RVT) is defined as the ratio of
breathing depth to breathing period (Birn et al., 2006;
Chang et al., 2009). PETCO2 is calculated by finding the
peak PCO2 level in each breathing cycle and repeating
over the entire tracing (Golestani et al., 2015). Subject-
specific response functions for PETCO2, RVT, and HRV
are obtained from the whole-brain global signal using the
Gaussian-constrained maximum-likelihood deconvolution
model (Falahpour et al., 2013; Golestani et al., 2015). In this
study, to ensure fairness of comparisons, the physiological
signals are convolved with the corresponding response
function (i.e., PETCO2-conv, RVT-conv and HRV-conv).
• Global motion parameters, including framewise

displacement (FD), the spatial root-mean-square of
the time series (DVARS), the slow variations (SVAR).
FD is calculated using FSL, as the sum of the absolute
values of the derivatives of the six motion parameters.
DVARS and SVAR are estimated using a MATLAB script
(Jenkinson et al., 2002; Afyouni and Nichols, 2018).
Specifically, DVARS is proportional to the sum of the
squared framewise fMRI signal change and is weighted
towards the fast portion of signal change. Conversely,

SVAR is computed as the sum of the squared sum between
consecutive fMRI frames and reflects the slow portion of
signal change (Jenkinson et al., 2002; Afyouni and Nichols,
2018).
• Local motion parameters, including the six affine head

motion parameters (three rotations and three translations).
Bulk-motion time series, whether fast or slow, are expected
to exhibit statistical properties that differ from non-
motion signal substrates both temporally and spatially. The
six affine motion parameters were generated using FSL’s
MCFLIRT motion correction algorithm (Jenkinson et al.,
2002).

Evaluation Methods
Evaluation of sICA and tICA for separating signal and noise
are evaluated using the following evaluation approach, using the
noise (physiological variability and motion) markers described
earlier. In all cases, signal contributions associated with each
noise marker are obtained by combining all ICs that are
significantly correlated with each noise marker. Conversely, the
remaining ICs are combined to synthesize the non-noise related
contribution for each noise type, respectively. Our methodology
is detailed in Figure 2, and the evaluation rubrics are shown in
Table 1.

Noise Identification: Noise Content in
Noise-Correlated ICs
To assess the extent of a given IC indeed being mostly noise,
the correlation between each noise time series and the time
course of each of the 30 temporal/spatial ICs is calculated. To
assess the significance of the correlations, a null distribution
is generated by calculating the correlation between a specific
component and 5,000 permutations of the noise time course (to
maintain the same power spectrum but with a shuffled phase).
Noise-related ICs are defined as those that are significantly
correlated with the noise (p < 0.05 Bonferroni-corrected for
multiple comparisons). Ideally, the ICA should produce noise
ICs that are well correlated with the noise markers. Therefore,
the performance of the ICA in noise-component identification
is evaluated through the Noise-identification effectiveness ratio:
defined as the ratio of the average variance explained by noise
in noise-related ICs (R2 between the noise time series and the
time course of the ICA-identified noise-related components)
divided by the average variance explained by noise in non-
noise components (R2 between the noise time course and the
time course of the non-noise ICs). Higher ratio represents
better performance.

Moreover, we also recorded the percentage of the components
that have a significant correlation with the noise markers.
Although a lower percentage of noise-related ICs does not
necessarily indicate better performance, but if all other
performance metrics are indistinguishable between sICA and
tICA, then the method that achieves the performance by
identifying and removing a lower percent of noise components
is preferable, as it suggests more efficient noise identification
that better preserves the degree of freedom. A lower percent
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FIGURE 2 | Overview of analysis pipeline for evaluating the performance of tICA and sICA. The performance of the two approaches are compared in three ways: (1)
noise identification: the associated metrics are extracted from the results of the ICA step; (2) functional connectivity: these are extracted after combining
noise-related and noise-free components to create noise and cleaned datasets; (3) variance explained: the amount of variance (of the original data) that is removed
from the pre-ICA signal (as noise) and how much is retained (noise-free), as well as the variance accounted for by the noise markers.

TABLE 1 | Rubric demonstrating how to interpret the performance of noise identification (A) and correction (B) based on the presented data.

Evaluation of noise detection performance Evaluation of noise removal performance

Noise-identification effectiveness ratio: R2

(noise-related ICs, noise markers) / R2

(non-noise ICs, noise markers)

Ideally high Denoising-effectiveness ratio:
Variance explained by noise markers in noise-related ICs / Variance
explained by noise markers in denoised signal

Ideally high

Spatial overlap with known functional networks (Dice_non_noise) Ideally high

Intra-extra network connectivity difference (1Z_non_noise) Ideally high

(A) A good noise identification consists of noise components with a strong correlation with the noise and a low correlation between the remaining components and
the noise. On the contrary, a case of bad noise identification is when components are correlated with the noise time series and the correlation between the noise and
noise-related components is comparable with the correlation between the noise and noise-free components. (B) Noise correction performance is evaluated by comparing
the variance in the original data (before noise correction) and the variance in the cleaned and noise data explained by each noise marker. A good noise correction should
reduce the R2 in the denoised data while having a high R2 in the noise data. Moreover, the Dice coefficient between rs-network templates and the components should
stay the same or increase in the corrected data. Finally, 1Z (the difference between the within-network and between-network Z-values) should not decrease after noise
correction in the corrected data.

represents better performance (Carone et al., 2017; De Blasi et al.,
2020).

Noise Removal
Noise-related and noise-non-related ICs are combined separately
to reconstruct “noise” and “denoised” datasets. To generate
denoised datasets, all columns in the mixing matrix that are
identified as noise components are replaced with zeros, following
which the data is reconstructed by multiplying the mixing
matrix to the components matrix. Similarly, “noise” datasets are
generated by reconstructing data after replacing the non-noise
columns of the mixing matrix with zeros. Ideally, successful
noise correction should result in a “cleaned” dataset that contains
high brain functional connectivity information. Moreover, the

denoising approach should not remove excessive variance from
the original data.

Variance Retained and Removed
In this step, we used the output from the ICA step to generate
“noise” and “denoised” datasets with regard to different noise
types (as described earlier). That is, for each noise time series,
we identified ICs that are significantly correlated with it, and
combined them to produce the noise-specific signal contribution
for that noise type. Conversely, the remaining ICs are combined
to create the signal contribution that is not related to that
particular noise type (“denoised data” with respect to that noise
type). To evaluate the effectiveness of noise removal, variance
in the fMRI data explained by each noise source is compared
before and after ICA-based noise removal. To this end, voxel-wise
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R2 between each noise source and the original fMRI signal was
calculated and the R2 values were averaged across the brain.
The same process was followed for cleaned and noise datasets,
whereby we defined the Denoising effectiveness ratio as R2(noise,
designated noise ICs) / R2 (noise, denoised data). Successful noise
removal would lead to a decrease in the R2 between the noise
markers and denoised data while R2 between the noise markers
and designated noise ICs should be high. Therefore. we expect to
have a high R2 ratio for a successful noise removal.

Furthermore, a composite noise dataset is created by a
weighted summation of all the ICs correlated with any of the
noise markers, and a noise-free dataset is created by a weighted
summation of the remaining components. The weights for each
component are based on the estimated mixing matrix. Voxel-wise
R2 between the original fMRI dataset and the composite noise
and noise-free datasets is calculated and then averaged across the
brain. This shows how much of the variance in the original fMRI
signal is removed by correcting for all noise sources.

Effect on Functional Connectivity
To assess the effect of ICA denoising on functional connectivity,
template-based rotation (TBR) (Schultz et al., 2014) is
implemented on “cleaned” datasets to generate resting-state
connectivity (rs-connectivity) maps for each individual using
Yeo’s seven resting-state network (rs-network) templates (Yeo
et al., 2011), namely the visual, somatomotor, dorsal attention,
ventral attention, frontoparietal and default mode networks.
Specifically, in TBR, functional volumes are described as a
linear combination of network templates, and it is assumed
that the network templates are meaningful segmentations of the
rs-fMRI signal fluctuations. The first step of TBR is a spatial
principal-component analysis of the fMRI data, resulting in
mutually orthogonal principal components. These principal
components are then mapped onto a network template using
multi-regression. Thus, there is no requirement for the signals
associated with individual network templates to be orthogonal.
The same rs-fMRI image series could be used to map to
multiple network templates, reflective of possible dependence
amongst networks. The advantages for using TBR include that
it provides more stable connectivity estimates as compared to
traditional methods such as seed-based analyses, and that it
offers a convenient means of incorporating the rs-fMRI network
templates in our evaluation process.

Ideally, functional networks should be preserved in the
“cleaned” images. As an example, group-average connectivity
maps for the default mode network (DMN) are generated from
TBR for the cleaned images. The following two measures are
introduced to evaluate the presence of rs-networks in and
“cleaned” data resulting from the ICA denoising stage:

Spatial Overlap With Known Functional Networks (Dice
Coefficient)
Each network map generated using TBR is thresholded with
a value that generates the maximum Dice coefficient with the
functional-network template. The Dice coefficients are averaged
across the six rs-networks (excluding limbic due to partial
coverage and susceptibility noise). Ideally, concurrently high

Dice coefficient from “cleaned” data demonstrates that the
information about brain connectivity is preserved after noise
correction (Table 1).

Intra-Extra Network Connectivity Difference (1Z)
For each network, the “cleaned” data is mapped to individual
network templates using TBR, as described earlier. Subsequently,
the average z-values (connectivity score) taken from outside
each network is subtracted from the average within-network
connectivity. Poor separability can result from poor data quality
(Kong et al., 2020). Therefore, in a cleaned dataset we ideally
expect to observe a greater difference between within-network
and between-network connectivity.

Statistical Test
Since the evaluation metrics are not always normally distributed,
we used the paired-sample Wilcoxon signed-rank test to compare
the metrics produced by the two methods (in addition to “no
denoising”). To reduce false positives, p-values of less than 0.01
are considered to be significant (uncorrected).

RESULTS

Simulations
Results of the simulation are presented in Figure 3. For
scenario 1 where the components are spatially and temporally
uncorrelated, sICA outperforms tICA in identifying spatial
patterns, whereas tICA can better identify the temporal patterns
of the components. In scenario 2, whereby the components
are spatially correlated, tICA displays better performance in
identifying both spatial and temporal patterns of the components.
In scenario 3, when the components are temporally correlated,
sICA performs better in identifying the components’ spatial
patterns. In Scenario 3, the performance of sICA and tICA in
identifying the time-series of the components are comparable.
In the scenario that the components are both spatially and
temporally correlated, sICA can better identify components’
time series, while tICA can better identify components’
spatial patterns.

Overall, these simulations demonstrate that sICA performs
better when the components are spatially uncorrelated and tICA
performs better when the components signals have low temporal
correlation, confirming our hypotheses.

Experimental Data
As described earlier, each raw data set is divided into 30 ICs
using either sICA or tICA. First, the performances of sICA and
tICA in identifying noise components are compared using the
two metrics explained in the first column of Table 1 (detailed
in section “Materials and Methods”). The performance of spatial
and temporal ICA in noise removal is then compared using
the three metrics in the second column of Table 1 (detailed in
section “Materials and Methods”). The distinction between the
evaluations of noise identification and noise removal is that in the
former case, we focus on the presence of noise contributions in
the ICs of the original data identified as “noise-related”, whereas

Frontiers in Neuroscience | www.frontiersin.org 7 June 2022 | Volume 16 | Article 867243

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-867243 June 8, 2022 Time: 12:21 # 8

Golestani and Chen Spatial vs. Temporal ICA for Resting-State fMRI

FIGURE 3 | Simulated performance of sICA (black) and tICA (gray) in identifying signal components and spatial patterns. Performance is measured by calculating the
correlation between the temporal (A) and spatial patterns (B) of the ground-truth and estimated components. Thus, a higher correlation indicates superior
performance. When the components are spatially correlated, tICA performs better, whereas when the components are temporally inter-correlated, sICA results are
more favorable. When components are both temporally and spatially correlated (“Both Overlap”), sICA results in higher performance in terms of temporal correlation
with the ground truth, while tICA results in higher performance in terms of spatial correlation with the ground truth. Error bars show standard deviation across 100
simulations. Significant differences are indicated by asterisks (p < 0.05).

in the latter, we focus on the presence of noise contributions in
the ICA-denoised data.

To confirm the classification of the different noise sources,
their temporal correlations are assessed for each subject, then
averaged across subjects (Figure 4). PETCO2-conv, RVT-conv
and HRV-conv have been convolved with their respective fMRI
response functions, whereas the remaining regressors have not.
Overall, local motion parameters (translation and rotation) are
mutually correlated. For instance, there is high correlation
between x- and z-translation. Moreover, y-rotation is negatively
correlated with x-translation, and z-translation is negatively
correlated with y-translation. On the other hand, global motion
parameters such as FD and DVARS are moderately correlated,
but they are not correlated with local motion parameters. Lastly,
consistent with previous research (Chang and Glover, 2009), the
convolved RVT and PETCO2 are also moderately correlated.

Lastly, correlations between the physiological signals and local
head motions are low to moderate (RVT-conv with X-rotation,
PETCO2-conv with y-rotation). These results generally support
the classification of local and global noise sources based on
temporal correlation.

Noise Identification
As shown in Figure 5 and Supplementary Table 1, the Wilcoxson
signed-rank test revealed significantly fewer tICA components
than sICA components that are correlated with noise sources
(indicated by blue asterisks). However, the noise-related ICs
identified by tICA are more distinct from the non-noise related
ICs, as indicated by a higher noise-identification effectiveness
ratio (Figure 5) for FD (red asterisk). In this respect (of the R2

ratio), sICA is only significantly advantageous in the cases of Y
and Z translation (blue asterisks in the right columns).
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FIGURE 4 | Mean correlation matrix across all pairs of noise regressors. The
correlation matrix is the average across subjects. The colorbar represents
correlation coefficients, and the diagonal are populated by 1’s.

Noise Removal
The noise components identified by both sICA and tICA have
high shared variance (R2) with the noise sources, with a higher R2

ratio being indicative of higher denoising effectiveness (Table 1).
By this metric, the performance of tICA for FD-related noise
removal is superior to sICA (Figure 6, red asterisk), with the
significance values summarized in Supplementary Table 2. For
the motion-realignment (translation and rotation) parameters,
sICA performance is more consistent and significantly superior,
specifically for Y and Z translation and rotation (blue asterisks,
details found in Supplementary Table 2). Similar findings pertain
to the case of ICA producing 50 rather than 30 ICs (see
Supplementary Material).

The effect of removing all noise sources is shown in Figure 7.
Subjects are coded with different colors and symbols. In both
cases, all ICs that are significantly associated with any noise
source are considered noise-related and removed in the denoising
step. Overall, tICA preserved considerably more variance of the
original data. In some cases, sICA removed up to 80% of the
variance in the original data.

To illustrate the influence on functional connectivity (FC), the
DMN connectivity maps generated from corrected datasets are
shown in Figure 8. The DMN generated from corrected data
with tICA is more similar to the original DMN map, whereas
the maps generated from corrected data with sICA have lower
Z-values and, in some cases, missing nodes of the DMN network
(e.g., dorsolateral-prefrontal node).

To quantify the FC comparisons, the Dice coefficient was
used to gauge the spatial similarity between each IC and
template functional networks (Figure 9 and Supplementary
Table 3). As mentioned previously, six networks were considered,
namely the visual, motor, default-mode, dorsal attention, ventral
attention, and frontoparietal networks. In non-noise ICs (those
uncorrelated with each of the individual noise markers),
tICA-denoised TBR results are shown to have significantly

higher Dice coefficients, specifically after removing PETCO2,
HRV, or RVT effects.

Network structure in non-noise related rs-fMRI signal
contributions were assessed as the intra-extra network
connectivity difference (1Z) (shown in Figure 9 and
Supplementary Table 4). Compared to tICA, sICA denoising
resulted in more variable changes in the network specificity.
sICA exhibits greater inter-subject variability, as indicated by
the spread of the Dice and network specificity metrics. The Dice
coefficient (network-template overlap) is significantly higher for
data after tICA-based removal of the effects of PETCO2, HRV,
RVT, Z translation and DVARS (red asterisks), whereas network
specificity (1Z) is significantly higher after sICA-denoising X
rotation as well as Y and Z rotation (blue asterisks). Similar
findings pertain to the case of ICA producing 50 rather than
30 ICs (see Supplementary Material), demonstrating the
generalizability of these findings.

The performance of tICA and sICA in identifying and
removing noise sources are summarized in Table 2. Our results
agree with the simulation-based predictions. Specifically, tICA
performs better in identifying and removing global components
with high spatial correlations (FD, DVARS, PETCO2, RVT,
and HRV), whereas sICA is more successful in identifying and
removing components that are temporally correlated, but are
spatially localized (local head motion parameters).

DISCUSSION

Independent component analysisis a main-stream method of
noise removal in rs-fMRI (Salimi-Khorshidi et al., 2014; Pruim
et al., 2015). As ICA denoising can be purely data-driven, it
circumvents the lack of physiological and motion recordings in
many large-scale studies. However, to date, most ICA-related
rs-fMRI studies have opted for sICA (Calhoun et al., 2001;
Beckmann et al., 2005; Smitha et al., 2017), leaving tICA
underexplored. We are cognizant of the rising use of accelerated
rs-fMRI acquisitions (Lee et al., 2013; Preibisch et al., 2015;
Demetriou et al., 2018), which is making tICA in rs-fMRI an
increasing possibility. The effectiveness of tICA in identifying
and removing the more global RVT effects in a group-wise
tICA implementation has been shown (Glasser et al., 2018). In
this study, we compare the performances of sICA and tICA
for denoising rapidly sampled rs-fMRI data. Importantly, as we
also have physiological and motion time series at our disposal,
we are able to evaluate both types of ICA using these time
series as reference rather than rely solely on more subjective
evaluation. That is, noise-related ICs were identified based on
significant correlation with noise parameters rather than based on
spatial pattern or frequency distribution (Bhaganagarapu et al.,
2013; Sochat et al., 2014). Furthermore, we use the available
noise parameters to segregate the data into substrates driven by
different noise types, namely physiological and motion.

In this study, although the spatial resolution
(4 mm × x4 mm × 5 mm) is lower than in studies such as
the Human Connectome Project (HCP) (Glasser et al., 2013),
such spatial resolutions are not uncommon amongst legacy data
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FIGURE 5 | Comparing sICA and tICA in identifying noise components. Each line represents one subject. Each plot depicts the noise-identification effectiveness
ratio, i.e., the ratio of R2 between noise markers and noise-correlated ICs over the average R2 between the noise markers and non-noise-correlated ICs. Significantly
higher values for sICA are indicated by the blue asterisk, whereas significantly higher values for tICA are indicated by the red asterisk. The significance of the changes
is indicated in boldface in Supplementary Table 1.

that are still being actively analyzed (Glover, 2011). Moreover,
we traded spatial resolution to achieve a much higher sampling
rate (TR = 0.38 s), the intention being to help us avoid the brunt
of aliasing high-frequency physiological noise in the f < 0.1 Hz
band. This is an important advantage of our dataset over the
HCP project, where cardiac signal is not critically sampled and
therefore is aliased into low frequency bands. It bears mentioning
that we used a simulation-assisted approach to support our

conclusions, an approach we have consistently embraced in our
work (Chu et al., 2018; Yuen et al., 2019). Thus, the availability
of comprehensive physiological recordings in our study enabled
hypothesis testing, by clarifying the temporal relationships
amongst the many noise markers (Figure 4). In this study we
assume that noise consists of all known signals in the frequency
band <0.1 Hz that have non-neural origins, including low-
frequency physiological variability and head motion. Figure 4
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FIGURE 6 | Comparing sICA and tICA in removing the effect of noise: the variance explained by noise type. Each line represents one subject. In each column, each
plot shows the ratio of variance accounted for by each noise/artifact source in the noise-related signal identified by sICA and tICA over the corresponding variance in
the ICA-denoised signal. A higher R2 ratio indicates more successful denoising to some extent. Significantly higher values for sICA are indicated by the blue asterisk,
whereas significantly higher values for tICA are indicated by the red asterisks. The significance of the changes is indicated in boldface in Supplementary Table 2.

confirms three points: (1) the local affine motion parameters
(rotations and translations) are mutually correlated temporally;
(2) the global motion parameters such as FD and DVARS are
not temporally correlated with these local motion parameters;

(3) physiological processes introduce temporally distinct effects
from both of these categories of noise markers. It is thus clear
that neither sICA nor tICA is ideal for addressing all of these
types of noise, and a deeper understanding of the performances
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FIGURE 7 | Total variance (R2) removed and retained by sICA and tICA. (A) The variance accounted for by the composite noise contributions generated from the
noise-correlated ICs. (B) The variance accounted for by the composite non-noise contributions generated from the non-noise-correlated ICs. Each color represents
one subject. The results show that sICA consistently removes more variance from the original signal than tICA.

FIGURE 8 | Functional-connectivity patterns associated with the denoised signals. Each row corresponds to the group-average TBR-based connectivity maps
associated with signals that had specific noise correction applied to it. At the top is shown the DMN connectivity map obtained from the original data, and denoised
data should maximally display DMN structure, which is generally stronger in tICA-cleaned signals.

of sICA and tICA is key to understanding the natures of the
diverse noise sources in the low-frequency band.

Comparison of Denoising Methods:
Denoised Resting-State fMRI Signal
Content
Temporal ICA and sICA denoising behave very differently,
although it is customary to precede tICA with sICA-based
dimensionality reduction, as stated earlier (Smith et al., 2012;
Glasser et al., 2018). The first main finding of this study is that
tICA is likely to identify fewer noise ICs than does sICA for our
fMRI data. At the same time, the noise-related ICs identified

by sICA and tICA are similarly associated with the noise time
courses with respect to the noise-identification effectiveness ratio,
tICA achieves this with a lower loss in degrees of freedom
and potentially preserves more neuronally meaningful signal
contributions. More specifically, as shown in Figure 6, while tICA
performs significantly better for isolating the effect of FD, sICA
performs better for isolating the influences of Y and Z affine
motion realignment parameters. Furthermore, once all noise-
associated ICs are removed, we found sICA removes much more
variance from the original signal than tICA, as demonstrated in
Figure 7; this is the second main finding of this study.

Framewise displacement has a more global signature, as it
is calculated from the whole-brain average signal, and acts like
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FIGURE 9 | Comparing sICA and tICA in removing the effect of physiological signals: Spatial overlap of connectivity pattern with known functional networks (Column
1) and intra-extra network difference (Column 2). Each line represents one subject. Column 1 represents the average Dice coefficient between the rs-networks
template and the resting-state network maps generated from denoised fMRI data. Column 2 represent functional specificity of each connectivity map as measured
by calculating the average 1Z between voxels within networks and those outside networks, and averaged over all networks. In each plot the ICA-denoising outcome
is compared to the outcome from the original data (without ICA denoising). Significantly higher values for sICA are indicated by the blue asterisk, whereas
significantly higher values for tICA are indicated by the red asterisks. The significance of the changes is indicated in boldface in Supplementary Tables 3, 4.

the summation of all affine motion parameters. On the other
hand, the effect of the affine head motions can contain aspects
that are localized at the edge of the brain with limited spatial
overlap with brain networks and other signal sources. Thus,
following the scenarios addressed in the simulations, tICA, as
expected, performs better for isolating physiological noise (which
share spatial distributions with brain networks), whereas sICA,
as expected, performs better for noise types that have lower
spatial overlap with brain networks. Nonetheless, we still need
to assess whether these differences translate into equivalent
performance differences in functional connectivity mapping.

Lastly, the inter-subject variability of the performances of tICA
and sICA are largely comparable, both exhibiting high levels of
variability. This is also unsurprising, as the spatial signature of
physiological noise varies greatly across subjects (Bianciardi et al.,
2009; Chang and Glover, 2009; Falahpour et al., 2013).

Comparison of Denoising Methods:
Resting-State fMRI Connectivity
We found that sICA-denoised data is associated with lower
network structure than tICA-denoised data, as shown in Figure 8
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TABLE 2 | Summary of performance of sICA vs. tICA for various noise markers.

Performance category sICA
outperforms
tICA

tICA
outperforms
sICA

sICA and tICA
equivalent

Noise
identification

By R2 ratio
(Figure 5)

y-translation
z-translation

FD PETCO2
RVT
HRV
DVARS
SVAR
x-translation
x-rotation
y-rotation
z-rotation

Noise
removal

By R2 ratio
(Figure 6)

y-translation
z-translation
y-rotation
z-rotation

FD PETCO2
RVT
HRV
DVARS
SVAR
x-translation
x-rotation

By
connectivity
accuracy
(Figure 9)

PETCO2
RVT
HRV
Z-translation
DVARS

FD
SVAR
x-translation
y-translation
x-rotation
y-rotation
z-rotation

By
connectivity
specificity
(Figure 9)

y-translation
z-translation
x-rotation

PETCO2
RVT
HRV
DVARS
SVAR
FD
x-translation
y-rotation
z-rotation

for the case of the DMN. When summarized across multiple brain
networks, as the Dice coefficient reflects the degree of overlap
between the network templates and the TBR maps of functional
connectivity in the denoise data, a higher Dice coefficient in the
denoise part of the signal is more ideal. Based on this metric, tICA
denoising of physiological (PETCO2, HRV, and RVT), DVARS
and Z translation effects resulted in higher network integrity than
sICA denoising (Figure 9). Similar findings pertain to the case
of ICA producing 50 rather than 30 ICs (see Supplementary
Material), demonstrating the generalizability of these findings.
This is consistent with the finding that sICA denoising removes
more variance from the data compared to tICA, part of which
contributes to legitimate functional connectivity. These findings
can be justified particularly as physiological (PETCO2, HRV, and
RVT) and DVARS share regions of influence (Tong et al., 2015;
Bright et al., 2020). Since sICA prefers spatial independence
amongst ICs, it is less able to disentangle the effect of these noises
from the underlying connectivity signals and therefore partially
removes information about brain connectivity. On the other
hand, sICA-denoisation data produces higher network specificity
after removing X rotation and Y/Z translation effects, as these
noise sources are likely to produce more spatially localized effects
(Pruim et al., 2015).

The findings of this study are summarized in Table 2 for
an easier overview. Consistent with our hypothesis and the
simulation results, sICA performs better in identifying and
removing spatially uncorrelated components such as rotations
and translations. The superiority of the sICA is more pronounced
in removing the components that exhibit stronger temporal
rather than spatial correlations (e.g., y-rotation, y-translation,
z-translation in Figures 5, 6). On the other hand, noise markers
that have strong spatial overlap with other noise markers or brain
networks can be removed more efficiently by tICA; these include
PETCO2, HRV, RVT, FD, and DVARS. Lastly, tICA results are
associated with lower inter-subject variability in spatial specificity
(1Z) than sICA results, as seen in Figure 9. It should be noted
that the metrics used to compare the performance of sICA
and tICA noise removal show complementary aspects of each
method’s performance, therefore the evaluation should consider
the various quality metrics simultaneously.

Taken together, our findings suggest that there is real merit
in considering an ICA-hybrid approach in which physiological
and motion-related noise are each identified using tICA and
sICA, respectively. This study is a first step toward recognizing
the importance of such a hybrid approach. The objective of
this study was to show the differences of tICA and sICA in
identifying and removing individual noise contributions. Future
studies are required to move towards developing and optimizing
a hybrid approach by answering such questions as how to address
interdependencies amongst the noises and the sequence of tICA
vs. sICA for noise removal.

Limitations
In this work we made a key assumption that noise in rs-fMRI
should exhibit different statistical distributions from the signal. In
reality, statistical distributions of physiological processes are not
entirely distinct from those observed within functional networks.
However, the inter-subject variability in these effects is very high
(Chang and Glover, 2009; Golestani et al., 2015), creating large
uncertainties as to the overlap with functional networks on a
per-subject basis. The standard deviation of respiratory depth
(RV) instead of RVT may be more robust against measurement
artifacts (Glasser et al., 2018; Power et al., 2019a). As a result, the
frequency occupancy of these signals can be leveraged to separate
them from neuronally driven signals to some degree (Yuen et al.,
2019). Nonetheless, this work presumes the currently dominant
view that physiological processes are part of the “noise”. Further
investigations are underway to verify that claim.

Furthermore, fMRI data typically has a much higher spatial
than the temporal dimension. This leads to instability when
applying tICA. To overcome this problem, it is inevitable to
reduce the spatial dimensionality of the data. This is typically
done using principal component analysis (PCA) (Calhoun et al.,
2001; Boubela et al., 2013) or an initial spatial ICA (Smith et al.,
2012; Glasser et al., 2018). In this study we performed an initial
sICA-based data reduction, which is a common step in the tICA
approach in fMRI (Smith et al., 2012; Glasser et al., 2018), to
reduce the spatial dimension of the data to 100, which is a
typical spatial space of the fMRI data (Craddock et al., 2012;
Glasser et al., 2016a). Therefore, tICA as it is typically reported
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is in fact a mixed method, which uses both sICA and tICA.
We did not test other dimension reduction methods or using
sICA with a different dimension. Further studies are required
to investigate whether different dimension reduction approaches
would alter the findings.

Lastly, the spatial resolution of the current data is lower than
used in the state-of-the-art studies (Glasser et al., 2016b; Miller
et al., 2016). However, it is still representative of the numerous
sets of legacy data (Teipel et al., 2017; Kraus et al., 2020),
with an important advantage of critically sampling cardiac and
respiratory noise peaks, which is not possible with online public
datasets, like the Human Connectome Project. This latter allows
us a unique advantage to decipher the effects of low-frequency
artifacts, although this results in the use of a lower than usual
flip-angle (40 degrees). While such a low flip angle minimizes
the contribution of physiological noise (Gonzalez-Castillo et al.,
2011), given the loss in image SNR brought about by the short
TR, the overall temporal SNR is no higher than at a higher flip
angle (70–90◦). The TR-driven temporal-SNR can influence the
performance of ICA, and should be investigated as the next step.
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